dm: dm-zoned: use __bio_add_page for adding single metadata page
[linux-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
982ed0de 62#include "kvm_mm.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
4c8c3c7f
VS
65#include <trace/events/ipi.h>
66
229456fc
MT
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
fb04a1ed
PX
70#include <linux/kvm_dirty_ring.h>
71
4c8c3c7f 72
536a6f88
JF
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
6aa8b732
AK
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
920552b2 79/* Architectures should define their poll value according to the halt latency */
ec76d819 80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 81module_param(halt_poll_ns, uint, 0644);
ec76d819 82EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 83
aca6ff29 84/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 85unsigned int halt_poll_ns_grow = 2;
039c5d1b 86module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 88
49113d36
NW
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
aca6ff29 94/* Default resets per-vcpu halt_poll_ns . */
ec76d819 95unsigned int halt_poll_ns_shrink;
039c5d1b 96module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 98
fa40a821
MT
99/*
100 * Ordering of locks:
101 *
b7d409de 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
103 */
104
0d9ce162 105DEFINE_MUTEX(kvm_lock);
e9b11c17 106LIST_HEAD(vm_list);
133de902 107
aaba298c 108static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 109
15ad7146 110static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 112
76f7c879 113struct dentry *kvm_debugfs_dir;
e23a808b 114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 115
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
5f6de5cb
DM
118static struct file_operations kvm_chardev_ops;
119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
286de8f6
CI
149#define KVM_EVENT_CREATE_VM 0
150#define KVM_EVENT_DESTROY_VM 1
151static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152static unsigned long long kvm_createvm_count;
153static unsigned long long kvm_active_vms;
154
baff59cc
VK
155static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
e649b3f0
ET
157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
b1394e74
RK
159{
160}
161
683412cc
MZ
162__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163{
164}
165
284dc493 166bool kvm_is_zone_device_page(struct page *page)
a78986aa
SC
167{
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
284dc493 174 if (WARN_ON_ONCE(!page_count(page)))
a78986aa
SC
175 return false;
176
284dc493 177 return is_zone_device_page(page);
a78986aa
SC
178}
179
b14b2690
SC
180/*
181 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
183 * is likely incomplete, it has been compiled purely through people wanting to
184 * back guest with a certain type of memory and encountering issues.
185 */
186struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
cbff90a7 187{
b14b2690
SC
188 struct page *page;
189
190 if (!pfn_valid(pfn))
191 return NULL;
192
193 page = pfn_to_page(pfn);
194 if (!PageReserved(page))
195 return page;
196
197 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198 if (is_zero_pfn(pfn))
199 return page;
200
a78986aa
SC
201 /*
202 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203 * perspective they are "normal" pages, albeit with slightly different
204 * usage rules.
205 */
b14b2690
SC
206 if (kvm_is_zone_device_page(page))
207 return page;
cbff90a7 208
b14b2690 209 return NULL;
cbff90a7
BAY
210}
211
bccf2150
AK
212/*
213 * Switches to specified vcpu, until a matching vcpu_put()
214 */
ec7660cc 215void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 216{
ec7660cc 217 int cpu = get_cpu();
7495e22b
PB
218
219 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 220 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 221 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 222 put_cpu();
6aa8b732 223}
2f1fe811 224EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 225
313a3dc7 226void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 227{
15ad7146 228 preempt_disable();
313a3dc7 229 kvm_arch_vcpu_put(vcpu);
15ad7146 230 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 231 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 232 preempt_enable();
6aa8b732 233}
2f1fe811 234EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 235
7a97cec2
PB
236/* TODO: merge with kvm_arch_vcpu_should_kick */
237static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238{
239 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240
241 /*
242 * We need to wait for the VCPU to reenable interrupts and get out of
243 * READING_SHADOW_PAGE_TABLES mode.
244 */
245 if (req & KVM_REQUEST_WAIT)
246 return mode != OUTSIDE_GUEST_MODE;
247
248 /*
249 * Need to kick a running VCPU, but otherwise there is nothing to do.
250 */
251 return mode == IN_GUEST_MODE;
252}
253
f24b44e4 254static void ack_kick(void *_completed)
d9e368d6 255{
d9e368d6
AK
256}
257
620b2438 258static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 259{
b49defe8
PB
260 if (cpumask_empty(cpus))
261 return false;
262
f24b44e4 263 smp_call_function_many(cpus, ack_kick, NULL, wait);
b49defe8
PB
264 return true;
265}
266
b56bd8e0
JL
267static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268 struct cpumask *tmp, int current_cpu)
ae0946cd
VK
269{
270 int cpu;
271
df06dae3
SC
272 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273 __kvm_make_request(req, vcpu);
ae0946cd
VK
274
275 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 return;
277
ae0946cd
VK
278 /*
279 * Note, the vCPU could get migrated to a different pCPU at any point
280 * after kvm_request_needs_ipi(), which could result in sending an IPI
281 * to the previous pCPU. But, that's OK because the purpose of the IPI
282 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284 * after this point is also OK, as the requirement is only that KVM wait
285 * for vCPUs that were reading SPTEs _before_ any changes were
286 * finalized. See kvm_vcpu_kick() for more details on handling requests.
287 */
288 if (kvm_request_needs_ipi(vcpu, req)) {
289 cpu = READ_ONCE(vcpu->cpu);
290 if (cpu != -1 && cpu != current_cpu)
291 __cpumask_set_cpu(cpu, tmp);
292 }
293}
294
7053df4e 295bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 296 unsigned long *vcpu_bitmap)
d9e368d6 297{
d9e368d6 298 struct kvm_vcpu *vcpu;
620b2438 299 struct cpumask *cpus;
ae0946cd 300 int i, me;
7053df4e 301 bool called;
6ef7a1bc 302
3cba4130 303 me = get_cpu();
7053df4e 304
620b2438
VK
305 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306 cpumask_clear(cpus);
307
ae0946cd
VK
308 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 310 if (!vcpu)
7053df4e 311 continue;
b56bd8e0 312 kvm_make_vcpu_request(vcpu, req, cpus, me);
49846896 313 }
7053df4e 314
620b2438 315 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 316 put_cpu();
7053df4e
VK
317
318 return called;
319}
320
54163a34
SS
321bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 struct kvm_vcpu *except)
7053df4e 323{
ae0946cd 324 struct kvm_vcpu *vcpu;
baff59cc 325 struct cpumask *cpus;
46808a4c 326 unsigned long i;
7053df4e 327 bool called;
46808a4c 328 int me;
7053df4e 329
ae0946cd
VK
330 me = get_cpu();
331
baff59cc
VK
332 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333 cpumask_clear(cpus);
334
ae0946cd
VK
335 kvm_for_each_vcpu(i, vcpu, kvm) {
336 if (vcpu == except)
337 continue;
b56bd8e0 338 kvm_make_vcpu_request(vcpu, req, cpus, me);
ae0946cd
VK
339 }
340
341 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 put_cpu();
7053df4e 343
49846896 344 return called;
d9e368d6
AK
345}
346
54163a34
SS
347bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348{
349 return kvm_make_all_cpus_request_except(kvm, req, NULL);
350}
a2486020 351EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 352
a6d51016 353#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 354void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 355{
3cc4e148 356 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 357
4ae3cb3a
LT
358 /*
359 * We want to publish modifications to the page tables before reading
360 * mode. Pairs with a memory barrier in arch-specific code.
361 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362 * and smp_mb in walk_shadow_page_lockless_begin/end.
363 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364 *
365 * There is already an smp_mb__after_atomic() before
366 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367 * barrier here.
368 */
b08660e5
TL
369 if (!kvm_arch_flush_remote_tlb(kvm)
370 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 371 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 372}
2ba9f0d8 373EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 374#endif
2e53d63a 375
683412cc
MZ
376static void kvm_flush_shadow_all(struct kvm *kvm)
377{
378 kvm_arch_flush_shadow_all(kvm);
379 kvm_arch_guest_memory_reclaimed(kvm);
380}
381
6926f95a
SC
382#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384 gfp_t gfp_flags)
385{
386 gfp_flags |= mc->gfp_zero;
387
388 if (mc->kmem_cache)
389 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390 else
391 return (void *)__get_free_page(gfp_flags);
392}
393
837f66c7 394int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
6926f95a 395{
63f4b210 396 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
6926f95a
SC
397 void *obj;
398
399 if (mc->nobjs >= min)
400 return 0;
837f66c7
DM
401
402 if (unlikely(!mc->objects)) {
403 if (WARN_ON_ONCE(!capacity))
404 return -EIO;
405
406 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407 if (!mc->objects)
408 return -ENOMEM;
409
410 mc->capacity = capacity;
411 }
412
413 /* It is illegal to request a different capacity across topups. */
414 if (WARN_ON_ONCE(mc->capacity != capacity))
415 return -EIO;
416
417 while (mc->nobjs < mc->capacity) {
418 obj = mmu_memory_cache_alloc_obj(mc, gfp);
6926f95a
SC
419 if (!obj)
420 return mc->nobjs >= min ? 0 : -ENOMEM;
421 mc->objects[mc->nobjs++] = obj;
422 }
423 return 0;
424}
425
837f66c7
DM
426int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427{
428 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429}
430
6926f95a
SC
431int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432{
433 return mc->nobjs;
434}
435
436void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437{
438 while (mc->nobjs) {
439 if (mc->kmem_cache)
440 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441 else
442 free_page((unsigned long)mc->objects[--mc->nobjs]);
443 }
837f66c7
DM
444
445 kvfree(mc->objects);
446
447 mc->objects = NULL;
448 mc->capacity = 0;
6926f95a
SC
449}
450
451void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452{
453 void *p;
454
455 if (WARN_ON(!mc->nobjs))
456 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457 else
458 p = mc->objects[--mc->nobjs];
459 BUG_ON(!p);
460 return p;
461}
462#endif
463
8bd826d6 464static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 465{
fb3f0f51
RR
466 mutex_init(&vcpu->mutex);
467 vcpu->cpu = -1;
fb3f0f51
RR
468 vcpu->kvm = kvm;
469 vcpu->vcpu_id = id;
34bb10b7 470 vcpu->pid = NULL;
510958e9 471#ifndef __KVM_HAVE_ARCH_WQP
da4ad88c 472 rcuwait_init(&vcpu->wait);
510958e9 473#endif
af585b92 474 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 475
4c088493
R
476 kvm_vcpu_set_in_spin_loop(vcpu, false);
477 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 478 vcpu->preempted = false;
d73eb57b 479 vcpu->ready = false;
d5c48deb 480 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
a54d8066 481 vcpu->last_used_slot = NULL;
58fc1166
OU
482
483 /* Fill the stats id string for the vcpu */
484 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485 task_pid_nr(current), id);
fb3f0f51 486}
fb3f0f51 487
27592ae8 488static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
4543bdc0
SC
489{
490 kvm_arch_vcpu_destroy(vcpu);
5593473a 491 kvm_dirty_ring_free(&vcpu->dirty_ring);
e529ef66 492
9941d224
SC
493 /*
494 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495 * the vcpu->pid pointer, and at destruction time all file descriptors
496 * are already gone.
497 */
498 put_pid(rcu_dereference_protected(vcpu->pid, 1));
499
8bd826d6 500 free_page((unsigned long)vcpu->run);
e529ef66 501 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0 502}
27592ae8
MZ
503
504void kvm_destroy_vcpus(struct kvm *kvm)
505{
46808a4c 506 unsigned long i;
27592ae8
MZ
507 struct kvm_vcpu *vcpu;
508
509 kvm_for_each_vcpu(i, vcpu, kvm) {
510 kvm_vcpu_destroy(vcpu);
c5b07754 511 xa_erase(&kvm->vcpu_array, i);
27592ae8
MZ
512 }
513
514 atomic_set(&kvm->online_vcpus, 0);
515}
516EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
4543bdc0 517
e930bffe
AA
518#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520{
521 return container_of(mn, struct kvm, mmu_notifier);
522}
523
e649b3f0
ET
524static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525 struct mm_struct *mm,
526 unsigned long start, unsigned long end)
527{
528 struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 int idx;
530
531 idx = srcu_read_lock(&kvm->srcu);
532 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533 srcu_read_unlock(&kvm->srcu, idx);
534}
535
3039bcc7
SC
536typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537
f922bd9b
SC
538typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539 unsigned long end);
540
683412cc
MZ
541typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542
3039bcc7
SC
543struct kvm_hva_range {
544 unsigned long start;
545 unsigned long end;
546 pte_t pte;
547 hva_handler_t handler;
f922bd9b 548 on_lock_fn_t on_lock;
683412cc 549 on_unlock_fn_t on_unlock;
3039bcc7
SC
550 bool flush_on_ret;
551 bool may_block;
552};
553
f922bd9b
SC
554/*
555 * Use a dedicated stub instead of NULL to indicate that there is no callback
556 * function/handler. The compiler technically can't guarantee that a real
557 * function will have a non-zero address, and so it will generate code to
558 * check for !NULL, whereas comparing against a stub will be elided at compile
559 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560 */
561static void kvm_null_fn(void)
562{
563
564}
565#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566
ed922739
MS
567/* Iterate over each memslot intersecting [start, last] (inclusive) range */
568#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
569 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570 node; \
571 node = interval_tree_iter_next(node, start, last)) \
572
3039bcc7
SC
573static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574 const struct kvm_hva_range *range)
575{
8931a454 576 bool ret = false, locked = false;
f922bd9b 577 struct kvm_gfn_range gfn_range;
3039bcc7
SC
578 struct kvm_memory_slot *slot;
579 struct kvm_memslots *slots;
3039bcc7
SC
580 int i, idx;
581
ed922739
MS
582 if (WARN_ON_ONCE(range->end <= range->start))
583 return 0;
584
f922bd9b
SC
585 /* A null handler is allowed if and only if on_lock() is provided. */
586 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587 IS_KVM_NULL_FN(range->handler)))
588 return 0;
589
3039bcc7
SC
590 idx = srcu_read_lock(&kvm->srcu);
591
592 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
ed922739
MS
593 struct interval_tree_node *node;
594
3039bcc7 595 slots = __kvm_memslots(kvm, i);
ed922739
MS
596 kvm_for_each_memslot_in_hva_range(node, slots,
597 range->start, range->end - 1) {
3039bcc7
SC
598 unsigned long hva_start, hva_end;
599
a54d8066 600 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
3039bcc7
SC
601 hva_start = max(range->start, slot->userspace_addr);
602 hva_end = min(range->end, slot->userspace_addr +
603 (slot->npages << PAGE_SHIFT));
3039bcc7
SC
604
605 /*
606 * To optimize for the likely case where the address
607 * range is covered by zero or one memslots, don't
608 * bother making these conditional (to avoid writes on
609 * the second or later invocation of the handler).
610 */
611 gfn_range.pte = range->pte;
612 gfn_range.may_block = range->may_block;
613
614 /*
615 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 */
618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 gfn_range.slot = slot;
621
8931a454
SC
622 if (!locked) {
623 locked = true;
624 KVM_MMU_LOCK(kvm);
071064f1
PB
625 if (!IS_KVM_NULL_FN(range->on_lock))
626 range->on_lock(kvm, range->start, range->end);
627 if (IS_KVM_NULL_FN(range->handler))
628 break;
8931a454 629 }
3039bcc7
SC
630 ret |= range->handler(kvm, &gfn_range);
631 }
632 }
633
6bc6db00 634 if (range->flush_on_ret && ret)
3039bcc7
SC
635 kvm_flush_remote_tlbs(kvm);
636
683412cc 637 if (locked) {
8931a454 638 KVM_MMU_UNLOCK(kvm);
683412cc
MZ
639 if (!IS_KVM_NULL_FN(range->on_unlock))
640 range->on_unlock(kvm);
641 }
f922bd9b 642
3039bcc7
SC
643 srcu_read_unlock(&kvm->srcu, idx);
644
645 /* The notifiers are averse to booleans. :-( */
646 return (int)ret;
647}
648
649static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650 unsigned long start,
651 unsigned long end,
652 pte_t pte,
653 hva_handler_t handler)
654{
655 struct kvm *kvm = mmu_notifier_to_kvm(mn);
656 const struct kvm_hva_range range = {
657 .start = start,
658 .end = end,
659 .pte = pte,
660 .handler = handler,
f922bd9b 661 .on_lock = (void *)kvm_null_fn,
683412cc 662 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
663 .flush_on_ret = true,
664 .may_block = false,
665 };
3039bcc7 666
f922bd9b 667 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
668}
669
670static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 hva_handler_t handler)
674{
675 struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 const struct kvm_hva_range range = {
677 .start = start,
678 .end = end,
679 .pte = __pte(0),
680 .handler = handler,
f922bd9b 681 .on_lock = (void *)kvm_null_fn,
683412cc 682 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
683 .flush_on_ret = false,
684 .may_block = false,
685 };
3039bcc7 686
f922bd9b 687 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 688}
3da0dd43
IE
689static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
690 struct mm_struct *mm,
691 unsigned long address,
692 pte_t pte)
693{
694 struct kvm *kvm = mmu_notifier_to_kvm(mn);
695
501b9185
SC
696 trace_kvm_set_spte_hva(address);
697
c13fda23 698 /*
52ac8b35 699 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
20ec3ebd
CP
700 * If mmu_invalidate_in_progress is zero, then no in-progress
701 * invalidations, including this one, found a relevant memslot at
702 * start(); rechecking memslots here is unnecessary. Note, a false
703 * positive (count elevated by a different invalidation) is sub-optimal
704 * but functionally ok.
c13fda23 705 */
52ac8b35 706 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
20ec3ebd 707 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
071064f1 708 return;
c13fda23 709
3039bcc7 710 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
711}
712
20ec3ebd
CP
713void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
714 unsigned long end)
e930bffe 715{
e930bffe
AA
716 /*
717 * The count increase must become visible at unlock time as no
718 * spte can be established without taking the mmu_lock and
719 * count is also read inside the mmu_lock critical section.
720 */
20ec3ebd
CP
721 kvm->mmu_invalidate_in_progress++;
722 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
723 kvm->mmu_invalidate_range_start = start;
724 kvm->mmu_invalidate_range_end = end;
4a42d848
DS
725 } else {
726 /*
a413a625 727 * Fully tracking multiple concurrent ranges has diminishing
4a42d848
DS
728 * returns. Keep things simple and just find the minimal range
729 * which includes the current and new ranges. As there won't be
730 * enough information to subtract a range after its invalidate
731 * completes, any ranges invalidated concurrently will
732 * accumulate and persist until all outstanding invalidates
733 * complete.
734 */
20ec3ebd
CP
735 kvm->mmu_invalidate_range_start =
736 min(kvm->mmu_invalidate_range_start, start);
737 kvm->mmu_invalidate_range_end =
738 max(kvm->mmu_invalidate_range_end, end);
4a42d848 739 }
f922bd9b 740}
3039bcc7 741
f922bd9b
SC
742static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
743 const struct mmu_notifier_range *range)
744{
745 struct kvm *kvm = mmu_notifier_to_kvm(mn);
746 const struct kvm_hva_range hva_range = {
747 .start = range->start,
748 .end = range->end,
749 .pte = __pte(0),
750 .handler = kvm_unmap_gfn_range,
20ec3ebd 751 .on_lock = kvm_mmu_invalidate_begin,
683412cc 752 .on_unlock = kvm_arch_guest_memory_reclaimed,
f922bd9b
SC
753 .flush_on_ret = true,
754 .may_block = mmu_notifier_range_blockable(range),
755 };
565f3be2 756
f922bd9b
SC
757 trace_kvm_unmap_hva_range(range->start, range->end);
758
52ac8b35
PB
759 /*
760 * Prevent memslot modification between range_start() and range_end()
761 * so that conditionally locking provides the same result in both
20ec3ebd 762 * functions. Without that guarantee, the mmu_invalidate_in_progress
52ac8b35
PB
763 * adjustments will be imbalanced.
764 *
765 * Pairs with the decrement in range_end().
766 */
767 spin_lock(&kvm->mn_invalidate_lock);
768 kvm->mn_active_invalidate_count++;
769 spin_unlock(&kvm->mn_invalidate_lock);
770
58cd407c
SC
771 /*
772 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
773 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
774 * each cache's lock. There are relatively few caches in existence at
775 * any given time, and the caches themselves can check for hva overlap,
776 * i.e. don't need to rely on memslot overlap checks for performance.
777 * Because this runs without holding mmu_lock, the pfn caches must use
20ec3ebd
CP
778 * mn_active_invalidate_count (see above) instead of
779 * mmu_invalidate_in_progress.
58cd407c 780 */
982ed0de
DW
781 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
782 hva_range.may_block);
783
f922bd9b 784 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 785
e649b3f0 786 return 0;
e930bffe
AA
787}
788
20ec3ebd
CP
789void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
790 unsigned long end)
e930bffe 791{
e930bffe
AA
792 /*
793 * This sequence increase will notify the kvm page fault that
794 * the page that is going to be mapped in the spte could have
795 * been freed.
796 */
20ec3ebd 797 kvm->mmu_invalidate_seq++;
a355aa54 798 smp_wmb();
e930bffe
AA
799 /*
800 * The above sequence increase must be visible before the
a355aa54 801 * below count decrease, which is ensured by the smp_wmb above
20ec3ebd 802 * in conjunction with the smp_rmb in mmu_invalidate_retry().
e930bffe 803 */
20ec3ebd 804 kvm->mmu_invalidate_in_progress--;
f922bd9b
SC
805}
806
807static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
808 const struct mmu_notifier_range *range)
809{
810 struct kvm *kvm = mmu_notifier_to_kvm(mn);
811 const struct kvm_hva_range hva_range = {
812 .start = range->start,
813 .end = range->end,
814 .pte = __pte(0),
815 .handler = (void *)kvm_null_fn,
20ec3ebd 816 .on_lock = kvm_mmu_invalidate_end,
683412cc 817 .on_unlock = (void *)kvm_null_fn,
f922bd9b
SC
818 .flush_on_ret = false,
819 .may_block = mmu_notifier_range_blockable(range),
820 };
52ac8b35 821 bool wake;
f922bd9b
SC
822
823 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 824
52ac8b35
PB
825 /* Pairs with the increment in range_start(). */
826 spin_lock(&kvm->mn_invalidate_lock);
827 wake = (--kvm->mn_active_invalidate_count == 0);
828 spin_unlock(&kvm->mn_invalidate_lock);
829
830 /*
831 * There can only be one waiter, since the wait happens under
832 * slots_lock.
833 */
834 if (wake)
835 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
836
20ec3ebd 837 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
e930bffe
AA
838}
839
840static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
841 struct mm_struct *mm,
57128468
ALC
842 unsigned long start,
843 unsigned long end)
e930bffe 844{
501b9185
SC
845 trace_kvm_age_hva(start, end);
846
3039bcc7 847 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
848}
849
1d7715c6
VD
850static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
851 struct mm_struct *mm,
852 unsigned long start,
853 unsigned long end)
854{
501b9185
SC
855 trace_kvm_age_hva(start, end);
856
1d7715c6
VD
857 /*
858 * Even though we do not flush TLB, this will still adversely
859 * affect performance on pre-Haswell Intel EPT, where there is
860 * no EPT Access Bit to clear so that we have to tear down EPT
861 * tables instead. If we find this unacceptable, we can always
862 * add a parameter to kvm_age_hva so that it effectively doesn't
863 * do anything on clear_young.
864 *
865 * Also note that currently we never issue secondary TLB flushes
866 * from clear_young, leaving this job up to the regular system
867 * cadence. If we find this inaccurate, we might come up with a
868 * more sophisticated heuristic later.
869 */
3039bcc7 870 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
871}
872
8ee53820
AA
873static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
874 struct mm_struct *mm,
875 unsigned long address)
876{
501b9185
SC
877 trace_kvm_test_age_hva(address);
878
3039bcc7
SC
879 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
880 kvm_test_age_gfn);
8ee53820
AA
881}
882
85db06e5
MT
883static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
884 struct mm_struct *mm)
885{
886 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
887 int idx;
888
889 idx = srcu_read_lock(&kvm->srcu);
683412cc 890 kvm_flush_shadow_all(kvm);
eda2beda 891 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
892}
893
e930bffe 894static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 895 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
896 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
897 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
898 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 899 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 900 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 901 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 902 .release = kvm_mmu_notifier_release,
e930bffe 903};
4c07b0a4
AK
904
905static int kvm_init_mmu_notifier(struct kvm *kvm)
906{
907 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909}
910
911#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912
913static int kvm_init_mmu_notifier(struct kvm *kvm)
914{
915 return 0;
916}
917
e930bffe
AA
918#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919
2fdef3a2
SS
920#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921static int kvm_pm_notifier_call(struct notifier_block *bl,
922 unsigned long state,
923 void *unused)
924{
925 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926
927 return kvm_arch_pm_notifier(kvm, state);
928}
929
930static void kvm_init_pm_notifier(struct kvm *kvm)
931{
932 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933 /* Suspend KVM before we suspend ftrace, RCU, etc. */
934 kvm->pm_notifier.priority = INT_MAX;
935 register_pm_notifier(&kvm->pm_notifier);
936}
937
938static void kvm_destroy_pm_notifier(struct kvm *kvm)
939{
940 unregister_pm_notifier(&kvm->pm_notifier);
941}
942#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943static void kvm_init_pm_notifier(struct kvm *kvm)
944{
945}
946
947static void kvm_destroy_pm_notifier(struct kvm *kvm)
948{
949}
950#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951
a47d2b07
PB
952static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953{
954 if (!memslot->dirty_bitmap)
955 return;
956
957 kvfree(memslot->dirty_bitmap);
958 memslot->dirty_bitmap = NULL;
959}
960
a54d8066 961/* This does not remove the slot from struct kvm_memslots data structures */
e96c81ee 962static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 963{
e96c81ee 964 kvm_destroy_dirty_bitmap(slot);
a47d2b07 965
e96c81ee 966 kvm_arch_free_memslot(kvm, slot);
a47d2b07 967
a54d8066 968 kfree(slot);
a47d2b07
PB
969}
970
971static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972{
a54d8066 973 struct hlist_node *idnode;
a47d2b07 974 struct kvm_memory_slot *memslot;
a54d8066 975 int bkt;
a47d2b07 976
a54d8066
MS
977 /*
978 * The same memslot objects live in both active and inactive sets,
979 * arbitrarily free using index '1' so the second invocation of this
980 * function isn't operating over a structure with dangling pointers
981 * (even though this function isn't actually touching them).
982 */
983 if (!slots->node_idx)
a47d2b07
PB
984 return;
985
a54d8066 986 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
e96c81ee 987 kvm_free_memslot(kvm, memslot);
bf3e05bc
XG
988}
989
bc9e9e67
JZ
990static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991{
992 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993 case KVM_STATS_TYPE_INSTANT:
994 return 0444;
995 case KVM_STATS_TYPE_CUMULATIVE:
996 case KVM_STATS_TYPE_PEAK:
997 default:
998 return 0644;
999 }
1000}
1001
1002
536a6f88
JF
1003static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004{
1005 int i;
bc9e9e67
JZ
1006 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007 kvm_vcpu_stats_header.num_desc;
536a6f88 1008
a44a4cc1 1009 if (IS_ERR(kvm->debugfs_dentry))
536a6f88
JF
1010 return;
1011
1012 debugfs_remove_recursive(kvm->debugfs_dentry);
1013
9d5a1dce
LC
1014 if (kvm->debugfs_stat_data) {
1015 for (i = 0; i < kvm_debugfs_num_entries; i++)
1016 kfree(kvm->debugfs_stat_data[i]);
1017 kfree(kvm->debugfs_stat_data);
1018 }
536a6f88
JF
1019}
1020
59f82aad 1021static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
536a6f88 1022{
85cd39af
PB
1023 static DEFINE_MUTEX(kvm_debugfs_lock);
1024 struct dentry *dent;
536a6f88
JF
1025 char dir_name[ITOA_MAX_LEN * 2];
1026 struct kvm_stat_data *stat_data;
bc9e9e67 1027 const struct _kvm_stats_desc *pdesc;
b74ed7a6 1028 int i, ret = -ENOMEM;
bc9e9e67
JZ
1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
1031
1032 if (!debugfs_initialized())
1033 return 0;
1034
59f82aad 1035 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
85cd39af
PB
1036 mutex_lock(&kvm_debugfs_lock);
1037 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038 if (dent) {
1039 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040 dput(dent);
1041 mutex_unlock(&kvm_debugfs_lock);
1042 return 0;
1043 }
1044 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045 mutex_unlock(&kvm_debugfs_lock);
1046 if (IS_ERR(dent))
1047 return 0;
536a6f88 1048
85cd39af 1049 kvm->debugfs_dentry = dent;
536a6f88
JF
1050 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051 sizeof(*kvm->debugfs_stat_data),
b12ce36a 1052 GFP_KERNEL_ACCOUNT);
536a6f88 1053 if (!kvm->debugfs_stat_data)
b74ed7a6 1054 goto out_err;
536a6f88 1055
bc9e9e67
JZ
1056 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 1058 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88 1059 if (!stat_data)
b74ed7a6 1060 goto out_err;
536a6f88
JF
1061
1062 stat_data->kvm = kvm;
bc9e9e67
JZ
1063 stat_data->desc = pdesc;
1064 stat_data->kind = KVM_STAT_VM;
1065 kvm->debugfs_stat_data[i] = stat_data;
1066 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067 kvm->debugfs_dentry, stat_data,
1068 &stat_fops_per_vm);
1069 }
1070
1071 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 1073 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88 1074 if (!stat_data)
b74ed7a6 1075 goto out_err;
536a6f88
JF
1076
1077 stat_data->kvm = kvm;
bc9e9e67
JZ
1078 stat_data->desc = pdesc;
1079 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1080 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1081 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1082 kvm->debugfs_dentry, stat_data,
1083 &stat_fops_per_vm);
536a6f88 1084 }
3165af73
PX
1085
1086 ret = kvm_arch_create_vm_debugfs(kvm);
b74ed7a6
OU
1087 if (ret)
1088 goto out_err;
3165af73 1089
536a6f88 1090 return 0;
b74ed7a6
OU
1091out_err:
1092 kvm_destroy_vm_debugfs(kvm);
1093 return ret;
536a6f88
JF
1094}
1095
1aa9b957
JS
1096/*
1097 * Called after the VM is otherwise initialized, but just before adding it to
1098 * the vm_list.
1099 */
1100int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101{
1102 return 0;
1103}
1104
1105/*
1106 * Called just after removing the VM from the vm_list, but before doing any
1107 * other destruction.
1108 */
1109void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110{
1111}
1112
3165af73
PX
1113/*
1114 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1115 * be setup already, so we can create arch-specific debugfs entries under it.
1116 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117 * a per-arch destroy interface is not needed.
1118 */
1119int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120{
1121 return 0;
1122}
1123
b74ed7a6 1124static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
6aa8b732 1125{
d89f5eff 1126 struct kvm *kvm = kvm_arch_alloc_vm();
a54d8066 1127 struct kvm_memslots *slots;
9121923c 1128 int r = -ENOMEM;
a54d8066 1129 int i, j;
6aa8b732 1130
d89f5eff
JK
1131 if (!kvm)
1132 return ERR_PTR(-ENOMEM);
1133
405294f2
SC
1134 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135 __module_get(kvm_chardev_ops.owner);
1136
531810ca 1137 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1138 mmgrab(current->mm);
e9ad4ec8
PB
1139 kvm->mm = current->mm;
1140 kvm_eventfd_init(kvm);
1141 mutex_init(&kvm->lock);
1142 mutex_init(&kvm->irq_lock);
1143 mutex_init(&kvm->slots_lock);
b10a038e 1144 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1145 spin_lock_init(&kvm->mn_invalidate_lock);
1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
c5b07754 1147 xa_init(&kvm->vcpu_array);
52ac8b35 1148
982ed0de
DW
1149 INIT_LIST_HEAD(&kvm->gpc_list);
1150 spin_lock_init(&kvm->gpc_lock);
52ac8b35 1151
e9ad4ec8 1152 INIT_LIST_HEAD(&kvm->devices);
f502cc56 1153 kvm->max_vcpus = KVM_MAX_VCPUS;
e9ad4ec8 1154
1e702d9a
AW
1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156
5c697c36
SC
1157 /*
1158 * Force subsequent debugfs file creations to fail if the VM directory
1159 * is not created (by kvm_create_vm_debugfs()).
1160 */
1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162
f2759c08
OU
1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164 task_pid_nr(current));
1165
8a44119a
PB
1166 if (init_srcu_struct(&kvm->srcu))
1167 goto out_err_no_srcu;
1168 if (init_srcu_struct(&kvm->irq_srcu))
1169 goto out_err_no_irq_srcu;
1170
e2d3fcaf 1171 refcount_set(&kvm->users_count, 1);
f481b069 1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
a54d8066
MS
1173 for (j = 0; j < 2; j++) {
1174 slots = &kvm->__memslots[i][j];
9121923c 1175
a54d8066
MS
1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177 slots->hva_tree = RB_ROOT_CACHED;
1178 slots->gfn_tree = RB_ROOT;
1179 hash_init(slots->id_hash);
1180 slots->node_idx = j;
1181
1182 /* Generations must be different for each address space. */
1183 slots->generation = i;
1184 }
1185
1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
f481b069 1187 }
00f034a1 1188
e93f8a0f 1189 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1190 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1192 if (!kvm->buses[i])
a97b0e77 1193 goto out_err_no_arch_destroy_vm;
e93f8a0f 1194 }
e930bffe 1195
e08b9637 1196 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1197 if (r)
a97b0e77 1198 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1199
1200 r = hardware_enable_all();
1201 if (r)
719d93cd 1202 goto out_err_no_disable;
10474ae8 1203
c77dcacb 1204#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1205 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1206#endif
6aa8b732 1207
74b5c5bf 1208 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1209 if (r)
1210 goto out_err_no_mmu_notifier;
1211
c2b82397
SC
1212 r = kvm_coalesced_mmio_init(kvm);
1213 if (r < 0)
1214 goto out_no_coalesced_mmio;
1215
4ba4f419
SC
1216 r = kvm_create_vm_debugfs(kvm, fdname);
1217 if (r)
1218 goto out_err_no_debugfs;
1219
1aa9b957 1220 r = kvm_arch_post_init_vm(kvm);
74b5c5bf 1221 if (r)
4ba4f419 1222 goto out_err;
74b5c5bf 1223
0d9ce162 1224 mutex_lock(&kvm_lock);
5e58cfe4 1225 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1226 mutex_unlock(&kvm_lock);
d89f5eff 1227
2ecd9d29 1228 preempt_notifier_inc();
2fdef3a2 1229 kvm_init_pm_notifier(kvm);
2ecd9d29 1230
f17abe9a 1231 return kvm;
10474ae8
AG
1232
1233out_err:
4ba4f419
SC
1234 kvm_destroy_vm_debugfs(kvm);
1235out_err_no_debugfs:
c2b82397
SC
1236 kvm_coalesced_mmio_free(kvm);
1237out_no_coalesced_mmio:
1aa9b957
JS
1238#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239 if (kvm->mmu_notifier.ops)
1240 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241#endif
1242out_err_no_mmu_notifier:
10474ae8 1243 hardware_disable_all();
719d93cd 1244out_err_no_disable:
a97b0e77 1245 kvm_arch_destroy_vm(kvm);
a97b0e77 1246out_err_no_arch_destroy_vm:
e2d3fcaf 1247 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1248 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1249 kfree(kvm_get_bus(kvm, i));
8a44119a
PB
1250 cleanup_srcu_struct(&kvm->irq_srcu);
1251out_err_no_irq_srcu:
1252 cleanup_srcu_struct(&kvm->srcu);
1253out_err_no_srcu:
d89f5eff 1254 kvm_arch_free_vm(kvm);
e9ad4ec8 1255 mmdrop(current->mm);
405294f2 1256 module_put(kvm_chardev_ops.owner);
10474ae8 1257 return ERR_PTR(r);
f17abe9a
AK
1258}
1259
07f0a7bd
SW
1260static void kvm_destroy_devices(struct kvm *kvm)
1261{
e6e3b5a6 1262 struct kvm_device *dev, *tmp;
07f0a7bd 1263
a28ebea2
CD
1264 /*
1265 * We do not need to take the kvm->lock here, because nobody else
1266 * has a reference to the struct kvm at this point and therefore
1267 * cannot access the devices list anyhow.
1268 */
e6e3b5a6
GT
1269 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270 list_del(&dev->vm_node);
07f0a7bd
SW
1271 dev->ops->destroy(dev);
1272 }
1273}
1274
f17abe9a
AK
1275static void kvm_destroy_vm(struct kvm *kvm)
1276{
e93f8a0f 1277 int i;
6d4e4c4f
AK
1278 struct mm_struct *mm = kvm->mm;
1279
2fdef3a2 1280 kvm_destroy_pm_notifier(kvm);
286de8f6 1281 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1282 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1283 kvm_arch_sync_events(kvm);
0d9ce162 1284 mutex_lock(&kvm_lock);
133de902 1285 list_del(&kvm->vm_list);
0d9ce162 1286 mutex_unlock(&kvm_lock);
1aa9b957
JS
1287 kvm_arch_pre_destroy_vm(kvm);
1288
399ec807 1289 kvm_free_irq_routing(kvm);
df630b8c 1290 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1291 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1292
4a12f951
CB
1293 if (bus)
1294 kvm_io_bus_destroy(bus);
df630b8c
PX
1295 kvm->buses[i] = NULL;
1296 }
980da6ce 1297 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1298#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1300 /*
1301 * At this point, pending calls to invalidate_range_start()
1302 * have completed but no more MMU notifiers will run, so
1303 * mn_active_invalidate_count may remain unbalanced.
b0d23708 1304 * No threads can be waiting in kvm_swap_active_memslots() as the
52ac8b35
PB
1305 * last reference on KVM has been dropped, but freeing
1306 * memslots would deadlock without this manual intervention.
1307 */
1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309 kvm->mn_active_invalidate_count = 0;
f00be0ca 1310#else
683412cc 1311 kvm_flush_shadow_all(kvm);
5f94c174 1312#endif
d19a9cd2 1313 kvm_arch_destroy_vm(kvm);
07f0a7bd 1314 kvm_destroy_devices(kvm);
a54d8066
MS
1315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318 }
820b3fcd 1319 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1320 cleanup_srcu_struct(&kvm->srcu);
1321 kvm_arch_free_vm(kvm);
2ecd9d29 1322 preempt_notifier_dec();
10474ae8 1323 hardware_disable_all();
6d4e4c4f 1324 mmdrop(mm);
5f6de5cb 1325 module_put(kvm_chardev_ops.owner);
f17abe9a
AK
1326}
1327
d39f13b0
IE
1328void kvm_get_kvm(struct kvm *kvm)
1329{
e3736c3e 1330 refcount_inc(&kvm->users_count);
d39f13b0
IE
1331}
1332EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333
605c7130
PX
1334/*
1335 * Make sure the vm is not during destruction, which is a safe version of
1336 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1337 */
1338bool kvm_get_kvm_safe(struct kvm *kvm)
1339{
1340 return refcount_inc_not_zero(&kvm->users_count);
1341}
1342EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343
d39f13b0
IE
1344void kvm_put_kvm(struct kvm *kvm)
1345{
e3736c3e 1346 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1347 kvm_destroy_vm(kvm);
1348}
1349EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350
149487bd
SC
1351/*
1352 * Used to put a reference that was taken on behalf of an object associated
1353 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354 * of the new file descriptor fails and the reference cannot be transferred to
1355 * its final owner. In such cases, the caller is still actively using @kvm and
1356 * will fail miserably if the refcount unexpectedly hits zero.
1357 */
1358void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359{
1360 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361}
1362EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1363
f17abe9a
AK
1364static int kvm_vm_release(struct inode *inode, struct file *filp)
1365{
1366 struct kvm *kvm = filp->private_data;
1367
721eecbf
GH
1368 kvm_irqfd_release(kvm);
1369
d39f13b0 1370 kvm_put_kvm(kvm);
6aa8b732
AK
1371 return 0;
1372}
1373
515a0127
TY
1374/*
1375 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1376 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1377 */
3c9bd400 1378static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1379{
37b2a651 1380 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1381
37b2a651 1382 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1383 if (!memslot->dirty_bitmap)
1384 return -ENOMEM;
1385
a36a57b1
TY
1386 return 0;
1387}
1388
a54d8066 1389static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
bf3e05bc 1390{
a54d8066
MS
1391 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392 int node_idx_inactive = active->node_idx ^ 1;
0e60b079 1393
a54d8066 1394 return &kvm->__memslots[as_id][node_idx_inactive];
0577d1ab
SC
1395}
1396
1397/*
a54d8066
MS
1398 * Helper to get the address space ID when one of memslot pointers may be NULL.
1399 * This also serves as a sanity that at least one of the pointers is non-NULL,
1400 * and that their address space IDs don't diverge.
0577d1ab 1401 */
a54d8066
MS
1402static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403 struct kvm_memory_slot *b)
0577d1ab 1404{
a54d8066
MS
1405 if (WARN_ON_ONCE(!a && !b))
1406 return 0;
0577d1ab 1407
a54d8066
MS
1408 if (!a)
1409 return b->as_id;
1410 if (!b)
1411 return a->as_id;
0577d1ab 1412
a54d8066
MS
1413 WARN_ON_ONCE(a->as_id != b->as_id);
1414 return a->as_id;
0577d1ab 1415}
efbeec70 1416
a54d8066
MS
1417static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418 struct kvm_memory_slot *slot)
0577d1ab 1419{
a54d8066
MS
1420 struct rb_root *gfn_tree = &slots->gfn_tree;
1421 struct rb_node **node, *parent;
1422 int idx = slots->node_idx;
0577d1ab 1423
a54d8066
MS
1424 parent = NULL;
1425 for (node = &gfn_tree->rb_node; *node; ) {
1426 struct kvm_memory_slot *tmp;
f85e2cb5 1427
a54d8066
MS
1428 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429 parent = *node;
1430 if (slot->base_gfn < tmp->base_gfn)
1431 node = &(*node)->rb_left;
1432 else if (slot->base_gfn > tmp->base_gfn)
1433 node = &(*node)->rb_right;
1434 else
1435 BUG();
0577d1ab 1436 }
a54d8066
MS
1437
1438 rb_link_node(&slot->gfn_node[idx], parent, node);
1439 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
0577d1ab
SC
1440}
1441
a54d8066
MS
1442static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443 struct kvm_memory_slot *slot)
0577d1ab 1444{
a54d8066
MS
1445 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446}
0577d1ab 1447
a54d8066
MS
1448static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449 struct kvm_memory_slot *old,
1450 struct kvm_memory_slot *new)
1451{
1452 int idx = slots->node_idx;
0577d1ab 1453
a54d8066 1454 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
0577d1ab 1455
a54d8066
MS
1456 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457 &slots->gfn_tree);
0577d1ab
SC
1458}
1459
1460/*
a54d8066 1461 * Replace @old with @new in the inactive memslots.
0577d1ab 1462 *
a54d8066
MS
1463 * With NULL @old this simply adds @new.
1464 * With NULL @new this simply removes @old.
0577d1ab 1465 *
a54d8066
MS
1466 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467 * appropriately.
0577d1ab 1468 */
a54d8066
MS
1469static void kvm_replace_memslot(struct kvm *kvm,
1470 struct kvm_memory_slot *old,
1471 struct kvm_memory_slot *new)
0577d1ab 1472{
a54d8066
MS
1473 int as_id = kvm_memslots_get_as_id(old, new);
1474 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475 int idx = slots->node_idx;
0577d1ab 1476
a54d8066
MS
1477 if (old) {
1478 hash_del(&old->id_node[idx]);
1479 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
0577d1ab 1480
a54d8066
MS
1481 if ((long)old == atomic_long_read(&slots->last_used_slot))
1482 atomic_long_set(&slots->last_used_slot, (long)new);
0577d1ab 1483
a54d8066
MS
1484 if (!new) {
1485 kvm_erase_gfn_node(slots, old);
1e8617d3 1486 return;
a54d8066
MS
1487 }
1488 }
1e8617d3 1489
a54d8066
MS
1490 /*
1491 * Initialize @new's hva range. Do this even when replacing an @old
1492 * slot, kvm_copy_memslot() deliberately does not touch node data.
1493 */
1494 new->hva_node[idx].start = new->userspace_addr;
1495 new->hva_node[idx].last = new->userspace_addr +
1496 (new->npages << PAGE_SHIFT) - 1;
1497
1498 /*
1499 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1500 * hva_node needs to be swapped with remove+insert even though hva can't
1501 * change when replacing an existing slot.
1502 */
1503 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505
1506 /*
1507 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508 * switch the node in the gfn tree instead of removing the old and
1509 * inserting the new as two separate operations. Replacement is a
1510 * single O(1) operation versus two O(log(n)) operations for
1511 * remove+insert.
1512 */
1513 if (old && old->base_gfn == new->base_gfn) {
1514 kvm_replace_gfn_node(slots, old, new);
1515 } else {
1516 if (old)
1517 kvm_erase_gfn_node(slots, old);
1518 kvm_insert_gfn_node(slots, new);
0577d1ab 1519 }
bf3e05bc
XG
1520}
1521
09170a49 1522static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1523{
4d8b81ab
XG
1524 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525
0f8a4de3 1526#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1527 valid_flags |= KVM_MEM_READONLY;
1528#endif
1529
1530 if (mem->flags & ~valid_flags)
a50d64d6
XG
1531 return -EINVAL;
1532
1533 return 0;
1534}
1535
a54d8066 1536static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
7ec4fb44 1537{
a54d8066
MS
1538 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539
1540 /* Grab the generation from the activate memslots. */
1541 u64 gen = __kvm_memslots(kvm, as_id)->generation;
7ec4fb44 1542
361209e0
SC
1543 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1545
52ac8b35
PB
1546 /*
1547 * Do not store the new memslots while there are invalidations in
071064f1
PB
1548 * progress, otherwise the locking in invalidate_range_start and
1549 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1550 */
1551 spin_lock(&kvm->mn_invalidate_lock);
1552 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553 while (kvm->mn_active_invalidate_count) {
1554 set_current_state(TASK_UNINTERRUPTIBLE);
1555 spin_unlock(&kvm->mn_invalidate_lock);
1556 schedule();
1557 spin_lock(&kvm->mn_invalidate_lock);
1558 }
1559 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1560 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1561 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1562
1563 /*
1564 * Acquired in kvm_set_memslot. Must be released before synchronize
1565 * SRCU below in order to avoid deadlock with another thread
1566 * acquiring the slots_arch_lock in an srcu critical section.
1567 */
1568 mutex_unlock(&kvm->slots_arch_lock);
1569
7ec4fb44 1570 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1571
ee3d1570 1572 /*
361209e0 1573 * Increment the new memslot generation a second time, dropping the
00116795 1574 * update in-progress flag and incrementing the generation based on
361209e0
SC
1575 * the number of address spaces. This provides a unique and easily
1576 * identifiable generation number while the memslots are in flux.
1577 */
1578 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579
1580 /*
4bd518f1
PB
1581 * Generations must be unique even across address spaces. We do not need
1582 * a global counter for that, instead the generation space is evenly split
1583 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1584 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585 * use generations 1, 3, 5, ...
ee3d1570 1586 */
164bf7e5 1587 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1588
15248258 1589 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1590
15248258 1591 slots->generation = gen;
7ec4fb44
GN
1592}
1593
07921665
SC
1594static int kvm_prepare_memory_region(struct kvm *kvm,
1595 const struct kvm_memory_slot *old,
1596 struct kvm_memory_slot *new,
1597 enum kvm_mr_change change)
ddc12f2a 1598{
07921665
SC
1599 int r;
1600
1601 /*
1602 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603 * will be freed on "commit". If logging is enabled in both old and
1604 * new, reuse the existing bitmap. If logging is enabled only in the
1605 * new and KVM isn't using a ring buffer, allocate and initialize a
1606 * new bitmap.
1607 */
244893fa
SC
1608 if (change != KVM_MR_DELETE) {
1609 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610 new->dirty_bitmap = NULL;
1611 else if (old && old->dirty_bitmap)
1612 new->dirty_bitmap = old->dirty_bitmap;
86bdf3eb 1613 else if (kvm_use_dirty_bitmap(kvm)) {
244893fa
SC
1614 r = kvm_alloc_dirty_bitmap(new);
1615 if (r)
1616 return r;
1617
1618 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619 bitmap_set(new->dirty_bitmap, 0, new->npages);
1620 }
07921665
SC
1621 }
1622
1623 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624
1625 /* Free the bitmap on failure if it was allocated above. */
c87661f8 1626 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
07921665
SC
1627 kvm_destroy_dirty_bitmap(new);
1628
1629 return r;
ddc12f2a
BG
1630}
1631
07921665
SC
1632static void kvm_commit_memory_region(struct kvm *kvm,
1633 struct kvm_memory_slot *old,
1634 const struct kvm_memory_slot *new,
1635 enum kvm_mr_change change)
ddc12f2a 1636{
6c7b2202
PB
1637 int old_flags = old ? old->flags : 0;
1638 int new_flags = new ? new->flags : 0;
07921665
SC
1639 /*
1640 * Update the total number of memslot pages before calling the arch
1641 * hook so that architectures can consume the result directly.
1642 */
1643 if (change == KVM_MR_DELETE)
1644 kvm->nr_memslot_pages -= old->npages;
1645 else if (change == KVM_MR_CREATE)
1646 kvm->nr_memslot_pages += new->npages;
1647
6c7b2202
PB
1648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650 atomic_set(&kvm->nr_memslots_dirty_logging,
1651 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652 }
1653
07921665
SC
1654 kvm_arch_commit_memory_region(kvm, old, new, change);
1655
a54d8066
MS
1656 switch (change) {
1657 case KVM_MR_CREATE:
1658 /* Nothing more to do. */
1659 break;
1660 case KVM_MR_DELETE:
1661 /* Free the old memslot and all its metadata. */
1662 kvm_free_memslot(kvm, old);
1663 break;
1664 case KVM_MR_MOVE:
1665 case KVM_MR_FLAGS_ONLY:
1666 /*
1667 * Free the dirty bitmap as needed; the below check encompasses
1668 * both the flags and whether a ring buffer is being used)
1669 */
1670 if (old->dirty_bitmap && !new->dirty_bitmap)
1671 kvm_destroy_dirty_bitmap(old);
1672
1673 /*
1674 * The final quirk. Free the detached, old slot, but only its
1675 * memory, not any metadata. Metadata, including arch specific
1676 * data, may be reused by @new.
1677 */
1678 kfree(old);
1679 break;
1680 default:
1681 BUG();
1682 }
ddc12f2a
BG
1683}
1684
36947254 1685/*
a54d8066
MS
1686 * Activate @new, which must be installed in the inactive slots by the caller,
1687 * by swapping the active slots and then propagating @new to @old once @old is
1688 * unreachable and can be safely modified.
1689 *
1690 * With NULL @old this simply adds @new to @active (while swapping the sets).
1691 * With NULL @new this simply removes @old from @active and frees it
1692 * (while also swapping the sets).
36947254 1693 */
a54d8066
MS
1694static void kvm_activate_memslot(struct kvm *kvm,
1695 struct kvm_memory_slot *old,
1696 struct kvm_memory_slot *new)
36947254 1697{
a54d8066 1698 int as_id = kvm_memslots_get_as_id(old, new);
36947254 1699
a54d8066
MS
1700 kvm_swap_active_memslots(kvm, as_id);
1701
1702 /* Propagate the new memslot to the now inactive memslots. */
1703 kvm_replace_memslot(kvm, old, new);
1704}
1705
1706static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707 const struct kvm_memory_slot *src)
1708{
1709 dest->base_gfn = src->base_gfn;
1710 dest->npages = src->npages;
1711 dest->dirty_bitmap = src->dirty_bitmap;
1712 dest->arch = src->arch;
1713 dest->userspace_addr = src->userspace_addr;
1714 dest->flags = src->flags;
1715 dest->id = src->id;
1716 dest->as_id = src->as_id;
1717}
1718
1719static void kvm_invalidate_memslot(struct kvm *kvm,
1720 struct kvm_memory_slot *old,
244893fa 1721 struct kvm_memory_slot *invalid_slot)
a54d8066 1722{
07921665 1723 /*
a54d8066
MS
1724 * Mark the current slot INVALID. As with all memslot modifications,
1725 * this must be done on an unreachable slot to avoid modifying the
1726 * current slot in the active tree.
07921665 1727 */
244893fa
SC
1728 kvm_copy_memslot(invalid_slot, old);
1729 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730 kvm_replace_memslot(kvm, old, invalid_slot);
a54d8066
MS
1731
1732 /*
1733 * Activate the slot that is now marked INVALID, but don't propagate
1734 * the slot to the now inactive slots. The slot is either going to be
1735 * deleted or recreated as a new slot.
1736 */
1737 kvm_swap_active_memslots(kvm, old->as_id);
1738
1739 /*
1740 * From this point no new shadow pages pointing to a deleted, or moved,
1741 * memslot will be created. Validation of sp->gfn happens in:
1742 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743 * - kvm_is_visible_gfn (mmu_check_root)
1744 */
bcb63dcd 1745 kvm_arch_flush_shadow_memslot(kvm, old);
683412cc 1746 kvm_arch_guest_memory_reclaimed(kvm);
a54d8066 1747
b0d23708 1748 /* Was released by kvm_swap_active_memslots(), reacquire. */
a54d8066
MS
1749 mutex_lock(&kvm->slots_arch_lock);
1750
1751 /*
1752 * Copy the arch-specific field of the newly-installed slot back to the
1753 * old slot as the arch data could have changed between releasing
b0d23708 1754 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
a54d8066
MS
1755 * above. Writers are required to retrieve memslots *after* acquiring
1756 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757 */
244893fa 1758 old->arch = invalid_slot->arch;
a54d8066
MS
1759}
1760
1761static void kvm_create_memslot(struct kvm *kvm,
244893fa 1762 struct kvm_memory_slot *new)
a54d8066 1763{
244893fa
SC
1764 /* Add the new memslot to the inactive set and activate. */
1765 kvm_replace_memslot(kvm, NULL, new);
1766 kvm_activate_memslot(kvm, NULL, new);
a54d8066
MS
1767}
1768
1769static void kvm_delete_memslot(struct kvm *kvm,
1770 struct kvm_memory_slot *old,
1771 struct kvm_memory_slot *invalid_slot)
1772{
1773 /*
1774 * Remove the old memslot (in the inactive memslots) by passing NULL as
244893fa 1775 * the "new" slot, and for the invalid version in the active slots.
a54d8066
MS
1776 */
1777 kvm_replace_memslot(kvm, old, NULL);
a54d8066 1778 kvm_activate_memslot(kvm, invalid_slot, NULL);
a54d8066 1779}
36947254 1780
244893fa
SC
1781static void kvm_move_memslot(struct kvm *kvm,
1782 struct kvm_memory_slot *old,
1783 struct kvm_memory_slot *new,
1784 struct kvm_memory_slot *invalid_slot)
a54d8066 1785{
a54d8066 1786 /*
244893fa
SC
1787 * Replace the old memslot in the inactive slots, and then swap slots
1788 * and replace the current INVALID with the new as well.
a54d8066 1789 */
244893fa
SC
1790 kvm_replace_memslot(kvm, old, new);
1791 kvm_activate_memslot(kvm, invalid_slot, new);
a54d8066 1792}
36947254 1793
a54d8066
MS
1794static void kvm_update_flags_memslot(struct kvm *kvm,
1795 struct kvm_memory_slot *old,
244893fa 1796 struct kvm_memory_slot *new)
a54d8066
MS
1797{
1798 /*
1799 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800 * an intermediate step. Instead, the old memslot is simply replaced
1801 * with a new, updated copy in both memslot sets.
1802 */
244893fa
SC
1803 kvm_replace_memslot(kvm, old, new);
1804 kvm_activate_memslot(kvm, old, new);
36947254
SC
1805}
1806
cf47f50b 1807static int kvm_set_memslot(struct kvm *kvm,
a54d8066 1808 struct kvm_memory_slot *old,
ce5f0215 1809 struct kvm_memory_slot *new,
cf47f50b
SC
1810 enum kvm_mr_change change)
1811{
244893fa 1812 struct kvm_memory_slot *invalid_slot;
cf47f50b
SC
1813 int r;
1814
b10a038e 1815 /*
b0d23708 1816 * Released in kvm_swap_active_memslots().
b10a038e 1817 *
b0d23708
JM
1818 * Must be held from before the current memslots are copied until after
1819 * the new memslots are installed with rcu_assign_pointer, then
1820 * released before the synchronize srcu in kvm_swap_active_memslots().
b10a038e
BG
1821 *
1822 * When modifying memslots outside of the slots_lock, must be held
1823 * before reading the pointer to the current memslots until after all
1824 * changes to those memslots are complete.
1825 *
1826 * These rules ensure that installing new memslots does not lose
1827 * changes made to the previous memslots.
1828 */
1829 mutex_lock(&kvm->slots_arch_lock);
1830
a54d8066
MS
1831 /*
1832 * Invalidate the old slot if it's being deleted or moved. This is
1833 * done prior to actually deleting/moving the memslot to allow vCPUs to
1834 * continue running by ensuring there are no mappings or shadow pages
1835 * for the memslot when it is deleted/moved. Without pre-invalidation
1836 * (and without a lock), a window would exist between effecting the
1837 * delete/move and committing the changes in arch code where KVM or a
1838 * guest could access a non-existent memslot.
244893fa
SC
1839 *
1840 * Modifications are done on a temporary, unreachable slot. The old
1841 * slot needs to be preserved in case a later step fails and the
1842 * invalidation needs to be reverted.
a54d8066 1843 */
cf47f50b 1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
244893fa
SC
1845 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846 if (!invalid_slot) {
1847 mutex_unlock(&kvm->slots_arch_lock);
1848 return -ENOMEM;
1849 }
1850 kvm_invalidate_memslot(kvm, old, invalid_slot);
1851 }
b10a038e 1852
a54d8066
MS
1853 r = kvm_prepare_memory_region(kvm, old, new, change);
1854 if (r) {
b10a038e 1855 /*
a54d8066
MS
1856 * For DELETE/MOVE, revert the above INVALID change. No
1857 * modifications required since the original slot was preserved
1858 * in the inactive slots. Changing the active memslots also
1859 * release slots_arch_lock.
b10a038e 1860 */
244893fa
SC
1861 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862 kvm_activate_memslot(kvm, invalid_slot, old);
1863 kfree(invalid_slot);
1864 } else {
a54d8066 1865 mutex_unlock(&kvm->slots_arch_lock);
244893fa 1866 }
a54d8066 1867 return r;
cf47f50b
SC
1868 }
1869
bda44d84 1870 /*
a54d8066
MS
1871 * For DELETE and MOVE, the working slot is now active as the INVALID
1872 * version of the old slot. MOVE is particularly special as it reuses
1873 * the old slot and returns a copy of the old slot (in working_slot).
1874 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1875 * old slot is detached but otherwise preserved.
bda44d84 1876 */
a54d8066 1877 if (change == KVM_MR_CREATE)
244893fa 1878 kvm_create_memslot(kvm, new);
a54d8066 1879 else if (change == KVM_MR_DELETE)
244893fa 1880 kvm_delete_memslot(kvm, old, invalid_slot);
a54d8066 1881 else if (change == KVM_MR_MOVE)
244893fa 1882 kvm_move_memslot(kvm, old, new, invalid_slot);
a54d8066 1883 else if (change == KVM_MR_FLAGS_ONLY)
244893fa 1884 kvm_update_flags_memslot(kvm, old, new);
a54d8066
MS
1885 else
1886 BUG();
cf47f50b 1887
244893fa
SC
1888 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1889 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890 kfree(invalid_slot);
bda44d84 1891
a54d8066
MS
1892 /*
1893 * No need to refresh new->arch, changes after dropping slots_arch_lock
a413a625 1894 * will directly hit the final, active memslot. Architectures are
a54d8066
MS
1895 * responsible for knowing that new->arch may be stale.
1896 */
1897 kvm_commit_memory_region(kvm, old, new, change);
cf47f50b 1898
cf47f50b 1899 return 0;
cf47f50b
SC
1900}
1901
44401a20
MS
1902static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903 gfn_t start, gfn_t end)
5c0b4f3d 1904{
44401a20 1905 struct kvm_memslot_iter iter;
5c0b4f3d 1906
44401a20
MS
1907 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908 if (iter.slot->id != id)
1909 return true;
1910 }
5c0b4f3d 1911
44401a20 1912 return false;
5c0b4f3d
SC
1913}
1914
6aa8b732
AK
1915/*
1916 * Allocate some memory and give it an address in the guest physical address
1917 * space.
1918 *
1919 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1920 *
02d5d55b 1921 * Must be called holding kvm->slots_lock for write.
6aa8b732 1922 */
f78e0e2e 1923int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1924 const struct kvm_userspace_memory_region *mem)
6aa8b732 1925{
244893fa 1926 struct kvm_memory_slot *old, *new;
44401a20 1927 struct kvm_memslots *slots;
f64c0398 1928 enum kvm_mr_change change;
0f9bdef3
SC
1929 unsigned long npages;
1930 gfn_t base_gfn;
163da372
SC
1931 int as_id, id;
1932 int r;
6aa8b732 1933
a50d64d6
XG
1934 r = check_memory_region_flags(mem);
1935 if (r)
71a4c30b 1936 return r;
a50d64d6 1937
f481b069
PB
1938 as_id = mem->slot >> 16;
1939 id = (u16)mem->slot;
1940
6aa8b732 1941 /* General sanity checks */
6b285a55
SC
1942 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943 (mem->memory_size != (unsigned long)mem->memory_size))
71a4c30b 1944 return -EINVAL;
6aa8b732 1945 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1946 return -EINVAL;
fa3d315a 1947 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1948 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1949 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1950 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1951 mem->memory_size))
71a4c30b 1952 return -EINVAL;
f481b069 1953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1954 return -EINVAL;
6aa8b732 1955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1956 return -EINVAL;
0f9bdef3
SC
1957 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958 return -EINVAL;
6aa8b732 1959
44401a20 1960 slots = __kvm_memslots(kvm, as_id);
6aa8b732 1961
5c0b4f3d 1962 /*
7cd08553
SC
1963 * Note, the old memslot (and the pointer itself!) may be invalidated
1964 * and/or destroyed by kvm_set_memslot().
5c0b4f3d 1965 */
44401a20 1966 old = id_to_memslot(slots, id);
163da372 1967
47ea7d90 1968 if (!mem->memory_size) {
7cd08553 1969 if (!old || !old->npages)
47ea7d90 1970 return -EINVAL;
5c0b4f3d 1971
7cd08553 1972 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
47ea7d90 1973 return -EIO;
6aa8b732 1974
244893fa 1975 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
47ea7d90 1976 }
5c0b4f3d 1977
0f9bdef3
SC
1978 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979 npages = (mem->memory_size >> PAGE_SHIFT);
163da372 1980
7cd08553 1981 if (!old || !old->npages) {
5c0b4f3d 1982 change = KVM_MR_CREATE;
afa319a5
SC
1983
1984 /*
1985 * To simplify KVM internals, the total number of pages across
1986 * all memslots must fit in an unsigned long.
1987 */
0f9bdef3 1988 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
afa319a5 1989 return -EINVAL;
5c0b4f3d 1990 } else { /* Modify an existing slot. */
0f9bdef3
SC
1991 if ((mem->userspace_addr != old->userspace_addr) ||
1992 (npages != old->npages) ||
1993 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
71a4c30b 1994 return -EINVAL;
09170a49 1995
0f9bdef3 1996 if (base_gfn != old->base_gfn)
5c0b4f3d 1997 change = KVM_MR_MOVE;
0f9bdef3 1998 else if (mem->flags != old->flags)
5c0b4f3d
SC
1999 change = KVM_MR_FLAGS_ONLY;
2000 else /* Nothing to change. */
2001 return 0;
09170a49 2002 }
6aa8b732 2003
44401a20 2004 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
0f9bdef3 2005 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
44401a20 2006 return -EEXIST;
6aa8b732 2007
244893fa
SC
2008 /* Allocate a slot that will persist in the memslot. */
2009 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010 if (!new)
2011 return -ENOMEM;
3c9bd400 2012
244893fa
SC
2013 new->as_id = as_id;
2014 new->id = id;
2015 new->base_gfn = base_gfn;
2016 new->npages = npages;
2017 new->flags = mem->flags;
2018 new->userspace_addr = mem->userspace_addr;
6aa8b732 2019
244893fa 2020 r = kvm_set_memslot(kvm, old, new, change);
cf47f50b 2021 if (r)
244893fa 2022 kfree(new);
6aa8b732 2023 return r;
210c7c4d 2024}
f78e0e2e
SY
2025EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026
2027int kvm_set_memory_region(struct kvm *kvm,
09170a49 2028 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
2029{
2030 int r;
2031
79fac95e 2032 mutex_lock(&kvm->slots_lock);
47ae31e2 2033 r = __kvm_set_memory_region(kvm, mem);
79fac95e 2034 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
2035 return r;
2036}
210c7c4d
IE
2037EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038
7940876e
SH
2039static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040 struct kvm_userspace_memory_region *mem)
210c7c4d 2041{
f481b069 2042 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 2043 return -EINVAL;
09170a49 2044
47ae31e2 2045 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
2046}
2047
0dff0846 2048#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
2049/**
2050 * kvm_get_dirty_log - get a snapshot of dirty pages
2051 * @kvm: pointer to kvm instance
2052 * @log: slot id and address to which we copy the log
2053 * @is_dirty: set to '1' if any dirty pages were found
2054 * @memslot: set to the associated memslot, always valid on success
2055 */
2056int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 2058{
9f6b8029 2059 struct kvm_memslots *slots;
843574a3 2060 int i, as_id, id;
87bf6e7d 2061 unsigned long n;
6aa8b732
AK
2062 unsigned long any = 0;
2063
86bdf3eb
GS
2064 /* Dirty ring tracking may be exclusive to dirty log tracking */
2065 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2066 return -ENXIO;
2067
2a49f61d
SC
2068 *memslot = NULL;
2069 *is_dirty = 0;
2070
f481b069
PB
2071 as_id = log->slot >> 16;
2072 id = (u16)log->slot;
2073 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 2074 return -EINVAL;
6aa8b732 2075
f481b069 2076 slots = __kvm_memslots(kvm, as_id);
2a49f61d 2077 *memslot = id_to_memslot(slots, id);
0577d1ab 2078 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 2079 return -ENOENT;
6aa8b732 2080
2a49f61d
SC
2081 kvm_arch_sync_dirty_log(kvm, *memslot);
2082
2083 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 2084
cd1a4a98 2085 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 2086 any = (*memslot)->dirty_bitmap[i];
6aa8b732 2087
2a49f61d 2088 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 2089 return -EFAULT;
6aa8b732 2090
5bb064dc
ZX
2091 if (any)
2092 *is_dirty = 1;
843574a3 2093 return 0;
6aa8b732 2094}
2ba9f0d8 2095EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 2096
0dff0846 2097#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2098/**
b8b00220 2099 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 2100 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
2101 * @kvm: pointer to kvm instance
2102 * @log: slot id and address to which we copy the log
ba0513b5
MS
2103 *
2104 * We need to keep it in mind that VCPU threads can write to the bitmap
2105 * concurrently. So, to avoid losing track of dirty pages we keep the
2106 * following order:
2107 *
2108 * 1. Take a snapshot of the bit and clear it if needed.
2109 * 2. Write protect the corresponding page.
2110 * 3. Copy the snapshot to the userspace.
2111 * 4. Upon return caller flushes TLB's if needed.
2112 *
2113 * Between 2 and 4, the guest may write to the page using the remaining TLB
2114 * entry. This is not a problem because the page is reported dirty using
2115 * the snapshot taken before and step 4 ensures that writes done after
2116 * exiting to userspace will be logged for the next call.
2117 *
2118 */
0dff0846 2119static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 2120{
9f6b8029 2121 struct kvm_memslots *slots;
ba0513b5 2122 struct kvm_memory_slot *memslot;
58d6db34 2123 int i, as_id, id;
ba0513b5
MS
2124 unsigned long n;
2125 unsigned long *dirty_bitmap;
2126 unsigned long *dirty_bitmap_buffer;
0dff0846 2127 bool flush;
ba0513b5 2128
86bdf3eb
GS
2129 /* Dirty ring tracking may be exclusive to dirty log tracking */
2130 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2131 return -ENXIO;
2132
f481b069
PB
2133 as_id = log->slot >> 16;
2134 id = (u16)log->slot;
2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 2136 return -EINVAL;
ba0513b5 2137
f481b069
PB
2138 slots = __kvm_memslots(kvm, as_id);
2139 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2140 if (!memslot || !memslot->dirty_bitmap)
2141 return -ENOENT;
ba0513b5
MS
2142
2143 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 2144
0dff0846
SC
2145 kvm_arch_sync_dirty_log(kvm, memslot);
2146
ba0513b5 2147 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 2148 flush = false;
2a31b9db
PB
2149 if (kvm->manual_dirty_log_protect) {
2150 /*
2151 * Unlike kvm_get_dirty_log, we always return false in *flush,
2152 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2153 * is some code duplication between this function and
2154 * kvm_get_dirty_log, but hopefully all architecture
2155 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156 * can be eliminated.
2157 */
2158 dirty_bitmap_buffer = dirty_bitmap;
2159 } else {
2160 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 2162
531810ca 2163 KVM_MMU_LOCK(kvm);
2a31b9db
PB
2164 for (i = 0; i < n / sizeof(long); i++) {
2165 unsigned long mask;
2166 gfn_t offset;
ba0513b5 2167
2a31b9db
PB
2168 if (!dirty_bitmap[i])
2169 continue;
2170
0dff0846 2171 flush = true;
2a31b9db
PB
2172 mask = xchg(&dirty_bitmap[i], 0);
2173 dirty_bitmap_buffer[i] = mask;
2174
a67794ca
LT
2175 offset = i * BITS_PER_LONG;
2176 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177 offset, mask);
2a31b9db 2178 }
531810ca 2179 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
2180 }
2181
0dff0846
SC
2182 if (flush)
2183 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184
2a31b9db
PB
2185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186 return -EFAULT;
2187 return 0;
2188}
0dff0846
SC
2189
2190
2191/**
2192 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193 * @kvm: kvm instance
2194 * @log: slot id and address to which we copy the log
2195 *
2196 * Steps 1-4 below provide general overview of dirty page logging. See
2197 * kvm_get_dirty_log_protect() function description for additional details.
2198 *
2199 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200 * always flush the TLB (step 4) even if previous step failed and the dirty
2201 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203 * writes will be marked dirty for next log read.
2204 *
2205 * 1. Take a snapshot of the bit and clear it if needed.
2206 * 2. Write protect the corresponding page.
2207 * 3. Copy the snapshot to the userspace.
2208 * 4. Flush TLB's if needed.
2209 */
2210static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211 struct kvm_dirty_log *log)
2212{
2213 int r;
2214
2215 mutex_lock(&kvm->slots_lock);
2216
2217 r = kvm_get_dirty_log_protect(kvm, log);
2218
2219 mutex_unlock(&kvm->slots_lock);
2220 return r;
2221}
2a31b9db
PB
2222
2223/**
2224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225 * and reenable dirty page tracking for the corresponding pages.
2226 * @kvm: pointer to kvm instance
2227 * @log: slot id and address from which to fetch the bitmap of dirty pages
2228 */
0dff0846
SC
2229static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230 struct kvm_clear_dirty_log *log)
2a31b9db
PB
2231{
2232 struct kvm_memslots *slots;
2233 struct kvm_memory_slot *memslot;
98938aa8 2234 int as_id, id;
2a31b9db 2235 gfn_t offset;
98938aa8 2236 unsigned long i, n;
2a31b9db
PB
2237 unsigned long *dirty_bitmap;
2238 unsigned long *dirty_bitmap_buffer;
0dff0846 2239 bool flush;
2a31b9db 2240
86bdf3eb
GS
2241 /* Dirty ring tracking may be exclusive to dirty log tracking */
2242 if (!kvm_use_dirty_bitmap(kvm))
b2cc64c4
PX
2243 return -ENXIO;
2244
2a31b9db
PB
2245 as_id = log->slot >> 16;
2246 id = (u16)log->slot;
2247 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248 return -EINVAL;
2249
76d58e0f 2250 if (log->first_page & 63)
2a31b9db
PB
2251 return -EINVAL;
2252
2253 slots = __kvm_memslots(kvm, as_id);
2254 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2255 if (!memslot || !memslot->dirty_bitmap)
2256 return -ENOENT;
2a31b9db
PB
2257
2258 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2259
4ddc9204 2260 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2261
2262 if (log->first_page > memslot->npages ||
76d58e0f
PB
2263 log->num_pages > memslot->npages - log->first_page ||
2264 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265 return -EINVAL;
98938aa8 2266
0dff0846
SC
2267 kvm_arch_sync_dirty_log(kvm, memslot);
2268
2269 flush = false;
2a31b9db
PB
2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272 return -EFAULT;
ba0513b5 2273
531810ca 2274 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2275 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2277 i++, offset += BITS_PER_LONG) {
2278 unsigned long mask = *dirty_bitmap_buffer++;
2279 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280 if (!mask)
ba0513b5
MS
2281 continue;
2282
2a31b9db 2283 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2284
2a31b9db
PB
2285 /*
2286 * mask contains the bits that really have been cleared. This
2287 * never includes any bits beyond the length of the memslot (if
2288 * the length is not aligned to 64 pages), therefore it is not
2289 * a problem if userspace sets them in log->dirty_bitmap.
2290 */
58d2930f 2291 if (mask) {
0dff0846 2292 flush = true;
58d2930f
TY
2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 offset, mask);
2295 }
ba0513b5 2296 }
531810ca 2297 KVM_MMU_UNLOCK(kvm);
2a31b9db 2298
0dff0846
SC
2299 if (flush)
2300 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301
58d6db34 2302 return 0;
ba0513b5 2303}
0dff0846
SC
2304
2305static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306 struct kvm_clear_dirty_log *log)
2307{
2308 int r;
2309
2310 mutex_lock(&kvm->slots_lock);
2311
2312 r = kvm_clear_dirty_log_protect(kvm, log);
2313
2314 mutex_unlock(&kvm->slots_lock);
2315 return r;
2316}
2317#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2318
49c7754c
GN
2319struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320{
2321 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322}
a1f4d395 2323EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2324
8e73485c
PB
2325struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326{
fe22ed82 2327 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
a54d8066 2328 u64 gen = slots->generation;
fe22ed82 2329 struct kvm_memory_slot *slot;
fe22ed82 2330
a54d8066
MS
2331 /*
2332 * This also protects against using a memslot from a different address space,
2333 * since different address spaces have different generation numbers.
2334 */
2335 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336 vcpu->last_used_slot = NULL;
2337 vcpu->last_used_slot_gen = gen;
2338 }
2339
2340 slot = try_get_memslot(vcpu->last_used_slot, gfn);
fe22ed82
DM
2341 if (slot)
2342 return slot;
2343
2344 /*
2345 * Fall back to searching all memslots. We purposely use
2346 * search_memslots() instead of __gfn_to_memslot() to avoid
a54d8066 2347 * thrashing the VM-wide last_used_slot in kvm_memslots.
fe22ed82 2348 */
a54d8066 2349 slot = search_memslots(slots, gfn, false);
fe22ed82 2350 if (slot) {
a54d8066 2351 vcpu->last_used_slot = slot;
fe22ed82
DM
2352 return slot;
2353 }
2354
2355 return NULL;
8e73485c
PB
2356}
2357
33e94154 2358bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2359{
bf3e05bc 2360 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2361
c36b7150 2362 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2363}
2364EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365
995decb6
VK
2366bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367{
2368 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370 return kvm_is_visible_memslot(memslot);
2371}
2372EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373
f9b84e19 2374unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2375{
2376 struct vm_area_struct *vma;
2377 unsigned long addr, size;
2378
2379 size = PAGE_SIZE;
2380
42cde48b 2381 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2382 if (kvm_is_error_hva(addr))
2383 return PAGE_SIZE;
2384
d8ed45c5 2385 mmap_read_lock(current->mm);
8f0b1ab6
JR
2386 vma = find_vma(current->mm, addr);
2387 if (!vma)
2388 goto out;
2389
2390 size = vma_kernel_pagesize(vma);
2391
2392out:
d8ed45c5 2393 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2394
2395 return size;
2396}
2397
8283e36a 2398static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
4d8b81ab
XG
2399{
2400 return slot->flags & KVM_MEM_READONLY;
2401}
2402
8283e36a 2403static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
4d8b81ab 2404 gfn_t *nr_pages, bool write)
539cb660 2405{
bc6678a3 2406 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2407 return KVM_HVA_ERR_BAD;
48987781 2408
4d8b81ab
XG
2409 if (memslot_is_readonly(slot) && write)
2410 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2411
2412 if (nr_pages)
2413 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2414
4d8b81ab 2415 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2416}
48987781 2417
4d8b81ab
XG
2418static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419 gfn_t *nr_pages)
2420{
2421 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2422}
48987781 2423
4d8b81ab 2424unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2425 gfn_t gfn)
4d8b81ab
XG
2426{
2427 return gfn_to_hva_many(slot, gfn, NULL);
2428}
2429EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430
48987781
XG
2431unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432{
49c7754c 2433 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2434}
0d150298 2435EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2436
8e73485c
PB
2437unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438{
2439 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440}
2441EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442
86ab8cff 2443/*
970c0d4b
WY
2444 * Return the hva of a @gfn and the R/W attribute if possible.
2445 *
2446 * @slot: the kvm_memory_slot which contains @gfn
2447 * @gfn: the gfn to be translated
2448 * @writable: used to return the read/write attribute of the @slot if the hva
2449 * is valid and @writable is not NULL
86ab8cff 2450 */
64d83126
CD
2451unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452 gfn_t gfn, bool *writable)
86ab8cff 2453{
a2ac07fe
GN
2454 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455
2456 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2457 *writable = !memslot_is_readonly(slot);
2458
a2ac07fe 2459 return hva;
86ab8cff
XG
2460}
2461
64d83126
CD
2462unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463{
2464 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465
2466 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467}
2468
8e73485c
PB
2469unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470{
2471 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472
2473 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474}
2475
fafc3dba
HY
2476static inline int check_user_page_hwpoison(unsigned long addr)
2477{
0d731759 2478 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2479
0d731759 2480 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2481 return rc == -EHWPOISON;
2482}
2483
2fc84311 2484/*
b9b33da2
PB
2485 * The fast path to get the writable pfn which will be stored in @pfn,
2486 * true indicates success, otherwise false is returned. It's also the
311497e0 2487 * only part that runs if we can in atomic context.
2fc84311 2488 */
b9b33da2
PB
2489static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2491{
8d4e1288 2492 struct page *page[1];
954bbbc2 2493
12ce13fe
XG
2494 /*
2495 * Fast pin a writable pfn only if it is a write fault request
2496 * or the caller allows to map a writable pfn for a read fault
2497 * request.
2498 */
2499 if (!(write_fault || writable))
2500 return false;
612819c3 2501
dadbb612 2502 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2503 *pfn = page_to_pfn(page[0]);
612819c3 2504
2fc84311
XG
2505 if (writable)
2506 *writable = true;
2507 return true;
2508 }
af585b92 2509
2fc84311
XG
2510 return false;
2511}
612819c3 2512
2fc84311
XG
2513/*
2514 * The slow path to get the pfn of the specified host virtual address,
2515 * 1 indicates success, -errno is returned if error is detected.
2516 */
2517static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
c8b88b33 2518 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2fc84311 2519{
ce53053c
AV
2520 unsigned int flags = FOLL_HWPOISON;
2521 struct page *page;
28249139 2522 int npages;
612819c3 2523
2fc84311
XG
2524 might_sleep();
2525
2526 if (writable)
2527 *writable = write_fault;
2528
ce53053c
AV
2529 if (write_fault)
2530 flags |= FOLL_WRITE;
2531 if (async)
2532 flags |= FOLL_NOWAIT;
c8b88b33
PX
2533 if (interruptible)
2534 flags |= FOLL_INTERRUPTIBLE;
d4944b0e 2535
ce53053c 2536 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2537 if (npages != 1)
2538 return npages;
2539
2540 /* map read fault as writable if possible */
12ce13fe 2541 if (unlikely(!write_fault) && writable) {
ce53053c 2542 struct page *wpage;
2fc84311 2543
dadbb612 2544 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2545 *writable = true;
ce53053c
AV
2546 put_page(page);
2547 page = wpage;
612819c3 2548 }
887c08ac 2549 }
ce53053c 2550 *pfn = page_to_pfn(page);
2fc84311
XG
2551 return npages;
2552}
539cb660 2553
4d8b81ab
XG
2554static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2555{
2556 if (unlikely(!(vma->vm_flags & VM_READ)))
2557 return false;
2e2e3738 2558
4d8b81ab
XG
2559 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2560 return false;
887c08ac 2561
4d8b81ab
XG
2562 return true;
2563}
bf998156 2564
f8be156b
NP
2565static int kvm_try_get_pfn(kvm_pfn_t pfn)
2566{
b14b2690
SC
2567 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2568
2569 if (!page)
f8be156b 2570 return 1;
b14b2690
SC
2571
2572 return get_page_unless_zero(page);
f8be156b
NP
2573}
2574
92176a8e 2575static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1625566e
XT
2576 unsigned long addr, bool write_fault,
2577 bool *writable, kvm_pfn_t *p_pfn)
92176a8e 2578{
a9545779 2579 kvm_pfn_t pfn;
bd2fae8d
PB
2580 pte_t *ptep;
2581 spinlock_t *ptl;
add6a0cd
PB
2582 int r;
2583
9fd6dad1 2584 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2585 if (r) {
2586 /*
2587 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2588 * not call the fault handler, so do it here.
2589 */
2590 bool unlocked = false;
64019a2e 2591 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2592 (write_fault ? FAULT_FLAG_WRITE : 0),
2593 &unlocked);
a8387d0b
PB
2594 if (unlocked)
2595 return -EAGAIN;
add6a0cd
PB
2596 if (r)
2597 return r;
2598
9fd6dad1 2599 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2600 if (r)
2601 return r;
bd2fae8d 2602 }
add6a0cd 2603
bd2fae8d
PB
2604 if (write_fault && !pte_write(*ptep)) {
2605 pfn = KVM_PFN_ERR_RO_FAULT;
2606 goto out;
add6a0cd
PB
2607 }
2608
a340b3e2 2609 if (writable)
bd2fae8d
PB
2610 *writable = pte_write(*ptep);
2611 pfn = pte_pfn(*ptep);
add6a0cd
PB
2612
2613 /*
2614 * Get a reference here because callers of *hva_to_pfn* and
2615 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2616 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2617 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2618 * simply do nothing for reserved pfns.
2619 *
2620 * Whoever called remap_pfn_range is also going to call e.g.
2621 * unmap_mapping_range before the underlying pages are freed,
2622 * causing a call to our MMU notifier.
f8be156b
NP
2623 *
2624 * Certain IO or PFNMAP mappings can be backed with valid
2625 * struct pages, but be allocated without refcounting e.g.,
2626 * tail pages of non-compound higher order allocations, which
2627 * would then underflow the refcount when the caller does the
2628 * required put_page. Don't allow those pages here.
add6a0cd 2629 */
f8be156b
NP
2630 if (!kvm_try_get_pfn(pfn))
2631 r = -EFAULT;
add6a0cd 2632
bd2fae8d
PB
2633out:
2634 pte_unmap_unlock(ptep, ptl);
add6a0cd 2635 *p_pfn = pfn;
f8be156b
NP
2636
2637 return r;
92176a8e
PB
2638}
2639
12ce13fe
XG
2640/*
2641 * Pin guest page in memory and return its pfn.
2642 * @addr: host virtual address which maps memory to the guest
2643 * @atomic: whether this function can sleep
c8b88b33 2644 * @interruptible: whether the process can be interrupted by non-fatal signals
12ce13fe
XG
2645 * @async: whether this function need to wait IO complete if the
2646 * host page is not in the memory
2647 * @write_fault: whether we should get a writable host page
2648 * @writable: whether it allows to map a writable host page for !@write_fault
2649 *
2650 * The function will map a writable host page for these two cases:
2651 * 1): @write_fault = true
2652 * 2): @write_fault = false && @writable, @writable will tell the caller
2653 * whether the mapping is writable.
2654 */
c8b88b33
PX
2655kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2656 bool *async, bool write_fault, bool *writable)
2fc84311
XG
2657{
2658 struct vm_area_struct *vma;
943dfea8 2659 kvm_pfn_t pfn;
92176a8e 2660 int npages, r;
2e2e3738 2661
2fc84311
XG
2662 /* we can do it either atomically or asynchronously, not both */
2663 BUG_ON(atomic && async);
8d4e1288 2664
b9b33da2 2665 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2666 return pfn;
2667
2668 if (atomic)
2669 return KVM_PFN_ERR_FAULT;
2670
c8b88b33
PX
2671 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2672 writable, &pfn);
2fc84311
XG
2673 if (npages == 1)
2674 return pfn;
fe5ed56c
PX
2675 if (npages == -EINTR)
2676 return KVM_PFN_ERR_SIGPENDING;
8d4e1288 2677
d8ed45c5 2678 mmap_read_lock(current->mm);
2fc84311
XG
2679 if (npages == -EHWPOISON ||
2680 (!async && check_user_page_hwpoison(addr))) {
2681 pfn = KVM_PFN_ERR_HWPOISON;
2682 goto exit;
2683 }
2684
a8387d0b 2685retry:
fc98c03b 2686 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2687
2688 if (vma == NULL)
2689 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2690 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1625566e 2691 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
a8387d0b
PB
2692 if (r == -EAGAIN)
2693 goto retry;
92176a8e
PB
2694 if (r < 0)
2695 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2696 } else {
4d8b81ab 2697 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2698 *async = true;
2699 pfn = KVM_PFN_ERR_FAULT;
2700 }
2701exit:
d8ed45c5 2702 mmap_read_unlock(current->mm);
2e2e3738 2703 return pfn;
35149e21
AL
2704}
2705
8283e36a 2706kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
c8b88b33
PX
2707 bool atomic, bool interruptible, bool *async,
2708 bool write_fault, bool *writable, hva_t *hva)
887c08ac 2709{
4d8b81ab
XG
2710 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2711
4a42d848
DS
2712 if (hva)
2713 *hva = addr;
2714
b2740d35
PB
2715 if (addr == KVM_HVA_ERR_RO_BAD) {
2716 if (writable)
2717 *writable = false;
4d8b81ab 2718 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2719 }
4d8b81ab 2720
b2740d35
PB
2721 if (kvm_is_error_hva(addr)) {
2722 if (writable)
2723 *writable = false;
81c52c56 2724 return KVM_PFN_NOSLOT;
b2740d35 2725 }
4d8b81ab
XG
2726
2727 /* Do not map writable pfn in the readonly memslot. */
2728 if (writable && memslot_is_readonly(slot)) {
2729 *writable = false;
2730 writable = NULL;
2731 }
2732
c8b88b33 2733 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
4d8b81ab 2734 writable);
887c08ac 2735}
3520469d 2736EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2737
ba049e93 2738kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2739 bool *writable)
2740{
c8b88b33
PX
2741 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2742 NULL, write_fault, writable, NULL);
612819c3
MT
2743}
2744EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2745
8283e36a 2746kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2747{
c8b88b33
PX
2748 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2749 NULL, NULL);
506f0d6f 2750}
e37afc6e 2751EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2752
8283e36a 2753kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2754{
c8b88b33
PX
2755 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2756 NULL, NULL);
506f0d6f 2757}
037d92dc 2758EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2759
ba049e93 2760kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2761{
2762 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2763}
2764EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2765
ba049e93 2766kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2767{
2768 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2769}
2770EXPORT_SYMBOL_GPL(gfn_to_pfn);
2771
ba049e93 2772kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2773{
2774 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2775}
2776EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2777
d9ef13c2
PB
2778int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2779 struct page **pages, int nr_pages)
48987781
XG
2780{
2781 unsigned long addr;
076b925d 2782 gfn_t entry = 0;
48987781 2783
d9ef13c2 2784 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2785 if (kvm_is_error_hva(addr))
2786 return -1;
2787
2788 if (entry < nr_pages)
2789 return 0;
2790
dadbb612 2791 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2792}
2793EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2794
b1624f99
SC
2795/*
2796 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2797 * backed by 'struct page'. A valid example is if the backing memslot is
2798 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2799 * been elevated by gfn_to_pfn().
2800 */
35149e21
AL
2801struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2802{
b14b2690 2803 struct page *page;
ba049e93 2804 kvm_pfn_t pfn;
2e2e3738
AL
2805
2806 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2807
81c52c56 2808 if (is_error_noslot_pfn(pfn))
cb9aaa30 2809 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2810
b14b2690
SC
2811 page = kvm_pfn_to_refcounted_page(pfn);
2812 if (!page)
6cede2e6 2813 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2814
b14b2690 2815 return page;
954bbbc2
AK
2816}
2817EXPORT_SYMBOL_GPL(gfn_to_page);
2818
357a18ad 2819void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
91724814 2820{
91724814
BO
2821 if (dirty)
2822 kvm_release_pfn_dirty(pfn);
2823 else
2824 kvm_release_pfn_clean(pfn);
2825}
2826
357a18ad 2827int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
e45adf66
KA
2828{
2829 kvm_pfn_t pfn;
2830 void *hva = NULL;
2831 struct page *page = KVM_UNMAPPED_PAGE;
2832
2833 if (!map)
2834 return -EINVAL;
2835
357a18ad 2836 pfn = gfn_to_pfn(vcpu->kvm, gfn);
e45adf66
KA
2837 if (is_error_noslot_pfn(pfn))
2838 return -EINVAL;
2839
2840 if (pfn_valid(pfn)) {
2841 page = pfn_to_page(pfn);
357a18ad 2842 hva = kmap(page);
d30b214d 2843#ifdef CONFIG_HAS_IOMEM
91724814 2844 } else {
357a18ad 2845 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 2846#endif
e45adf66
KA
2847 }
2848
2849 if (!hva)
2850 return -EFAULT;
2851
2852 map->page = page;
2853 map->hva = hva;
2854 map->pfn = pfn;
2855 map->gfn = gfn;
2856
2857 return 0;
2858}
e45adf66
KA
2859EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2860
357a18ad 2861void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
e45adf66
KA
2862{
2863 if (!map)
2864 return;
2865
2866 if (!map->hva)
2867 return;
2868
357a18ad
DW
2869 if (map->page != KVM_UNMAPPED_PAGE)
2870 kunmap(map->page);
eb1f2f38 2871#ifdef CONFIG_HAS_IOMEM
91724814 2872 else
357a18ad 2873 memunmap(map->hva);
eb1f2f38 2874#endif
e45adf66 2875
91724814 2876 if (dirty)
357a18ad 2877 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
91724814 2878
357a18ad 2879 kvm_release_pfn(map->pfn, dirty);
e45adf66
KA
2880
2881 map->hva = NULL;
2882 map->page = NULL;
2883}
2884EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2885
8e1c6914 2886static bool kvm_is_ad_tracked_page(struct page *page)
8e73485c 2887{
8e1c6914
SC
2888 /*
2889 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2890 * touched (e.g. set dirty) except by its owner".
2891 */
2892 return !PageReserved(page);
2893}
8e73485c 2894
8e1c6914
SC
2895static void kvm_set_page_dirty(struct page *page)
2896{
2897 if (kvm_is_ad_tracked_page(page))
2898 SetPageDirty(page);
2899}
8e73485c 2900
8e1c6914
SC
2901static void kvm_set_page_accessed(struct page *page)
2902{
2903 if (kvm_is_ad_tracked_page(page))
2904 mark_page_accessed(page);
8e73485c 2905}
8e73485c 2906
b4231d61
IE
2907void kvm_release_page_clean(struct page *page)
2908{
32cad84f
XG
2909 WARN_ON(is_error_page(page));
2910
8e1c6914
SC
2911 kvm_set_page_accessed(page);
2912 put_page(page);
b4231d61
IE
2913}
2914EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2915
ba049e93 2916void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2917{
b14b2690
SC
2918 struct page *page;
2919
2920 if (is_error_noslot_pfn(pfn))
2921 return;
2922
2923 page = kvm_pfn_to_refcounted_page(pfn);
2924 if (!page)
2925 return;
2926
2927 kvm_release_page_clean(page);
35149e21
AL
2928}
2929EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2930
b4231d61 2931void kvm_release_page_dirty(struct page *page)
8a7ae055 2932{
a2766325
XG
2933 WARN_ON(is_error_page(page));
2934
8e1c6914
SC
2935 kvm_set_page_dirty(page);
2936 kvm_release_page_clean(page);
35149e21
AL
2937}
2938EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2939
f7a6509f 2940void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21 2941{
b14b2690
SC
2942 struct page *page;
2943
2944 if (is_error_noslot_pfn(pfn))
2945 return;
2946
2947 page = kvm_pfn_to_refcounted_page(pfn);
2948 if (!page)
2949 return;
2950
2951 kvm_release_page_dirty(page);
35149e21 2952}
f7a6509f 2953EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2954
8e1c6914
SC
2955/*
2956 * Note, checking for an error/noslot pfn is the caller's responsibility when
2957 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2958 * "set" helpers are not to be used when the pfn might point at garbage.
2959 */
ba049e93 2960void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2961{
8e1c6914
SC
2962 if (WARN_ON(is_error_noslot_pfn(pfn)))
2963 return;
2964
2965 if (pfn_valid(pfn))
2966 kvm_set_page_dirty(pfn_to_page(pfn));
8a7ae055 2967}
35149e21
AL
2968EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2969
ba049e93 2970void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2971{
8e1c6914
SC
2972 if (WARN_ON(is_error_noslot_pfn(pfn)))
2973 return;
2974
2975 if (pfn_valid(pfn))
2976 kvm_set_page_accessed(pfn_to_page(pfn));
35149e21
AL
2977}
2978EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2979
195aefde
IE
2980static int next_segment(unsigned long len, int offset)
2981{
2982 if (len > PAGE_SIZE - offset)
2983 return PAGE_SIZE - offset;
2984 else
2985 return len;
2986}
2987
8e73485c
PB
2988static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2989 void *data, int offset, int len)
195aefde 2990{
e0506bcb
IE
2991 int r;
2992 unsigned long addr;
195aefde 2993
8e73485c 2994 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2995 if (kvm_is_error_hva(addr))
2996 return -EFAULT;
3180a7fc 2997 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2998 if (r)
195aefde 2999 return -EFAULT;
195aefde
IE
3000 return 0;
3001}
8e73485c
PB
3002
3003int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3004 int len)
3005{
3006 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3007
3008 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009}
195aefde
IE
3010EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3011
8e73485c
PB
3012int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3013 int offset, int len)
3014{
3015 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3016
3017 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3018}
3019EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3020
195aefde
IE
3021int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3022{
3023 gfn_t gfn = gpa >> PAGE_SHIFT;
3024 int seg;
3025 int offset = offset_in_page(gpa);
3026 int ret;
3027
3028 while ((seg = next_segment(len, offset)) != 0) {
3029 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3030 if (ret < 0)
3031 return ret;
3032 offset = 0;
3033 len -= seg;
3034 data += seg;
3035 ++gfn;
3036 }
3037 return 0;
3038}
3039EXPORT_SYMBOL_GPL(kvm_read_guest);
3040
8e73485c 3041int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 3042{
7ec54588 3043 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 3044 int seg;
7ec54588 3045 int offset = offset_in_page(gpa);
8e73485c
PB
3046 int ret;
3047
3048 while ((seg = next_segment(len, offset)) != 0) {
3049 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3050 if (ret < 0)
3051 return ret;
3052 offset = 0;
3053 len -= seg;
3054 data += seg;
3055 ++gfn;
3056 }
3057 return 0;
3058}
3059EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 3060
8e73485c
PB
3061static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3062 void *data, int offset, unsigned long len)
3063{
3064 int r;
3065 unsigned long addr;
3066
3067 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
3068 if (kvm_is_error_hva(addr))
3069 return -EFAULT;
0aac03f0 3070 pagefault_disable();
3180a7fc 3071 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 3072 pagefault_enable();
7ec54588
MT
3073 if (r)
3074 return -EFAULT;
3075 return 0;
3076}
7ec54588 3077
8e73485c
PB
3078int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3079 void *data, unsigned long len)
3080{
3081 gfn_t gfn = gpa >> PAGE_SHIFT;
3082 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3083 int offset = offset_in_page(gpa);
3084
3085 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3086}
3087EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3088
28bd726a
PX
3089static int __kvm_write_guest_page(struct kvm *kvm,
3090 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 3091 const void *data, int offset, int len)
195aefde 3092{
e0506bcb
IE
3093 int r;
3094 unsigned long addr;
195aefde 3095
251eb841 3096 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
3097 if (kvm_is_error_hva(addr))
3098 return -EFAULT;
8b0cedff 3099 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 3100 if (r)
195aefde 3101 return -EFAULT;
28bd726a 3102 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
3103 return 0;
3104}
8e73485c
PB
3105
3106int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3107 const void *data, int offset, int len)
3108{
3109 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3110
28bd726a 3111 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 3112}
195aefde
IE
3113EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3114
8e73485c
PB
3115int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3116 const void *data, int offset, int len)
3117{
3118 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3119
28bd726a 3120 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
3121}
3122EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3123
195aefde
IE
3124int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3125 unsigned long len)
3126{
3127 gfn_t gfn = gpa >> PAGE_SHIFT;
3128 int seg;
3129 int offset = offset_in_page(gpa);
3130 int ret;
3131
3132 while ((seg = next_segment(len, offset)) != 0) {
3133 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3134 if (ret < 0)
3135 return ret;
3136 offset = 0;
3137 len -= seg;
3138 data += seg;
3139 ++gfn;
3140 }
3141 return 0;
3142}
ff651cb6 3143EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 3144
8e73485c
PB
3145int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3146 unsigned long len)
3147{
3148 gfn_t gfn = gpa >> PAGE_SHIFT;
3149 int seg;
3150 int offset = offset_in_page(gpa);
3151 int ret;
3152
3153 while ((seg = next_segment(len, offset)) != 0) {
3154 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3155 if (ret < 0)
3156 return ret;
3157 offset = 0;
3158 len -= seg;
3159 data += seg;
3160 ++gfn;
3161 }
3162 return 0;
3163}
3164EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3165
5a2d4365
PB
3166static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3167 struct gfn_to_hva_cache *ghc,
3168 gpa_t gpa, unsigned long len)
49c7754c 3169{
49c7754c 3170 int offset = offset_in_page(gpa);
8f964525
AH
3171 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3172 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3173 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3174 gfn_t nr_pages_avail;
49c7754c 3175
6ad1e29f 3176 /* Update ghc->generation before performing any error checks. */
49c7754c 3177 ghc->generation = slots->generation;
6ad1e29f
SC
3178
3179 if (start_gfn > end_gfn) {
3180 ghc->hva = KVM_HVA_ERR_BAD;
3181 return -EINVAL;
3182 }
f1b9dd5e
JM
3183
3184 /*
3185 * If the requested region crosses two memslots, we still
3186 * verify that the entire region is valid here.
3187 */
6ad1e29f 3188 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
3189 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3190 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3191 &nr_pages_avail);
3192 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 3193 return -EFAULT;
f1b9dd5e
JM
3194 }
3195
3196 /* Use the slow path for cross page reads and writes. */
6ad1e29f 3197 if (nr_pages_needed == 1)
49c7754c 3198 ghc->hva += offset;
f1b9dd5e 3199 else
8f964525 3200 ghc->memslot = NULL;
f1b9dd5e 3201
6ad1e29f
SC
3202 ghc->gpa = gpa;
3203 ghc->len = len;
3204 return 0;
49c7754c 3205}
5a2d4365 3206
4e335d9e 3207int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
3208 gpa_t gpa, unsigned long len)
3209{
4e335d9e 3210 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
3211 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3212}
4e335d9e 3213EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 3214
4e335d9e 3215int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
3216 void *data, unsigned int offset,
3217 unsigned long len)
49c7754c 3218{
4e335d9e 3219 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 3220 int r;
4ec6e863 3221 gpa_t gpa = ghc->gpa + offset;
49c7754c 3222
5f25e71e
PB
3223 if (WARN_ON_ONCE(len + offset > ghc->len))
3224 return -EINVAL;
8f964525 3225
dc9ce71e
SC
3226 if (slots->generation != ghc->generation) {
3227 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3228 return -EFAULT;
3229 }
8f964525 3230
49c7754c
GN
3231 if (kvm_is_error_hva(ghc->hva))
3232 return -EFAULT;
3233
fcfbc617
SC
3234 if (unlikely(!ghc->memslot))
3235 return kvm_write_guest(kvm, gpa, data, len);
3236
4ec6e863 3237 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3238 if (r)
3239 return -EFAULT;
28bd726a 3240 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3241
3242 return 0;
3243}
4e335d9e 3244EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3245
4e335d9e
PB
3246int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3247 void *data, unsigned long len)
4ec6e863 3248{
4e335d9e 3249 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3250}
4e335d9e 3251EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3252
0958f0ce
VK
3253int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3254 void *data, unsigned int offset,
3255 unsigned long len)
e03b644f 3256{
4e335d9e 3257 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3258 int r;
0958f0ce 3259 gpa_t gpa = ghc->gpa + offset;
e03b644f 3260
5f25e71e
PB
3261 if (WARN_ON_ONCE(len + offset > ghc->len))
3262 return -EINVAL;
8f964525 3263
dc9ce71e
SC
3264 if (slots->generation != ghc->generation) {
3265 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3266 return -EFAULT;
3267 }
8f964525 3268
e03b644f
GN
3269 if (kvm_is_error_hva(ghc->hva))
3270 return -EFAULT;
3271
fcfbc617 3272 if (unlikely(!ghc->memslot))
0958f0ce 3273 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3274
0958f0ce 3275 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3276 if (r)
3277 return -EFAULT;
3278
3279 return 0;
3280}
0958f0ce
VK
3281EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3282
3283int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3284 void *data, unsigned long len)
3285{
3286 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3287}
4e335d9e 3288EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3289
195aefde
IE
3290int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3291{
2f541442 3292 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3293 gfn_t gfn = gpa >> PAGE_SHIFT;
3294 int seg;
3295 int offset = offset_in_page(gpa);
3296 int ret;
3297
bfda0e84 3298 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3299 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3300 if (ret < 0)
3301 return ret;
3302 offset = 0;
3303 len -= seg;
3304 ++gfn;
3305 }
3306 return 0;
3307}
3308EXPORT_SYMBOL_GPL(kvm_clear_guest);
3309
28bd726a 3310void mark_page_dirty_in_slot(struct kvm *kvm,
8283e36a 3311 const struct kvm_memory_slot *memslot,
28bd726a 3312 gfn_t gfn)
6aa8b732 3313{
2efd61a6
DW
3314 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3315
e09fccb5 3316#ifdef CONFIG_HAVE_KVM_DIRTY_RING
86bdf3eb 3317 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
2efd61a6 3318 return;
86bdf3eb 3319
c57351a7 3320 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
e09fccb5 3321#endif
2efd61a6 3322
044c59c4 3323 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3324 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3325 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3326
86bdf3eb 3327 if (kvm->dirty_ring_size && vcpu)
cf87ac73 3328 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
c57351a7 3329 else if (memslot->dirty_bitmap)
fb04a1ed 3330 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3331 }
3332}
a6a0b05d 3333EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3334
49c7754c
GN
3335void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3336{
3337 struct kvm_memory_slot *memslot;
3338
3339 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3340 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3341}
2ba9f0d8 3342EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3343
8e73485c
PB
3344void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3345{
3346 struct kvm_memory_slot *memslot;
3347
3348 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3349 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3350}
3351EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3352
20b7035c
JS
3353void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3354{
3355 if (!vcpu->sigset_active)
3356 return;
3357
3358 /*
3359 * This does a lockless modification of ->real_blocked, which is fine
3360 * because, only current can change ->real_blocked and all readers of
3361 * ->real_blocked don't care as long ->real_blocked is always a subset
3362 * of ->blocked.
3363 */
3364 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3365}
3366
3367void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3368{
3369 if (!vcpu->sigset_active)
3370 return;
3371
3372 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3373 sigemptyset(&current->real_blocked);
3374}
3375
aca6ff29
WL
3376static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3377{
dee339b5 3378 unsigned int old, val, grow, grow_start;
aca6ff29 3379
2cbd7824 3380 old = val = vcpu->halt_poll_ns;
dee339b5 3381 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3382 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3383 if (!grow)
3384 goto out;
3385
dee339b5
NW
3386 val *= grow;
3387 if (val < grow_start)
3388 val = grow_start;
aca6ff29
WL
3389
3390 vcpu->halt_poll_ns = val;
7fa08e71 3391out:
2cbd7824 3392 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3393}
3394
3395static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3396{
ae232ea4 3397 unsigned int old, val, shrink, grow_start;
aca6ff29 3398
2cbd7824 3399 old = val = vcpu->halt_poll_ns;
6b6de68c 3400 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3401 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3402 if (shrink == 0)
aca6ff29
WL
3403 val = 0;
3404 else
6b6de68c 3405 val /= shrink;
aca6ff29 3406
ae232ea4
SS
3407 if (val < grow_start)
3408 val = 0;
3409
aca6ff29 3410 vcpu->halt_poll_ns = val;
2cbd7824 3411 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3412}
3413
f7819512
PB
3414static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3415{
50c28f21
JS
3416 int ret = -EINTR;
3417 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3418
c59fb127 3419 if (kvm_arch_vcpu_runnable(vcpu))
50c28f21 3420 goto out;
f7819512 3421 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3422 goto out;
f7819512 3423 if (signal_pending(current))
50c28f21 3424 goto out;
084071d5
MT
3425 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3426 goto out;
f7819512 3427
50c28f21
JS
3428 ret = 0;
3429out:
3430 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3431 return ret;
f7819512
PB
3432}
3433
fac42688
SC
3434/*
3435 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3436 * pending. This is mostly used when halting a vCPU, but may also be used
3437 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3438 */
3439bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
cb953129 3440{
fac42688
SC
3441 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3442 bool waited = false;
3443
c3858335
JZ
3444 vcpu->stat.generic.blocking = 1;
3445
18869f26 3446 preempt_disable();
fac42688 3447 kvm_arch_vcpu_blocking(vcpu);
fac42688 3448 prepare_to_rcuwait(wait);
18869f26
ML
3449 preempt_enable();
3450
fac42688
SC
3451 for (;;) {
3452 set_current_state(TASK_INTERRUPTIBLE);
3453
3454 if (kvm_vcpu_check_block(vcpu) < 0)
3455 break;
3456
3457 waited = true;
3458 schedule();
3459 }
fac42688 3460
18869f26
ML
3461 preempt_disable();
3462 finish_rcuwait(wait);
fac42688 3463 kvm_arch_vcpu_unblocking(vcpu);
18869f26 3464 preempt_enable();
fac42688 3465
c3858335
JZ
3466 vcpu->stat.generic.blocking = 0;
3467
fac42688
SC
3468 return waited;
3469}
3470
29e72893
SC
3471static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3472 ktime_t end, bool success)
cb953129 3473{
30c94347 3474 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
29e72893
SC
3475 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3476
30c94347
SC
3477 ++vcpu->stat.generic.halt_attempted_poll;
3478
3479 if (success) {
3480 ++vcpu->stat.generic.halt_successful_poll;
3481
3482 if (!vcpu_valid_wakeup(vcpu))
3483 ++vcpu->stat.generic.halt_poll_invalid;
3484
3485 stats->halt_poll_success_ns += poll_ns;
3486 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3487 } else {
3488 stats->halt_poll_fail_ns += poll_ns;
3489 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3490 }
cb953129
DM
3491}
3492
175d5dc7
DM
3493static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3494{
9eb8ca04
DM
3495 struct kvm *kvm = vcpu->kvm;
3496
3497 if (kvm->override_halt_poll_ns) {
3498 /*
3499 * Ensure kvm->max_halt_poll_ns is not read before
3500 * kvm->override_halt_poll_ns.
3501 *
3502 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3503 */
3504 smp_rmb();
3505 return READ_ONCE(kvm->max_halt_poll_ns);
3506 }
3507
3508 return READ_ONCE(halt_poll_ns);
175d5dc7
DM
3509}
3510
b6958ce4 3511/*
fac42688
SC
3512 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3513 * polling is enabled, busy wait for a short time before blocking to avoid the
3514 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3515 * is halted.
b6958ce4 3516 */
91b99ea7 3517void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
d3bef15f 3518{
175d5dc7 3519 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
6f390916 3520 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
cb953129 3521 ktime_t start, cur, poll_end;
f7819512 3522 bool waited = false;
97b6847a 3523 bool do_halt_poll;
91b99ea7 3524 u64 halt_ns;
07ab0f8d 3525
175d5dc7
DM
3526 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3527 vcpu->halt_poll_ns = max_halt_poll_ns;
97b6847a
DM
3528
3529 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3530
cb953129 3531 start = cur = poll_end = ktime_get();
8df6a61c 3532 if (do_halt_poll) {
109a9826 3533 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
f95ef0cd 3534
f7819512 3535 do {
30c94347 3536 if (kvm_vcpu_check_block(vcpu) < 0)
f7819512 3537 goto out;
74775654 3538 cpu_relax();
cb953129 3539 poll_end = cur = ktime_get();
6bd5b743 3540 } while (kvm_vcpu_can_poll(cur, stop));
f7819512 3541 }
e5c239cf 3542
fac42688 3543 waited = kvm_vcpu_block(vcpu);
8ccba534 3544
f7819512 3545 cur = ktime_get();
87bcc5fa
JZ
3546 if (waited) {
3547 vcpu->stat.generic.halt_wait_ns +=
3548 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3549 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3550 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3551 }
f7819512 3552out:
91b99ea7
SC
3553 /* The total time the vCPU was "halted", including polling time. */
3554 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
aca6ff29 3555
29e72893
SC
3556 /*
3557 * Note, halt-polling is considered successful so long as the vCPU was
3558 * never actually scheduled out, i.e. even if the wake event arrived
3559 * after of the halt-polling loop itself, but before the full wait.
3560 */
8df6a61c 3561 if (do_halt_poll)
29e72893 3562 update_halt_poll_stats(vcpu, start, poll_end, !waited);
cb953129 3563
6f390916 3564 if (halt_poll_allowed) {
175d5dc7
DM
3565 /* Recompute the max halt poll time in case it changed. */
3566 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3567
44551b2f 3568 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3569 shrink_halt_poll_ns(vcpu);
175d5dc7 3570 } else if (max_halt_poll_ns) {
91b99ea7 3571 if (halt_ns <= vcpu->halt_poll_ns)
44551b2f
WL
3572 ;
3573 /* we had a long block, shrink polling */
acd05785 3574 else if (vcpu->halt_poll_ns &&
175d5dc7 3575 halt_ns > max_halt_poll_ns)
44551b2f
WL
3576 shrink_halt_poll_ns(vcpu);
3577 /* we had a short halt and our poll time is too small */
175d5dc7
DM
3578 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3579 halt_ns < max_halt_poll_ns)
44551b2f
WL
3580 grow_halt_poll_ns(vcpu);
3581 } else {
3582 vcpu->halt_poll_ns = 0;
3583 }
3584 }
aca6ff29 3585
91b99ea7 3586 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
b6958ce4 3587}
91b99ea7 3588EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
b6958ce4 3589
178f02ff 3590bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3591{
d92a5d1c 3592 if (__kvm_vcpu_wake_up(vcpu)) {
d73eb57b 3593 WRITE_ONCE(vcpu->ready, true);
0193cc90 3594 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3595 return true;
b6d33834
CD
3596 }
3597
178f02ff 3598 return false;
dd1a4cc1
RK
3599}
3600EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3601
0266c894 3602#ifndef CONFIG_S390
dd1a4cc1
RK
3603/*
3604 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3605 */
3606void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3607{
85b64045 3608 int me, cpu;
dd1a4cc1 3609
178f02ff
RK
3610 if (kvm_vcpu_wake_up(vcpu))
3611 return;
3612
aefdc2ed
PB
3613 me = get_cpu();
3614 /*
3615 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3616 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3617 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3618 * within the vCPU thread itself.
3619 */
3620 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3621 if (vcpu->mode == IN_GUEST_MODE)
3622 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3623 goto out;
3624 }
3625
85b64045
SC
3626 /*
3627 * Note, the vCPU could get migrated to a different pCPU at any point
3628 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3629 * IPI to the previous pCPU. But, that's ok because the purpose of the
3630 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3631 * vCPU also requires it to leave IN_GUEST_MODE.
3632 */
85b64045
SC
3633 if (kvm_arch_vcpu_should_kick(vcpu)) {
3634 cpu = READ_ONCE(vcpu->cpu);
3635 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3636 smp_send_reschedule(cpu);
85b64045 3637 }
aefdc2ed 3638out:
b6d33834
CD
3639 put_cpu();
3640}
a20ed54d 3641EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3642#endif /* !CONFIG_S390 */
b6d33834 3643
fa93384f 3644int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3645{
3646 struct pid *pid;
3647 struct task_struct *task = NULL;
fa93384f 3648 int ret = 0;
41628d33
KW
3649
3650 rcu_read_lock();
3651 pid = rcu_dereference(target->pid);
3652 if (pid)
27fbe64b 3653 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3654 rcu_read_unlock();
3655 if (!task)
c45c528e 3656 return ret;
c45c528e 3657 ret = yield_to(task, 1);
41628d33 3658 put_task_struct(task);
c45c528e
R
3659
3660 return ret;
41628d33
KW
3661}
3662EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3663
06e48c51
R
3664/*
3665 * Helper that checks whether a VCPU is eligible for directed yield.
3666 * Most eligible candidate to yield is decided by following heuristics:
3667 *
3668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3669 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3670 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3671 *
3672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3673 * chance last time (mostly it has become eligible now since we have probably
3674 * yielded to lockholder in last iteration. This is done by toggling
3675 * @dy_eligible each time a VCPU checked for eligibility.)
3676 *
3677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3678 * to preempted lock-holder could result in wrong VCPU selection and CPU
3679 * burning. Giving priority for a potential lock-holder increases lock
3680 * progress.
3681 *
3682 * Since algorithm is based on heuristics, accessing another VCPU data without
3683 * locking does not harm. It may result in trying to yield to same VCPU, fail
3684 * and continue with next VCPU and so on.
3685 */
7940876e 3686static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3687{
4a55dd72 3688#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3689 bool eligible;
3690
3691 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3692 vcpu->spin_loop.dy_eligible;
06e48c51
R
3693
3694 if (vcpu->spin_loop.in_spin_loop)
3695 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3696
3697 return eligible;
4a55dd72
SW
3698#else
3699 return true;
06e48c51 3700#endif
4a55dd72 3701}
c45c528e 3702
17e433b5
WL
3703/*
3704 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3705 * a vcpu_load/vcpu_put pair. However, for most architectures
3706 * kvm_arch_vcpu_runnable does not require vcpu_load.
3707 */
3708bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3709{
3710 return kvm_arch_vcpu_runnable(vcpu);
3711}
3712
3713static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3714{
3715 if (kvm_arch_dy_runnable(vcpu))
3716 return true;
3717
3718#ifdef CONFIG_KVM_ASYNC_PF
3719 if (!list_empty_careful(&vcpu->async_pf.done))
3720 return true;
3721#endif
3722
3723 return false;
3724}
3725
52acd22f
WL
3726bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3727{
3728 return false;
3729}
3730
199b5763 3731void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3732{
217ece61
RR
3733 struct kvm *kvm = me->kvm;
3734 struct kvm_vcpu *vcpu;
3735 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
46808a4c 3736 unsigned long i;
217ece61 3737 int yielded = 0;
c45c528e 3738 int try = 3;
217ece61 3739 int pass;
d255f4f2 3740
4c088493 3741 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3742 /*
3743 * We boost the priority of a VCPU that is runnable but not
3744 * currently running, because it got preempted by something
3745 * else and called schedule in __vcpu_run. Hopefully that
3746 * VCPU is holding the lock that we need and will release it.
3747 * We approximate round-robin by starting at the last boosted VCPU.
3748 */
c45c528e 3749 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3750 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3751 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3752 i = last_boosted_vcpu;
3753 continue;
3754 } else if (pass && i > last_boosted_vcpu)
3755 break;
d73eb57b 3756 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3757 continue;
217ece61
RR
3758 if (vcpu == me)
3759 continue;
d92a5d1c 3760 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
217ece61 3761 continue;
046ddeed 3762 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3763 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3764 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3765 continue;
06e48c51
R
3766 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3767 continue;
c45c528e
R
3768
3769 yielded = kvm_vcpu_yield_to(vcpu);
3770 if (yielded > 0) {
217ece61 3771 kvm->last_boosted_vcpu = i;
217ece61 3772 break;
c45c528e
R
3773 } else if (yielded < 0) {
3774 try--;
3775 if (!try)
3776 break;
217ece61 3777 }
217ece61
RR
3778 }
3779 }
4c088493 3780 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3781
3782 /* Ensure vcpu is not eligible during next spinloop */
3783 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3784}
3785EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3786
fb04a1ed
PX
3787static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3788{
dc70ec21 3789#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
3790 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3791 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3792 kvm->dirty_ring_size / PAGE_SIZE);
3793#else
3794 return false;
3795#endif
3796}
3797
1499fa80 3798static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3799{
11bac800 3800 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3801 struct page *page;
3802
e4a533a4 3803 if (vmf->pgoff == 0)
039576c0 3804 page = virt_to_page(vcpu->run);
09566765 3805#ifdef CONFIG_X86
e4a533a4 3806 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3807 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3808#endif
4b4357e0 3809#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3810 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3811 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3812#endif
fb04a1ed
PX
3813 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3814 page = kvm_dirty_ring_get_page(
3815 &vcpu->dirty_ring,
3816 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3817 else
5b1c1493 3818 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3819 get_page(page);
e4a533a4 3820 vmf->page = page;
3821 return 0;
9a2bb7f4
AK
3822}
3823
f0f37e2f 3824static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3825 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3826};
3827
3828static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3829{
fb04a1ed 3830 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3831 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3832
3833 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3834 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3835 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3836 return -EINVAL;
3837
9a2bb7f4
AK
3838 vma->vm_ops = &kvm_vcpu_vm_ops;
3839 return 0;
3840}
3841
bccf2150
AK
3842static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3843{
3844 struct kvm_vcpu *vcpu = filp->private_data;
3845
66c0b394 3846 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3847 return 0;
3848}
3849
70375c2d 3850static const struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3851 .release = kvm_vcpu_release,
3852 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3853 .mmap = kvm_vcpu_mmap,
6038f373 3854 .llseek = noop_llseek,
7ddfd3e0 3855 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3856};
3857
3858/*
3859 * Allocates an inode for the vcpu.
3860 */
3861static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3862{
e46b4692
MY
3863 char name[8 + 1 + ITOA_MAX_LEN + 1];
3864
3865 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3866 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3867}
3868
e36de87d
VP
3869#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3870static int vcpu_get_pid(void *data, u64 *val)
3871{
14aa40a1 3872 struct kvm_vcpu *vcpu = data;
e36de87d
VP
3873 *val = pid_nr(rcu_access_pointer(vcpu->pid));
3874 return 0;
3875}
3876
3877DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3878
3e7093d0 3879static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3880{
d56f5136 3881 struct dentry *debugfs_dentry;
45b5939e 3882 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3883
45b5939e 3884 if (!debugfs_initialized())
3e7093d0 3885 return;
45b5939e
LC
3886
3887 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3888 debugfs_dentry = debugfs_create_dir(dir_name,
3889 vcpu->kvm->debugfs_dentry);
e36de87d
VP
3890 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3891 &vcpu_get_pid_fops);
45b5939e 3892
d56f5136 3893 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
45b5939e 3894}
e36de87d 3895#endif
45b5939e 3896
c5ea7660
AK
3897/*
3898 * Creates some virtual cpus. Good luck creating more than one.
3899 */
73880c80 3900static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3901{
3902 int r;
e09fefde 3903 struct kvm_vcpu *vcpu;
8bd826d6 3904 struct page *page;
c5ea7660 3905
a1c42dde 3906 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
3907 return -EINVAL;
3908
6c7caebc 3909 mutex_lock(&kvm->lock);
f502cc56 3910 if (kvm->created_vcpus >= kvm->max_vcpus) {
6c7caebc
PB
3911 mutex_unlock(&kvm->lock);
3912 return -EINVAL;
3913 }
3914
1d5e740d
ZG
3915 r = kvm_arch_vcpu_precreate(kvm, id);
3916 if (r) {
3917 mutex_unlock(&kvm->lock);
3918 return r;
3919 }
3920
6c7caebc
PB
3921 kvm->created_vcpus++;
3922 mutex_unlock(&kvm->lock);
3923
85f47930 3924 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3925 if (!vcpu) {
3926 r = -ENOMEM;
6c7caebc
PB
3927 goto vcpu_decrement;
3928 }
c5ea7660 3929
fcd97ad5 3930 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3931 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3932 if (!page) {
3933 r = -ENOMEM;
e529ef66 3934 goto vcpu_free;
8bd826d6
SC
3935 }
3936 vcpu->run = page_address(page);
3937
3938 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3939
3940 r = kvm_arch_vcpu_create(vcpu);
3941 if (r)
8bd826d6 3942 goto vcpu_free_run_page;
e529ef66 3943
fb04a1ed
PX
3944 if (kvm->dirty_ring_size) {
3945 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3946 id, kvm->dirty_ring_size);
3947 if (r)
3948 goto arch_vcpu_destroy;
3949 }
3950
11ec2804 3951 mutex_lock(&kvm->lock);
42a90008
DW
3952
3953#ifdef CONFIG_LOCKDEP
3954 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3955 mutex_lock(&vcpu->mutex);
3956 mutex_unlock(&vcpu->mutex);
3957#endif
3958
e09fefde
DH
3959 if (kvm_get_vcpu_by_id(kvm, id)) {
3960 r = -EEXIST;
3961 goto unlock_vcpu_destroy;
3962 }
73880c80 3963
8750e72a 3964 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
c5b07754
MZ
3965 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3966 BUG_ON(r == -EBUSY);
3967 if (r)
3968 goto unlock_vcpu_destroy;
c5ea7660 3969
fb3f0f51 3970 /* Now it's all set up, let userspace reach it */
66c0b394 3971 kvm_get_kvm(kvm);
bccf2150 3972 r = create_vcpu_fd(vcpu);
73880c80 3973 if (r < 0) {
c5b07754 3974 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
149487bd 3975 kvm_put_kvm_no_destroy(kvm);
d780592b 3976 goto unlock_vcpu_destroy;
73880c80
GN
3977 }
3978
dd489240 3979 /*
c5b07754
MZ
3980 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3981 * pointer before kvm->online_vcpu's incremented value.
dd489240 3982 */
73880c80
GN
3983 smp_wmb();
3984 atomic_inc(&kvm->online_vcpus);
3985
73880c80 3986 mutex_unlock(&kvm->lock);
42897d86 3987 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3988 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3989 return r;
39c3b86e 3990
d780592b 3991unlock_vcpu_destroy:
7d8fece6 3992 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3993 kvm_dirty_ring_free(&vcpu->dirty_ring);
3994arch_vcpu_destroy:
d40ccc62 3995 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3996vcpu_free_run_page:
3997 free_page((unsigned long)vcpu->run);
e529ef66
SC
3998vcpu_free:
3999 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
4000vcpu_decrement:
4001 mutex_lock(&kvm->lock);
4002 kvm->created_vcpus--;
4003 mutex_unlock(&kvm->lock);
c5ea7660
AK
4004 return r;
4005}
4006
1961d276
AK
4007static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4008{
4009 if (sigset) {
4010 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4011 vcpu->sigset_active = 1;
4012 vcpu->sigset = *sigset;
4013 } else
4014 vcpu->sigset_active = 0;
4015 return 0;
4016}
4017
ce55c049
JZ
4018static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4019 size_t size, loff_t *offset)
4020{
4021 struct kvm_vcpu *vcpu = file->private_data;
4022
4023 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4024 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4025 sizeof(vcpu->stat), user_buffer, size, offset);
4026}
4027
4028static const struct file_operations kvm_vcpu_stats_fops = {
4029 .read = kvm_vcpu_stats_read,
4030 .llseek = noop_llseek,
4031};
4032
4033static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4034{
4035 int fd;
4036 struct file *file;
4037 char name[15 + ITOA_MAX_LEN + 1];
4038
4039 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4040
4041 fd = get_unused_fd_flags(O_CLOEXEC);
4042 if (fd < 0)
4043 return fd;
4044
4045 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4046 if (IS_ERR(file)) {
4047 put_unused_fd(fd);
4048 return PTR_ERR(file);
4049 }
4050 file->f_mode |= FMODE_PREAD;
4051 fd_install(fd, file);
4052
4053 return fd;
4054}
4055
bccf2150
AK
4056static long kvm_vcpu_ioctl(struct file *filp,
4057 unsigned int ioctl, unsigned long arg)
6aa8b732 4058{
bccf2150 4059 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 4060 void __user *argp = (void __user *)arg;
313a3dc7 4061 int r;
fa3795a7
DH
4062 struct kvm_fpu *fpu = NULL;
4063 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 4064
f4d31653 4065 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
6d4e4c4f 4066 return -EIO;
2122ff5e 4067
2ea75be3
DM
4068 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4069 return -EINVAL;
4070
2122ff5e 4071 /*
5cb0944c
PB
4072 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4073 * execution; mutex_lock() would break them.
2122ff5e 4074 */
5cb0944c
PB
4075 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4076 if (r != -ENOIOCTLCMD)
9fc77441 4077 return r;
2122ff5e 4078
ec7660cc
CD
4079 if (mutex_lock_killable(&vcpu->mutex))
4080 return -EINTR;
6aa8b732 4081 switch (ioctl) {
0e4524a5
CB
4082 case KVM_RUN: {
4083 struct pid *oldpid;
f0fe5108
AK
4084 r = -EINVAL;
4085 if (arg)
4086 goto out;
0e4524a5 4087 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 4088 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 4089 /* The thread running this VCPU changed. */
bd2a6394 4090 struct pid *newpid;
f95ef0cd 4091
bd2a6394
CD
4092 r = kvm_arch_vcpu_run_pid_change(vcpu);
4093 if (r)
4094 break;
4095
4096 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
4097 rcu_assign_pointer(vcpu->pid, newpid);
4098 if (oldpid)
4099 synchronize_rcu();
4100 put_pid(oldpid);
4101 }
1b94f6f8 4102 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 4103 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 4104 break;
0e4524a5 4105 }
6aa8b732 4106 case KVM_GET_REGS: {
3e4bb3ac 4107 struct kvm_regs *kvm_regs;
6aa8b732 4108
3e4bb3ac 4109 r = -ENOMEM;
b12ce36a 4110 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 4111 if (!kvm_regs)
6aa8b732 4112 goto out;
3e4bb3ac
XZ
4113 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4114 if (r)
4115 goto out_free1;
6aa8b732 4116 r = -EFAULT;
3e4bb3ac
XZ
4117 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4118 goto out_free1;
6aa8b732 4119 r = 0;
3e4bb3ac
XZ
4120out_free1:
4121 kfree(kvm_regs);
6aa8b732
AK
4122 break;
4123 }
4124 case KVM_SET_REGS: {
3e4bb3ac 4125 struct kvm_regs *kvm_regs;
6aa8b732 4126
ff5c2c03
SL
4127 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4128 if (IS_ERR(kvm_regs)) {
4129 r = PTR_ERR(kvm_regs);
6aa8b732 4130 goto out;
ff5c2c03 4131 }
3e4bb3ac 4132 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 4133 kfree(kvm_regs);
6aa8b732
AK
4134 break;
4135 }
4136 case KVM_GET_SREGS: {
b12ce36a
BG
4137 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4138 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4139 r = -ENOMEM;
4140 if (!kvm_sregs)
4141 goto out;
4142 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4143 if (r)
4144 goto out;
4145 r = -EFAULT;
fa3795a7 4146 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
4147 goto out;
4148 r = 0;
4149 break;
4150 }
4151 case KVM_SET_SREGS: {
ff5c2c03
SL
4152 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4153 if (IS_ERR(kvm_sregs)) {
4154 r = PTR_ERR(kvm_sregs);
18595411 4155 kvm_sregs = NULL;
6aa8b732 4156 goto out;
ff5c2c03 4157 }
fa3795a7 4158 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4159 break;
4160 }
62d9f0db
MT
4161 case KVM_GET_MP_STATE: {
4162 struct kvm_mp_state mp_state;
4163
4164 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4165 if (r)
4166 goto out;
4167 r = -EFAULT;
893bdbf1 4168 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
4169 goto out;
4170 r = 0;
4171 break;
4172 }
4173 case KVM_SET_MP_STATE: {
4174 struct kvm_mp_state mp_state;
4175
4176 r = -EFAULT;
893bdbf1 4177 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
4178 goto out;
4179 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
4180 break;
4181 }
6aa8b732
AK
4182 case KVM_TRANSLATE: {
4183 struct kvm_translation tr;
4184
4185 r = -EFAULT;
893bdbf1 4186 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 4187 goto out;
8b006791 4188 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
4189 if (r)
4190 goto out;
4191 r = -EFAULT;
893bdbf1 4192 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
4193 goto out;
4194 r = 0;
4195 break;
4196 }
d0bfb940
JK
4197 case KVM_SET_GUEST_DEBUG: {
4198 struct kvm_guest_debug dbg;
6aa8b732
AK
4199
4200 r = -EFAULT;
893bdbf1 4201 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 4202 goto out;
d0bfb940 4203 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
4204 break;
4205 }
1961d276
AK
4206 case KVM_SET_SIGNAL_MASK: {
4207 struct kvm_signal_mask __user *sigmask_arg = argp;
4208 struct kvm_signal_mask kvm_sigmask;
4209 sigset_t sigset, *p;
4210
4211 p = NULL;
4212 if (argp) {
4213 r = -EFAULT;
4214 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4215 sizeof(kvm_sigmask)))
1961d276
AK
4216 goto out;
4217 r = -EINVAL;
893bdbf1 4218 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
4219 goto out;
4220 r = -EFAULT;
4221 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 4222 sizeof(sigset)))
1961d276
AK
4223 goto out;
4224 p = &sigset;
4225 }
376d41ff 4226 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
4227 break;
4228 }
b8836737 4229 case KVM_GET_FPU: {
b12ce36a 4230 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4231 r = -ENOMEM;
4232 if (!fpu)
4233 goto out;
4234 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
4235 if (r)
4236 goto out;
4237 r = -EFAULT;
fa3795a7 4238 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
4239 goto out;
4240 r = 0;
4241 break;
4242 }
4243 case KVM_SET_FPU: {
ff5c2c03
SL
4244 fpu = memdup_user(argp, sizeof(*fpu));
4245 if (IS_ERR(fpu)) {
4246 r = PTR_ERR(fpu);
18595411 4247 fpu = NULL;
b8836737 4248 goto out;
ff5c2c03 4249 }
fa3795a7 4250 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
4251 break;
4252 }
ce55c049
JZ
4253 case KVM_GET_STATS_FD: {
4254 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4255 break;
4256 }
bccf2150 4257 default:
313a3dc7 4258 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
4259 }
4260out:
ec7660cc 4261 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
4262 kfree(fpu);
4263 kfree(kvm_sregs);
bccf2150
AK
4264 return r;
4265}
4266
de8e5d74 4267#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
4268static long kvm_vcpu_compat_ioctl(struct file *filp,
4269 unsigned int ioctl, unsigned long arg)
4270{
4271 struct kvm_vcpu *vcpu = filp->private_data;
4272 void __user *argp = compat_ptr(arg);
4273 int r;
4274
f4d31653 4275 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
1dda606c
AG
4276 return -EIO;
4277
4278 switch (ioctl) {
4279 case KVM_SET_SIGNAL_MASK: {
4280 struct kvm_signal_mask __user *sigmask_arg = argp;
4281 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
4282 sigset_t sigset;
4283
4284 if (argp) {
4285 r = -EFAULT;
4286 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4287 sizeof(kvm_sigmask)))
1dda606c
AG
4288 goto out;
4289 r = -EINVAL;
3968cf62 4290 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
4291 goto out;
4292 r = -EFAULT;
1393b4aa
PB
4293 if (get_compat_sigset(&sigset,
4294 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 4295 goto out;
760a9a30
AC
4296 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4297 } else
4298 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
4299 break;
4300 }
4301 default:
4302 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4303 }
4304
4305out:
4306 return r;
4307}
4308#endif
4309
a1cd3f08
CLG
4310static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4311{
4312 struct kvm_device *dev = filp->private_data;
4313
4314 if (dev->ops->mmap)
4315 return dev->ops->mmap(dev, vma);
4316
4317 return -ENODEV;
4318}
4319
852b6d57
SW
4320static int kvm_device_ioctl_attr(struct kvm_device *dev,
4321 int (*accessor)(struct kvm_device *dev,
4322 struct kvm_device_attr *attr),
4323 unsigned long arg)
4324{
4325 struct kvm_device_attr attr;
4326
4327 if (!accessor)
4328 return -EPERM;
4329
4330 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4331 return -EFAULT;
4332
4333 return accessor(dev, &attr);
4334}
4335
4336static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4337 unsigned long arg)
4338{
4339 struct kvm_device *dev = filp->private_data;
4340
f4d31653 4341 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
ddba9180
SC
4342 return -EIO;
4343
852b6d57
SW
4344 switch (ioctl) {
4345 case KVM_SET_DEVICE_ATTR:
4346 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4347 case KVM_GET_DEVICE_ATTR:
4348 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4349 case KVM_HAS_DEVICE_ATTR:
4350 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4351 default:
4352 if (dev->ops->ioctl)
4353 return dev->ops->ioctl(dev, ioctl, arg);
4354
4355 return -ENOTTY;
4356 }
4357}
4358
852b6d57
SW
4359static int kvm_device_release(struct inode *inode, struct file *filp)
4360{
4361 struct kvm_device *dev = filp->private_data;
4362 struct kvm *kvm = dev->kvm;
4363
2bde9b3e
CLG
4364 if (dev->ops->release) {
4365 mutex_lock(&kvm->lock);
4366 list_del(&dev->vm_node);
4367 dev->ops->release(dev);
4368 mutex_unlock(&kvm->lock);
4369 }
4370
852b6d57
SW
4371 kvm_put_kvm(kvm);
4372 return 0;
4373}
4374
4375static const struct file_operations kvm_device_fops = {
4376 .unlocked_ioctl = kvm_device_ioctl,
4377 .release = kvm_device_release,
7ddfd3e0 4378 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4379 .mmap = kvm_device_mmap,
852b6d57
SW
4380};
4381
4382struct kvm_device *kvm_device_from_filp(struct file *filp)
4383{
4384 if (filp->f_op != &kvm_device_fops)
4385 return NULL;
4386
4387 return filp->private_data;
4388}
4389
8538cb22 4390static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4391#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4392 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4393 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4394#endif
d60eacb0
WD
4395};
4396
8538cb22 4397int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4398{
4399 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4400 return -ENOSPC;
4401
4402 if (kvm_device_ops_table[type] != NULL)
4403 return -EEXIST;
4404
4405 kvm_device_ops_table[type] = ops;
4406 return 0;
4407}
4408
571ee1b6
WL
4409void kvm_unregister_device_ops(u32 type)
4410{
4411 if (kvm_device_ops_table[type] != NULL)
4412 kvm_device_ops_table[type] = NULL;
4413}
4414
852b6d57
SW
4415static int kvm_ioctl_create_device(struct kvm *kvm,
4416 struct kvm_create_device *cd)
4417{
eceb6e1d 4418 const struct kvm_device_ops *ops;
852b6d57
SW
4419 struct kvm_device *dev;
4420 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4421 int type;
852b6d57
SW
4422 int ret;
4423
d60eacb0
WD
4424 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4425 return -ENODEV;
4426
1d487e9b
PB
4427 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4428 ops = kvm_device_ops_table[type];
d60eacb0 4429 if (ops == NULL)
852b6d57 4430 return -ENODEV;
852b6d57
SW
4431
4432 if (test)
4433 return 0;
4434
b12ce36a 4435 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4436 if (!dev)
4437 return -ENOMEM;
4438
4439 dev->ops = ops;
4440 dev->kvm = kvm;
852b6d57 4441
a28ebea2 4442 mutex_lock(&kvm->lock);
1d487e9b 4443 ret = ops->create(dev, type);
852b6d57 4444 if (ret < 0) {
a28ebea2 4445 mutex_unlock(&kvm->lock);
852b6d57
SW
4446 kfree(dev);
4447 return ret;
4448 }
a28ebea2
CD
4449 list_add(&dev->vm_node, &kvm->devices);
4450 mutex_unlock(&kvm->lock);
852b6d57 4451
023e9fdd
CD
4452 if (ops->init)
4453 ops->init(dev);
4454
cfa39381 4455 kvm_get_kvm(kvm);
24009b05 4456 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4457 if (ret < 0) {
149487bd 4458 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4459 mutex_lock(&kvm->lock);
4460 list_del(&dev->vm_node);
e8bc2427
AK
4461 if (ops->release)
4462 ops->release(dev);
a28ebea2 4463 mutex_unlock(&kvm->lock);
e8bc2427
AK
4464 if (ops->destroy)
4465 ops->destroy(dev);
852b6d57
SW
4466 return ret;
4467 }
4468
852b6d57
SW
4469 cd->fd = ret;
4470 return 0;
4471}
4472
f15ba52b 4473static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
92b591a4
AG
4474{
4475 switch (arg) {
4476 case KVM_CAP_USER_MEMORY:
4477 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4478 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4479 case KVM_CAP_INTERNAL_ERROR_DATA:
4480#ifdef CONFIG_HAVE_KVM_MSI
4481 case KVM_CAP_SIGNAL_MSI:
4482#endif
297e2105 4483#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4484 case KVM_CAP_IRQFD:
92b591a4 4485#endif
e9ea5069 4486 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4487 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4488 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4489 case KVM_CAP_HALT_POLL:
92b591a4 4490 return 1;
4b4357e0 4491#ifdef CONFIG_KVM_MMIO
30422558
PB
4492 case KVM_CAP_COALESCED_MMIO:
4493 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4494 case KVM_CAP_COALESCED_PIO:
4495 return 1;
30422558 4496#endif
3c9bd400
JZ
4497#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4498 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4499 return KVM_DIRTY_LOG_MANUAL_CAPS;
4500#endif
92b591a4
AG
4501#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4502 case KVM_CAP_IRQ_ROUTING:
4503 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4504#endif
4505#if KVM_ADDRESS_SPACE_NUM > 1
4506 case KVM_CAP_MULTI_ADDRESS_SPACE:
4507 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4508#endif
c110ae57
PB
4509 case KVM_CAP_NR_MEMSLOTS:
4510 return KVM_USER_MEM_SLOTS;
fb04a1ed 4511 case KVM_CAP_DIRTY_LOG_RING:
17601bfe
MZ
4512#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4513 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4514#else
4515 return 0;
4516#endif
4517 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4518#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
fb04a1ed
PX
4519 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520#else
4521 return 0;
86bdf3eb
GS
4522#endif
4523#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4524 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
fb04a1ed 4525#endif
ce55c049 4526 case KVM_CAP_BINARY_STATS_FD:
d495f942 4527 case KVM_CAP_SYSTEM_EVENT_DATA:
ce55c049 4528 return 1;
92b591a4
AG
4529 default:
4530 break;
4531 }
4532 return kvm_vm_ioctl_check_extension(kvm, arg);
4533}
4534
fb04a1ed
PX
4535static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4536{
4537 int r;
4538
4539 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4540 return -EINVAL;
4541
4542 /* the size should be power of 2 */
4543 if (!size || (size & (size - 1)))
4544 return -EINVAL;
4545
4546 /* Should be bigger to keep the reserved entries, or a page */
4547 if (size < kvm_dirty_ring_get_rsvd_entries() *
4548 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4549 return -EINVAL;
4550
4551 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4552 sizeof(struct kvm_dirty_gfn))
4553 return -E2BIG;
4554
4555 /* We only allow it to set once */
4556 if (kvm->dirty_ring_size)
4557 return -EINVAL;
4558
4559 mutex_lock(&kvm->lock);
4560
4561 if (kvm->created_vcpus) {
4562 /* We don't allow to change this value after vcpu created */
4563 r = -EINVAL;
4564 } else {
4565 kvm->dirty_ring_size = size;
4566 r = 0;
4567 }
4568
4569 mutex_unlock(&kvm->lock);
4570 return r;
4571}
4572
4573static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4574{
46808a4c 4575 unsigned long i;
fb04a1ed
PX
4576 struct kvm_vcpu *vcpu;
4577 int cleared = 0;
4578
4579 if (!kvm->dirty_ring_size)
4580 return -EINVAL;
4581
4582 mutex_lock(&kvm->slots_lock);
4583
4584 kvm_for_each_vcpu(i, vcpu, kvm)
4585 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4586
4587 mutex_unlock(&kvm->slots_lock);
4588
4589 if (cleared)
4590 kvm_flush_remote_tlbs(kvm);
4591
4592 return cleared;
4593}
4594
e5d83c74
PB
4595int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4596 struct kvm_enable_cap *cap)
4597{
4598 return -EINVAL;
4599}
4600
86bdf3eb
GS
4601static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4602{
4603 int i;
4604
4605 lockdep_assert_held(&kvm->slots_lock);
4606
4607 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4608 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4609 return false;
4610 }
4611
4612 return true;
4613}
4614
e5d83c74
PB
4615static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4616 struct kvm_enable_cap *cap)
4617{
4618 switch (cap->cap) {
2a31b9db 4619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4620 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4621 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4622
4623 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4624 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4625
4626 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4627 return -EINVAL;
4628 kvm->manual_dirty_log_protect = cap->args[0];
4629 return 0;
3c9bd400 4630 }
2a31b9db 4631#endif
acd05785
DM
4632 case KVM_CAP_HALT_POLL: {
4633 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4634 return -EINVAL;
4635
4636 kvm->max_halt_poll_ns = cap->args[0];
9eb8ca04
DM
4637
4638 /*
4639 * Ensure kvm->override_halt_poll_ns does not become visible
4640 * before kvm->max_halt_poll_ns.
4641 *
4642 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4643 */
4644 smp_wmb();
4645 kvm->override_halt_poll_ns = true;
4646
acd05785
DM
4647 return 0;
4648 }
fb04a1ed 4649 case KVM_CAP_DIRTY_LOG_RING:
17601bfe 4650 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
7a2726ec
GS
4651 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4652 return -EINVAL;
4653
fb04a1ed 4654 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
86bdf3eb
GS
4655 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4656 int r = -EINVAL;
4657
4658 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4659 !kvm->dirty_ring_size || cap->flags)
4660 return r;
4661
4662 mutex_lock(&kvm->slots_lock);
4663
4664 /*
4665 * For simplicity, allow enabling ring+bitmap if and only if
4666 * there are no memslots, e.g. to ensure all memslots allocate
4667 * a bitmap after the capability is enabled.
4668 */
4669 if (kvm_are_all_memslots_empty(kvm)) {
4670 kvm->dirty_ring_with_bitmap = true;
4671 r = 0;
4672 }
4673
4674 mutex_unlock(&kvm->slots_lock);
4675
4676 return r;
4677 }
e5d83c74
PB
4678 default:
4679 return kvm_vm_ioctl_enable_cap(kvm, cap);
4680 }
4681}
4682
fcfe1bae
JZ
4683static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4684 size_t size, loff_t *offset)
4685{
4686 struct kvm *kvm = file->private_data;
4687
4688 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4689 &kvm_vm_stats_desc[0], &kvm->stat,
4690 sizeof(kvm->stat), user_buffer, size, offset);
4691}
4692
4693static const struct file_operations kvm_vm_stats_fops = {
4694 .read = kvm_vm_stats_read,
4695 .llseek = noop_llseek,
4696};
4697
4698static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4699{
4700 int fd;
4701 struct file *file;
4702
4703 fd = get_unused_fd_flags(O_CLOEXEC);
4704 if (fd < 0)
4705 return fd;
4706
4707 file = anon_inode_getfile("kvm-vm-stats",
4708 &kvm_vm_stats_fops, kvm, O_RDONLY);
4709 if (IS_ERR(file)) {
4710 put_unused_fd(fd);
4711 return PTR_ERR(file);
4712 }
4713 file->f_mode |= FMODE_PREAD;
4714 fd_install(fd, file);
4715
4716 return fd;
4717}
4718
bccf2150
AK
4719static long kvm_vm_ioctl(struct file *filp,
4720 unsigned int ioctl, unsigned long arg)
4721{
4722 struct kvm *kvm = filp->private_data;
4723 void __user *argp = (void __user *)arg;
1fe779f8 4724 int r;
bccf2150 4725
f4d31653 4726 if (kvm->mm != current->mm || kvm->vm_dead)
6d4e4c4f 4727 return -EIO;
bccf2150
AK
4728 switch (ioctl) {
4729 case KVM_CREATE_VCPU:
4730 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4731 break;
e5d83c74
PB
4732 case KVM_ENABLE_CAP: {
4733 struct kvm_enable_cap cap;
4734
4735 r = -EFAULT;
4736 if (copy_from_user(&cap, argp, sizeof(cap)))
4737 goto out;
4738 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4739 break;
4740 }
6fc138d2
IE
4741 case KVM_SET_USER_MEMORY_REGION: {
4742 struct kvm_userspace_memory_region kvm_userspace_mem;
4743
4744 r = -EFAULT;
4745 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4746 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4747 goto out;
4748
47ae31e2 4749 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4750 break;
4751 }
4752 case KVM_GET_DIRTY_LOG: {
4753 struct kvm_dirty_log log;
4754
4755 r = -EFAULT;
893bdbf1 4756 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4757 goto out;
2c6f5df9 4758 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4759 break;
4760 }
2a31b9db
PB
4761#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4762 case KVM_CLEAR_DIRTY_LOG: {
4763 struct kvm_clear_dirty_log log;
4764
4765 r = -EFAULT;
4766 if (copy_from_user(&log, argp, sizeof(log)))
4767 goto out;
4768 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4769 break;
4770 }
4771#endif
4b4357e0 4772#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4773 case KVM_REGISTER_COALESCED_MMIO: {
4774 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4775
5f94c174 4776 r = -EFAULT;
893bdbf1 4777 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4778 goto out;
5f94c174 4779 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4780 break;
4781 }
4782 case KVM_UNREGISTER_COALESCED_MMIO: {
4783 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4784
5f94c174 4785 r = -EFAULT;
893bdbf1 4786 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4787 goto out;
5f94c174 4788 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4789 break;
4790 }
4791#endif
721eecbf
GH
4792 case KVM_IRQFD: {
4793 struct kvm_irqfd data;
4794
4795 r = -EFAULT;
893bdbf1 4796 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4797 goto out;
d4db2935 4798 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4799 break;
4800 }
d34e6b17
GH
4801 case KVM_IOEVENTFD: {
4802 struct kvm_ioeventfd data;
4803
4804 r = -EFAULT;
893bdbf1 4805 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4806 goto out;
4807 r = kvm_ioeventfd(kvm, &data);
4808 break;
4809 }
07975ad3
JK
4810#ifdef CONFIG_HAVE_KVM_MSI
4811 case KVM_SIGNAL_MSI: {
4812 struct kvm_msi msi;
4813
4814 r = -EFAULT;
893bdbf1 4815 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4816 goto out;
4817 r = kvm_send_userspace_msi(kvm, &msi);
4818 break;
4819 }
23d43cf9
CD
4820#endif
4821#ifdef __KVM_HAVE_IRQ_LINE
4822 case KVM_IRQ_LINE_STATUS:
4823 case KVM_IRQ_LINE: {
4824 struct kvm_irq_level irq_event;
4825
4826 r = -EFAULT;
893bdbf1 4827 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4828 goto out;
4829
aa2fbe6d
YZ
4830 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4831 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4832 if (r)
4833 goto out;
4834
4835 r = -EFAULT;
4836 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4837 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4838 goto out;
4839 }
4840
4841 r = 0;
4842 break;
4843 }
73880c80 4844#endif
aa8d5944
AG
4845#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4846 case KVM_SET_GSI_ROUTING: {
4847 struct kvm_irq_routing routing;
4848 struct kvm_irq_routing __user *urouting;
f8c1b85b 4849 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4850
4851 r = -EFAULT;
4852 if (copy_from_user(&routing, argp, sizeof(routing)))
4853 goto out;
4854 r = -EINVAL;
5c0aea0e
DH
4855 if (!kvm_arch_can_set_irq_routing(kvm))
4856 goto out;
caf1ff26 4857 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4858 goto out;
4859 if (routing.flags)
4860 goto out;
f8c1b85b 4861 if (routing.nr) {
f8c1b85b 4862 urouting = argp;
7ec28e26
DE
4863 entries = vmemdup_user(urouting->entries,
4864 array_size(sizeof(*entries),
4865 routing.nr));
4866 if (IS_ERR(entries)) {
4867 r = PTR_ERR(entries);
4868 goto out;
4869 }
f8c1b85b 4870 }
aa8d5944
AG
4871 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4872 routing.flags);
7ec28e26 4873 kvfree(entries);
aa8d5944
AG
4874 break;
4875 }
4876#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4877 case KVM_CREATE_DEVICE: {
4878 struct kvm_create_device cd;
4879
4880 r = -EFAULT;
4881 if (copy_from_user(&cd, argp, sizeof(cd)))
4882 goto out;
4883
4884 r = kvm_ioctl_create_device(kvm, &cd);
4885 if (r)
4886 goto out;
4887
4888 r = -EFAULT;
4889 if (copy_to_user(argp, &cd, sizeof(cd)))
4890 goto out;
4891
4892 r = 0;
4893 break;
4894 }
92b591a4
AG
4895 case KVM_CHECK_EXTENSION:
4896 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4897 break;
fb04a1ed
PX
4898 case KVM_RESET_DIRTY_RINGS:
4899 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4900 break;
fcfe1bae
JZ
4901 case KVM_GET_STATS_FD:
4902 r = kvm_vm_ioctl_get_stats_fd(kvm);
4903 break;
f17abe9a 4904 default:
1fe779f8 4905 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4906 }
4907out:
4908 return r;
4909}
4910
de8e5d74 4911#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4912struct compat_kvm_dirty_log {
4913 __u32 slot;
4914 __u32 padding1;
4915 union {
4916 compat_uptr_t dirty_bitmap; /* one bit per page */
4917 __u64 padding2;
4918 };
4919};
4920
8750f9bb
PB
4921struct compat_kvm_clear_dirty_log {
4922 __u32 slot;
4923 __u32 num_pages;
4924 __u64 first_page;
4925 union {
4926 compat_uptr_t dirty_bitmap; /* one bit per page */
4927 __u64 padding2;
4928 };
4929};
4930
ed51862f
AG
4931long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4932 unsigned long arg)
4933{
4934 return -ENOTTY;
4935}
4936
6ff5894c
AB
4937static long kvm_vm_compat_ioctl(struct file *filp,
4938 unsigned int ioctl, unsigned long arg)
4939{
4940 struct kvm *kvm = filp->private_data;
4941 int r;
4942
f4d31653 4943 if (kvm->mm != current->mm || kvm->vm_dead)
6ff5894c 4944 return -EIO;
ed51862f
AG
4945
4946 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4947 if (r != -ENOTTY)
4948 return r;
4949
6ff5894c 4950 switch (ioctl) {
8750f9bb
PB
4951#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4952 case KVM_CLEAR_DIRTY_LOG: {
4953 struct compat_kvm_clear_dirty_log compat_log;
4954 struct kvm_clear_dirty_log log;
4955
4956 if (copy_from_user(&compat_log, (void __user *)arg,
4957 sizeof(compat_log)))
4958 return -EFAULT;
4959 log.slot = compat_log.slot;
4960 log.num_pages = compat_log.num_pages;
4961 log.first_page = compat_log.first_page;
4962 log.padding2 = compat_log.padding2;
4963 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4964
4965 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4966 break;
4967 }
4968#endif
6ff5894c
AB
4969 case KVM_GET_DIRTY_LOG: {
4970 struct compat_kvm_dirty_log compat_log;
4971 struct kvm_dirty_log log;
4972
6ff5894c
AB
4973 if (copy_from_user(&compat_log, (void __user *)arg,
4974 sizeof(compat_log)))
f6a3b168 4975 return -EFAULT;
6ff5894c
AB
4976 log.slot = compat_log.slot;
4977 log.padding1 = compat_log.padding1;
4978 log.padding2 = compat_log.padding2;
4979 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4980
4981 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4982 break;
4983 }
4984 default:
4985 r = kvm_vm_ioctl(filp, ioctl, arg);
4986 }
6ff5894c
AB
4987 return r;
4988}
4989#endif
4990
70375c2d 4991static const struct file_operations kvm_vm_fops = {
f17abe9a
AK
4992 .release = kvm_vm_release,
4993 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4994 .llseek = noop_llseek,
7ddfd3e0 4995 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4996};
4997
54526d1f
NT
4998bool file_is_kvm(struct file *file)
4999{
5000 return file && file->f_op == &kvm_vm_fops;
5001}
5002EXPORT_SYMBOL_GPL(file_is_kvm);
5003
e08b9637 5004static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 5005{
59f82aad 5006 char fdname[ITOA_MAX_LEN + 1];
20020f4c 5007 int r, fd;
f17abe9a 5008 struct kvm *kvm;
506cfba9 5009 struct file *file;
f17abe9a 5010
20020f4c
OU
5011 fd = get_unused_fd_flags(O_CLOEXEC);
5012 if (fd < 0)
5013 return fd;
5014
59f82aad
OU
5015 snprintf(fdname, sizeof(fdname), "%d", fd);
5016
b74ed7a6 5017 kvm = kvm_create_vm(type, fdname);
20020f4c
OU
5018 if (IS_ERR(kvm)) {
5019 r = PTR_ERR(kvm);
5020 goto put_fd;
5021 }
5022
506cfba9
AV
5023 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5024 if (IS_ERR(file)) {
78588335
ME
5025 r = PTR_ERR(file);
5026 goto put_kvm;
506cfba9 5027 }
536a6f88 5028
525df861
PB
5029 /*
5030 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5031 * already set, with ->release() being kvm_vm_release(). In error
5032 * cases it will be called by the final fput(file) and will take
5033 * care of doing kvm_put_kvm(kvm).
5034 */
286de8f6 5035 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 5036
20020f4c
OU
5037 fd_install(fd, file);
5038 return fd;
78588335
ME
5039
5040put_kvm:
5041 kvm_put_kvm(kvm);
20020f4c
OU
5042put_fd:
5043 put_unused_fd(fd);
78588335 5044 return r;
f17abe9a
AK
5045}
5046
5047static long kvm_dev_ioctl(struct file *filp,
5048 unsigned int ioctl, unsigned long arg)
5049{
f15ba52b 5050 int r = -EINVAL;
f17abe9a
AK
5051
5052 switch (ioctl) {
5053 case KVM_GET_API_VERSION:
f0fe5108
AK
5054 if (arg)
5055 goto out;
f17abe9a
AK
5056 r = KVM_API_VERSION;
5057 break;
5058 case KVM_CREATE_VM:
e08b9637 5059 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 5060 break;
018d00d2 5061 case KVM_CHECK_EXTENSION:
784aa3d7 5062 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 5063 break;
07c45a36 5064 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
5065 if (arg)
5066 goto out;
adb1ff46
AK
5067 r = PAGE_SIZE; /* struct kvm_run */
5068#ifdef CONFIG_X86
5069 r += PAGE_SIZE; /* pio data page */
5f94c174 5070#endif
4b4357e0 5071#ifdef CONFIG_KVM_MMIO
5f94c174 5072 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 5073#endif
07c45a36 5074 break;
d4c9ff2d
FEL
5075 case KVM_TRACE_ENABLE:
5076 case KVM_TRACE_PAUSE:
5077 case KVM_TRACE_DISABLE:
2023a29c 5078 r = -EOPNOTSUPP;
d4c9ff2d 5079 break;
6aa8b732 5080 default:
043405e1 5081 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
5082 }
5083out:
5084 return r;
5085}
5086
6aa8b732 5087static struct file_operations kvm_chardev_ops = {
6aa8b732 5088 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 5089 .llseek = noop_llseek,
7ddfd3e0 5090 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
5091};
5092
5093static struct miscdevice kvm_dev = {
bbe4432e 5094 KVM_MINOR,
6aa8b732
AK
5095 "kvm",
5096 &kvm_chardev_ops,
5097};
5098
441f7bfa
SC
5099#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5100__visible bool kvm_rebooting;
5101EXPORT_SYMBOL_GPL(kvm_rebooting);
5102
5103static DEFINE_PER_CPU(bool, hardware_enabled);
5104static int kvm_usage_count;
5105
e6fb7d6e 5106static int __hardware_enable_nolock(void)
1b6c0168 5107{
37d25881 5108 if (__this_cpu_read(hardware_enabled))
e6fb7d6e 5109 return 0;
10474ae8 5110
37d25881 5111 if (kvm_arch_hardware_enable()) {
37d25881
SC
5112 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5113 raw_smp_processor_id());
e6fb7d6e 5114 return -EIO;
10474ae8 5115 }
37d25881
SC
5116
5117 __this_cpu_write(hardware_enabled, true);
e6fb7d6e
IY
5118 return 0;
5119}
5120
5121static void hardware_enable_nolock(void *failed)
5122{
5123 if (__hardware_enable_nolock())
5124 atomic_inc(failed);
1b6c0168
AK
5125}
5126
aaf12a7b 5127static int kvm_online_cpu(unsigned int cpu)
75b7127c 5128{
aaf12a7b
CG
5129 int ret = 0;
5130
5131 /*
5132 * Abort the CPU online process if hardware virtualization cannot
5133 * be enabled. Otherwise running VMs would encounter unrecoverable
5134 * errors when scheduled to this CPU.
5135 */
0bf50497 5136 mutex_lock(&kvm_lock);
e6fb7d6e
IY
5137 if (kvm_usage_count)
5138 ret = __hardware_enable_nolock();
0bf50497 5139 mutex_unlock(&kvm_lock);
aaf12a7b 5140 return ret;
75b7127c
TY
5141}
5142
5143static void hardware_disable_nolock(void *junk)
1b6c0168 5144{
37d25881
SC
5145 /*
5146 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5147 * hardware, not just CPUs that successfully enabled hardware!
5148 */
5149 if (!__this_cpu_read(hardware_enabled))
1b6c0168 5150 return;
37d25881 5151
13a34e06 5152 kvm_arch_hardware_disable();
37d25881
SC
5153
5154 __this_cpu_write(hardware_enabled, false);
1b6c0168
AK
5155}
5156
aaf12a7b 5157static int kvm_offline_cpu(unsigned int cpu)
75b7127c 5158{
0bf50497 5159 mutex_lock(&kvm_lock);
4fa92fb2
PB
5160 if (kvm_usage_count)
5161 hardware_disable_nolock(NULL);
0bf50497 5162 mutex_unlock(&kvm_lock);
8c18b2d2 5163 return 0;
75b7127c
TY
5164}
5165
10474ae8
AG
5166static void hardware_disable_all_nolock(void)
5167{
5168 BUG_ON(!kvm_usage_count);
5169
5170 kvm_usage_count--;
5171 if (!kvm_usage_count)
75b7127c 5172 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
5173}
5174
5175static void hardware_disable_all(void)
5176{
e4aa7f88 5177 cpus_read_lock();
0bf50497 5178 mutex_lock(&kvm_lock);
10474ae8 5179 hardware_disable_all_nolock();
0bf50497 5180 mutex_unlock(&kvm_lock);
e4aa7f88 5181 cpus_read_unlock();
10474ae8
AG
5182}
5183
5184static int hardware_enable_all(void)
5185{
e6fb7d6e 5186 atomic_t failed = ATOMIC_INIT(0);
10474ae8
AG
5187 int r = 0;
5188
e4aa7f88
CG
5189 /*
5190 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5191 * is called, and so on_each_cpu() between them includes the CPU that
5192 * is being onlined. As a result, hardware_enable_nolock() may get
5193 * invoked before kvm_online_cpu(), which also enables hardware if the
5194 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5195 * enable hardware multiple times.
5196 */
5197 cpus_read_lock();
0bf50497 5198 mutex_lock(&kvm_lock);
10474ae8
AG
5199
5200 kvm_usage_count++;
5201 if (kvm_usage_count == 1) {
e6fb7d6e 5202 on_each_cpu(hardware_enable_nolock, &failed, 1);
10474ae8 5203
e6fb7d6e 5204 if (atomic_read(&failed)) {
10474ae8
AG
5205 hardware_disable_all_nolock();
5206 r = -EBUSY;
5207 }
5208 }
5209
0bf50497 5210 mutex_unlock(&kvm_lock);
e4aa7f88 5211 cpus_read_unlock();
10474ae8
AG
5212
5213 return r;
5214}
5215
9a2b85c6 5216static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 5217 void *v)
9a2b85c6 5218{
8e1c1815
SY
5219 /*
5220 * Some (well, at least mine) BIOSes hang on reboot if
5221 * in vmx root mode.
5222 *
5223 * And Intel TXT required VMX off for all cpu when system shutdown.
5224 */
1170adc6 5225 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 5226 kvm_rebooting = true;
75b7127c 5227 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
5228 return NOTIFY_OK;
5229}
5230
5231static struct notifier_block kvm_reboot_notifier = {
5232 .notifier_call = kvm_reboot,
5233 .priority = 0,
5234};
5235
35774a9f
SC
5236static int kvm_suspend(void)
5237{
5238 /*
5239 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5240 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5241 * is stable. Assert that kvm_lock is not held to ensure the system
5242 * isn't suspended while KVM is enabling hardware. Hardware enabling
5243 * can be preempted, but the task cannot be frozen until it has dropped
5244 * all locks (userspace tasks are frozen via a fake signal).
5245 */
5246 lockdep_assert_not_held(&kvm_lock);
5247 lockdep_assert_irqs_disabled();
5248
5249 if (kvm_usage_count)
5250 hardware_disable_nolock(NULL);
5251 return 0;
5252}
5253
5254static void kvm_resume(void)
5255{
5256 lockdep_assert_not_held(&kvm_lock);
5257 lockdep_assert_irqs_disabled();
5258
5259 if (kvm_usage_count)
5260 WARN_ON_ONCE(__hardware_enable_nolock());
5261}
5262
5263static struct syscore_ops kvm_syscore_ops = {
5264 .suspend = kvm_suspend,
5265 .resume = kvm_resume,
5266};
441f7bfa
SC
5267#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5268static int hardware_enable_all(void)
5269{
5270 return 0;
5271}
5272
5273static void hardware_disable_all(void)
5274{
5275
5276}
5277#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
35774a9f 5278
e93f8a0f 5279static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
5280{
5281 int i;
5282
5283 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 5284 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
5285
5286 kvm_iodevice_destructor(pos);
5287 }
e93f8a0f 5288 kfree(bus);
2eeb2e94
GH
5289}
5290
c21fbff1 5291static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 5292 const struct kvm_io_range *r2)
743eeb0b 5293{
8f4216c7
JW
5294 gpa_t addr1 = r1->addr;
5295 gpa_t addr2 = r2->addr;
5296
5297 if (addr1 < addr2)
743eeb0b 5298 return -1;
8f4216c7
JW
5299
5300 /* If r2->len == 0, match the exact address. If r2->len != 0,
5301 * accept any overlapping write. Any order is acceptable for
5302 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5303 * we process all of them.
5304 */
5305 if (r2->len) {
5306 addr1 += r1->len;
5307 addr2 += r2->len;
5308 }
5309
5310 if (addr1 > addr2)
743eeb0b 5311 return 1;
8f4216c7 5312
743eeb0b
SL
5313 return 0;
5314}
5315
a343c9b7
PB
5316static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5317{
c21fbff1 5318 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
5319}
5320
39369f7a 5321static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
5322 gpa_t addr, int len)
5323{
5324 struct kvm_io_range *range, key;
5325 int off;
5326
5327 key = (struct kvm_io_range) {
5328 .addr = addr,
5329 .len = len,
5330 };
5331
5332 range = bsearch(&key, bus->range, bus->dev_count,
5333 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5334 if (range == NULL)
5335 return -ENOENT;
5336
5337 off = range - bus->range;
5338
c21fbff1 5339 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
5340 off--;
5341
5342 return off;
5343}
5344
e32edf4f 5345static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
5346 struct kvm_io_range *range, const void *val)
5347{
5348 int idx;
5349
5350 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5351 if (idx < 0)
5352 return -EOPNOTSUPP;
5353
5354 while (idx < bus->dev_count &&
c21fbff1 5355 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5356 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5357 range->len, val))
5358 return idx;
5359 idx++;
5360 }
5361
5362 return -EOPNOTSUPP;
5363}
5364
bda9020e 5365/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 5366int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 5367 int len, const void *val)
2eeb2e94 5368{
90d83dc3 5369 struct kvm_io_bus *bus;
743eeb0b 5370 struct kvm_io_range range;
126a5af5 5371 int r;
743eeb0b
SL
5372
5373 range = (struct kvm_io_range) {
5374 .addr = addr,
5375 .len = len,
5376 };
90d83dc3 5377
e32edf4f 5378 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5379 if (!bus)
5380 return -ENOMEM;
e32edf4f 5381 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5382 return r < 0 ? r : 0;
5383}
a2420107 5384EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
5385
5386/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
5387int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5388 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
5389{
5390 struct kvm_io_bus *bus;
5391 struct kvm_io_range range;
5392
5393 range = (struct kvm_io_range) {
5394 .addr = addr,
5395 .len = len,
5396 };
5397
e32edf4f 5398 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5399 if (!bus)
5400 return -ENOMEM;
126a5af5
CH
5401
5402 /* First try the device referenced by cookie. */
5403 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 5404 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 5405 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
5406 val))
5407 return cookie;
5408
5409 /*
5410 * cookie contained garbage; fall back to search and return the
5411 * correct cookie value.
5412 */
e32edf4f 5413 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5414}
5415
e32edf4f
NN
5416static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5417 struct kvm_io_range *range, void *val)
126a5af5
CH
5418{
5419 int idx;
5420
5421 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
5422 if (idx < 0)
5423 return -EOPNOTSUPP;
5424
5425 while (idx < bus->dev_count &&
c21fbff1 5426 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5427 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5428 range->len, val))
5429 return idx;
743eeb0b
SL
5430 idx++;
5431 }
5432
bda9020e
MT
5433 return -EOPNOTSUPP;
5434}
2eeb2e94 5435
bda9020e 5436/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 5437int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 5438 int len, void *val)
bda9020e 5439{
90d83dc3 5440 struct kvm_io_bus *bus;
743eeb0b 5441 struct kvm_io_range range;
126a5af5 5442 int r;
743eeb0b
SL
5443
5444 range = (struct kvm_io_range) {
5445 .addr = addr,
5446 .len = len,
5447 };
e93f8a0f 5448
e32edf4f 5449 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5450 if (!bus)
5451 return -ENOMEM;
e32edf4f 5452 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
5453 return r < 0 ? r : 0;
5454}
743eeb0b 5455
79fac95e 5456/* Caller must hold slots_lock. */
743eeb0b
SL
5457int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5458 int len, struct kvm_io_device *dev)
6c474694 5459{
d4c67a7a 5460 int i;
e93f8a0f 5461 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5462 struct kvm_io_range range;
090b7aff 5463
4a12f951 5464 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5465 if (!bus)
5466 return -ENOMEM;
5467
6ea34c9b
AK
5468 /* exclude ioeventfd which is limited by maximum fd */
5469 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5470 return -ENOSPC;
2eeb2e94 5471
90952cd3 5472 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5473 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5474 if (!new_bus)
5475 return -ENOMEM;
d4c67a7a
GH
5476
5477 range = (struct kvm_io_range) {
5478 .addr = addr,
5479 .len = len,
5480 .dev = dev,
5481 };
5482
5483 for (i = 0; i < bus->dev_count; i++)
5484 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5485 break;
5486
5487 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5488 new_bus->dev_count++;
5489 new_bus->range[i] = range;
5490 memcpy(new_bus->range + i + 1, bus->range + i,
5491 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5492 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5493 synchronize_srcu_expedited(&kvm->srcu);
5494 kfree(bus);
090b7aff
GH
5495
5496 return 0;
5497}
5498
5d3c4c79
SC
5499int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5500 struct kvm_io_device *dev)
090b7aff 5501{
f6588660 5502 int i, j;
e93f8a0f 5503 struct kvm_io_bus *new_bus, *bus;
090b7aff 5504
7c896d37
SC
5505 lockdep_assert_held(&kvm->slots_lock);
5506
4a12f951 5507 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5508 if (!bus)
5d3c4c79 5509 return 0;
df630b8c 5510
7c896d37 5511 for (i = 0; i < bus->dev_count; i++) {
a1300716 5512 if (bus->range[i].dev == dev) {
090b7aff
GH
5513 break;
5514 }
7c896d37 5515 }
e93f8a0f 5516
90db1043 5517 if (i == bus->dev_count)
5d3c4c79 5518 return 0;
a1300716 5519
90952cd3 5520 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5521 GFP_KERNEL_ACCOUNT);
f6588660 5522 if (new_bus) {
871c433b 5523 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5524 new_bus->dev_count--;
5525 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5526 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5527 }
5528
5529 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5530 synchronize_srcu_expedited(&kvm->srcu);
5531
5532 /* Destroy the old bus _after_ installing the (null) bus. */
5533 if (!new_bus) {
90db1043 5534 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5535 for (j = 0; j < bus->dev_count; j++) {
5536 if (j == i)
5537 continue;
5538 kvm_iodevice_destructor(bus->range[j].dev);
5539 }
90db1043 5540 }
a1300716 5541
e93f8a0f 5542 kfree(bus);
5d3c4c79 5543 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5544}
5545
8a39d006
AP
5546struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5547 gpa_t addr)
5548{
5549 struct kvm_io_bus *bus;
5550 int dev_idx, srcu_idx;
5551 struct kvm_io_device *iodev = NULL;
5552
5553 srcu_idx = srcu_read_lock(&kvm->srcu);
5554
5555 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5556 if (!bus)
5557 goto out_unlock;
8a39d006
AP
5558
5559 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5560 if (dev_idx < 0)
5561 goto out_unlock;
5562
5563 iodev = bus->range[dev_idx].dev;
5564
5565out_unlock:
5566 srcu_read_unlock(&kvm->srcu, srcu_idx);
5567
5568 return iodev;
5569}
5570EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5571
536a6f88
JF
5572static int kvm_debugfs_open(struct inode *inode, struct file *file,
5573 int (*get)(void *, u64 *), int (*set)(void *, u64),
5574 const char *fmt)
5575{
180418e2 5576 int ret;
14aa40a1 5577 struct kvm_stat_data *stat_data = inode->i_private;
536a6f88 5578
605c7130
PX
5579 /*
5580 * The debugfs files are a reference to the kvm struct which
5581 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5582 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5583 */
605c7130 5584 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5585 return -ENOENT;
5586
180418e2
HW
5587 ret = simple_attr_open(inode, file, get,
5588 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5589 ? set : NULL, fmt);
5590 if (ret)
536a6f88 5591 kvm_put_kvm(stat_data->kvm);
536a6f88 5592
180418e2 5593 return ret;
536a6f88
JF
5594}
5595
5596static int kvm_debugfs_release(struct inode *inode, struct file *file)
5597{
14aa40a1 5598 struct kvm_stat_data *stat_data = inode->i_private;
536a6f88
JF
5599
5600 simple_attr_release(inode, file);
5601 kvm_put_kvm(stat_data->kvm);
5602
5603 return 0;
5604}
5605
09cbcef6 5606static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5607{
bc9e9e67 5608 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5609
09cbcef6
MP
5610 return 0;
5611}
5612
5613static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5614{
bc9e9e67 5615 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5616
5617 return 0;
5618}
5619
09cbcef6 5620static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5621{
46808a4c 5622 unsigned long i;
09cbcef6 5623 struct kvm_vcpu *vcpu;
ce35ef27 5624
09cbcef6 5625 *val = 0;
ce35ef27 5626
09cbcef6 5627 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5628 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5629
5630 return 0;
5631}
5632
09cbcef6 5633static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5634{
46808a4c 5635 unsigned long i;
09cbcef6 5636 struct kvm_vcpu *vcpu;
536a6f88 5637
09cbcef6 5638 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5639 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5640
5641 return 0;
5642}
536a6f88 5643
09cbcef6 5644static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5645{
09cbcef6 5646 int r = -EFAULT;
14aa40a1 5647 struct kvm_stat_data *stat_data = data;
536a6f88 5648
bc9e9e67 5649 switch (stat_data->kind) {
09cbcef6
MP
5650 case KVM_STAT_VM:
5651 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5652 stat_data->desc->desc.offset, val);
09cbcef6
MP
5653 break;
5654 case KVM_STAT_VCPU:
5655 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5656 stat_data->desc->desc.offset, val);
09cbcef6
MP
5657 break;
5658 }
536a6f88 5659
09cbcef6 5660 return r;
536a6f88
JF
5661}
5662
09cbcef6 5663static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5664{
09cbcef6 5665 int r = -EFAULT;
14aa40a1 5666 struct kvm_stat_data *stat_data = data;
ce35ef27
SJS
5667
5668 if (val)
5669 return -EINVAL;
5670
bc9e9e67 5671 switch (stat_data->kind) {
09cbcef6
MP
5672 case KVM_STAT_VM:
5673 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5674 stat_data->desc->desc.offset);
09cbcef6
MP
5675 break;
5676 case KVM_STAT_VCPU:
5677 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5678 stat_data->desc->desc.offset);
09cbcef6
MP
5679 break;
5680 }
ce35ef27 5681
09cbcef6 5682 return r;
ce35ef27
SJS
5683}
5684
09cbcef6 5685static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5686{
5687 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5688 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5689 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5690}
5691
09cbcef6
MP
5692static const struct file_operations stat_fops_per_vm = {
5693 .owner = THIS_MODULE,
5694 .open = kvm_stat_data_open,
536a6f88 5695 .release = kvm_debugfs_release,
09cbcef6
MP
5696 .read = simple_attr_read,
5697 .write = simple_attr_write,
5698 .llseek = no_llseek,
536a6f88
JF
5699};
5700
8b88b099 5701static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5702{
5703 unsigned offset = (long)_offset;
ba1389b7 5704 struct kvm *kvm;
536a6f88 5705 u64 tmp_val;
ba1389b7 5706
8b88b099 5707 *val = 0;
0d9ce162 5708 mutex_lock(&kvm_lock);
536a6f88 5709 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5710 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5711 *val += tmp_val;
5712 }
0d9ce162 5713 mutex_unlock(&kvm_lock);
8b88b099 5714 return 0;
ba1389b7
AK
5715}
5716
ce35ef27
SJS
5717static int vm_stat_clear(void *_offset, u64 val)
5718{
5719 unsigned offset = (long)_offset;
5720 struct kvm *kvm;
ce35ef27
SJS
5721
5722 if (val)
5723 return -EINVAL;
5724
0d9ce162 5725 mutex_lock(&kvm_lock);
ce35ef27 5726 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5727 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5728 }
0d9ce162 5729 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5730
5731 return 0;
5732}
5733
5734DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5735DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5736
8b88b099 5737static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5738{
5739 unsigned offset = (long)_offset;
1165f5fe 5740 struct kvm *kvm;
536a6f88 5741 u64 tmp_val;
1165f5fe 5742
8b88b099 5743 *val = 0;
0d9ce162 5744 mutex_lock(&kvm_lock);
536a6f88 5745 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5746 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5747 *val += tmp_val;
5748 }
0d9ce162 5749 mutex_unlock(&kvm_lock);
8b88b099 5750 return 0;
1165f5fe
AK
5751}
5752
ce35ef27
SJS
5753static int vcpu_stat_clear(void *_offset, u64 val)
5754{
5755 unsigned offset = (long)_offset;
5756 struct kvm *kvm;
ce35ef27
SJS
5757
5758 if (val)
5759 return -EINVAL;
5760
0d9ce162 5761 mutex_lock(&kvm_lock);
ce35ef27 5762 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5763 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5764 }
0d9ce162 5765 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5766
5767 return 0;
5768}
5769
5770DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5771 "%llu\n");
bc9e9e67 5772DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5773
286de8f6
CI
5774static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5775{
5776 struct kobj_uevent_env *env;
286de8f6
CI
5777 unsigned long long created, active;
5778
5779 if (!kvm_dev.this_device || !kvm)
5780 return;
5781
0d9ce162 5782 mutex_lock(&kvm_lock);
286de8f6
CI
5783 if (type == KVM_EVENT_CREATE_VM) {
5784 kvm_createvm_count++;
5785 kvm_active_vms++;
5786 } else if (type == KVM_EVENT_DESTROY_VM) {
5787 kvm_active_vms--;
5788 }
5789 created = kvm_createvm_count;
5790 active = kvm_active_vms;
0d9ce162 5791 mutex_unlock(&kvm_lock);
286de8f6 5792
b12ce36a 5793 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5794 if (!env)
5795 return;
5796
5797 add_uevent_var(env, "CREATED=%llu", created);
5798 add_uevent_var(env, "COUNT=%llu", active);
5799
fdeaf7e3 5800 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5801 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5802 kvm->userspace_pid = task_pid_nr(current);
5803 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5804 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5805 }
5806 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5807
a44a4cc1 5808 if (!IS_ERR(kvm->debugfs_dentry)) {
b12ce36a 5809 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5810
5811 if (p) {
5812 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5813 if (!IS_ERR(tmp))
5814 add_uevent_var(env, "STATS_PATH=%s", tmp);
5815 kfree(p);
286de8f6
CI
5816 }
5817 }
5818 /* no need for checks, since we are adding at most only 5 keys */
5819 env->envp[env->envp_idx++] = NULL;
5820 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5821 kfree(env);
286de8f6
CI
5822}
5823
929f45e3 5824static void kvm_init_debug(void)
6aa8b732 5825{
bc9e9e67
JZ
5826 const struct file_operations *fops;
5827 const struct _kvm_stats_desc *pdesc;
5828 int i;
6aa8b732 5829
76f7c879 5830 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5831
bc9e9e67
JZ
5832 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5833 pdesc = &kvm_vm_stats_desc[i];
5834 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5835 fops = &vm_stat_fops;
5836 else
5837 fops = &vm_stat_readonly_fops;
5838 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5839 kvm_debugfs_dir,
5840 (void *)(long)pdesc->desc.offset, fops);
5841 }
5842
5843 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5844 pdesc = &kvm_vcpu_stats_desc[i];
5845 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5846 fops = &vcpu_stat_fops;
5847 else
5848 fops = &vcpu_stat_readonly_fops;
5849 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5850 kvm_debugfs_dir,
5851 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5852 }
6aa8b732
AK
5853}
5854
15ad7146
AK
5855static inline
5856struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5857{
5858 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5859}
5860
5861static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5862{
5863 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5864
046ddeed 5865 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5866 WRITE_ONCE(vcpu->ready, false);
15ad7146 5867
7495e22b 5868 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5869 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5870 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5871}
5872
5873static void kvm_sched_out(struct preempt_notifier *pn,
5874 struct task_struct *next)
5875{
5876 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5877
3ba9f93b 5878 if (current->on_rq) {
046ddeed 5879 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5880 WRITE_ONCE(vcpu->ready, true);
5881 }
e9b11c17 5882 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5883 __this_cpu_write(kvm_running_vcpu, NULL);
5884}
5885
5886/**
5887 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5888 *
5889 * We can disable preemption locally around accessing the per-CPU variable,
5890 * and use the resolved vcpu pointer after enabling preemption again,
5891 * because even if the current thread is migrated to another CPU, reading
5892 * the per-CPU value later will give us the same value as we update the
5893 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5894 */
5895struct kvm_vcpu *kvm_get_running_vcpu(void)
5896{
1f03b2bc
MZ
5897 struct kvm_vcpu *vcpu;
5898
5899 preempt_disable();
5900 vcpu = __this_cpu_read(kvm_running_vcpu);
5901 preempt_enable();
5902
5903 return vcpu;
7495e22b 5904}
379a3c8e 5905EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5906
5907/**
5908 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5909 */
5910struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5911{
5912 return &kvm_running_vcpu;
15ad7146
AK
5913}
5914
e1bfc245
SC
5915#ifdef CONFIG_GUEST_PERF_EVENTS
5916static unsigned int kvm_guest_state(void)
5917{
5918 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5919 unsigned int state;
5920
5921 if (!kvm_arch_pmi_in_guest(vcpu))
5922 return 0;
5923
5924 state = PERF_GUEST_ACTIVE;
5925 if (!kvm_arch_vcpu_in_kernel(vcpu))
5926 state |= PERF_GUEST_USER;
5927
5928 return state;
5929}
5930
5931static unsigned long kvm_guest_get_ip(void)
5932{
5933 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5934
5935 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5936 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5937 return 0;
5938
5939 return kvm_arch_vcpu_get_ip(vcpu);
5940}
5941
5942static struct perf_guest_info_callbacks kvm_guest_cbs = {
5943 .state = kvm_guest_state,
5944 .get_ip = kvm_guest_get_ip,
5945 .handle_intel_pt_intr = NULL,
5946};
5947
5948void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5949{
5950 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5951 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5952}
5953void kvm_unregister_perf_callbacks(void)
5954{
5955 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5956}
5957#endif
5958
81a1cf9f 5959int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
f257d6dc 5960{
6aa8b732 5961 int r;
002c7f7c 5962 int cpu;
6aa8b732 5963
441f7bfa 5964#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
aaf12a7b
CG
5965 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5966 kvm_online_cpu, kvm_offline_cpu);
774c47f1 5967 if (r)
37d25881
SC
5968 return r;
5969
6aa8b732 5970 register_reboot_notifier(&kvm_reboot_notifier);
35774a9f 5971 register_syscore_ops(&kvm_syscore_ops);
441f7bfa 5972#endif
6aa8b732 5973
c16f862d 5974 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5975 if (!vcpu_align)
5976 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5977 kvm_vcpu_cache =
5978 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5979 SLAB_ACCOUNT,
5980 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5981 offsetofend(struct kvm_vcpu, stats_id)
5982 - offsetof(struct kvm_vcpu, arch),
46515736 5983 NULL);
c16f862d
RR
5984 if (!kvm_vcpu_cache) {
5985 r = -ENOMEM;
9f1a4c00 5986 goto err_vcpu_cache;
c16f862d
RR
5987 }
5988
baff59cc
VK
5989 for_each_possible_cpu(cpu) {
5990 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5991 GFP_KERNEL, cpu_to_node(cpu))) {
5992 r = -ENOMEM;
9f1a4c00 5993 goto err_cpu_kick_mask;
baff59cc
VK
5994 }
5995 }
5996
5910ccf0
SC
5997 r = kvm_irqfd_init();
5998 if (r)
5999 goto err_irqfd;
6000
af585b92
GN
6001 r = kvm_async_pf_init();
6002 if (r)
5910ccf0 6003 goto err_async_pf;
af585b92 6004
6aa8b732
AK
6005 kvm_chardev_ops.owner = module;
6006
15ad7146
AK
6007 kvm_preempt_ops.sched_in = kvm_sched_in;
6008 kvm_preempt_ops.sched_out = kvm_sched_out;
6009
929f45e3 6010 kvm_init_debug();
0ea4ed8e 6011
3c3c29fd 6012 r = kvm_vfio_ops_init();
2b012812
SC
6013 if (WARN_ON_ONCE(r))
6014 goto err_vfio;
6015
6016 /*
6017 * Registration _must_ be the very last thing done, as this exposes
6018 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6019 */
6020 r = misc_register(&kvm_dev);
6021 if (r) {
6022 pr_err("kvm: misc device register failed\n");
6023 goto err_register;
6024 }
3c3c29fd 6025
c7addb90 6026 return 0;
6aa8b732 6027
2b012812
SC
6028err_register:
6029 kvm_vfio_ops_exit();
6030err_vfio:
af585b92 6031 kvm_async_pf_deinit();
5910ccf0
SC
6032err_async_pf:
6033 kvm_irqfd_exit();
6034err_irqfd:
9f1a4c00 6035err_cpu_kick_mask:
baff59cc
VK
6036 for_each_possible_cpu(cpu)
6037 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 6038 kmem_cache_destroy(kvm_vcpu_cache);
9f1a4c00 6039err_vcpu_cache:
441f7bfa 6040#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
35774a9f 6041 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 6042 unregister_reboot_notifier(&kvm_reboot_notifier);
aaf12a7b 6043 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
441f7bfa 6044#endif
6aa8b732
AK
6045 return r;
6046}
cb498ea2 6047EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 6048
cb498ea2 6049void kvm_exit(void)
6aa8b732 6050{
baff59cc
VK
6051 int cpu;
6052
2b012812
SC
6053 /*
6054 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6055 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6056 * to KVM while the module is being stopped.
6057 */
6aa8b732 6058 misc_deregister(&kvm_dev);
2b012812
SC
6059
6060 debugfs_remove_recursive(kvm_debugfs_dir);
baff59cc
VK
6061 for_each_possible_cpu(cpu)
6062 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 6063 kmem_cache_destroy(kvm_vcpu_cache);
73b8dc04 6064 kvm_vfio_ops_exit();
af585b92 6065 kvm_async_pf_deinit();
441f7bfa 6066#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
fb3600cc 6067 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 6068 unregister_reboot_notifier(&kvm_reboot_notifier);
aaf12a7b 6069 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
441f7bfa 6070#endif
5910ccf0 6071 kvm_irqfd_exit();
6aa8b732 6072}
cb498ea2 6073EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
6074
6075struct kvm_vm_worker_thread_context {
6076 struct kvm *kvm;
6077 struct task_struct *parent;
6078 struct completion init_done;
6079 kvm_vm_thread_fn_t thread_fn;
6080 uintptr_t data;
6081 int err;
6082};
6083
6084static int kvm_vm_worker_thread(void *context)
6085{
6086 /*
6087 * The init_context is allocated on the stack of the parent thread, so
6088 * we have to locally copy anything that is needed beyond initialization
6089 */
6090 struct kvm_vm_worker_thread_context *init_context = context;
e45cce30 6091 struct task_struct *parent;
c57c8046
JS
6092 struct kvm *kvm = init_context->kvm;
6093 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6094 uintptr_t data = init_context->data;
6095 int err;
6096
6097 err = kthread_park(current);
6098 /* kthread_park(current) is never supposed to return an error */
6099 WARN_ON(err != 0);
6100 if (err)
6101 goto init_complete;
6102
6103 err = cgroup_attach_task_all(init_context->parent, current);
6104 if (err) {
6105 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6106 __func__, err);
6107 goto init_complete;
6108 }
6109
6110 set_user_nice(current, task_nice(init_context->parent));
6111
6112init_complete:
6113 init_context->err = err;
6114 complete(&init_context->init_done);
6115 init_context = NULL;
6116
6117 if (err)
e45cce30 6118 goto out;
c57c8046
JS
6119
6120 /* Wait to be woken up by the spawner before proceeding. */
6121 kthread_parkme();
6122
6123 if (!kthread_should_stop())
6124 err = thread_fn(kvm, data);
6125
e45cce30
VS
6126out:
6127 /*
6128 * Move kthread back to its original cgroup to prevent it lingering in
6129 * the cgroup of the VM process, after the latter finishes its
6130 * execution.
6131 *
6132 * kthread_stop() waits on the 'exited' completion condition which is
6133 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6134 * kthread is removed from the cgroup in the cgroup_exit() which is
6135 * called after the exit_mm(). This causes the kthread_stop() to return
6136 * before the kthread actually quits the cgroup.
6137 */
6138 rcu_read_lock();
6139 parent = rcu_dereference(current->real_parent);
6140 get_task_struct(parent);
6141 rcu_read_unlock();
6142 cgroup_attach_task_all(parent, current);
6143 put_task_struct(parent);
6144
c57c8046
JS
6145 return err;
6146}
6147
6148int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6149 uintptr_t data, const char *name,
6150 struct task_struct **thread_ptr)
6151{
6152 struct kvm_vm_worker_thread_context init_context = {};
6153 struct task_struct *thread;
6154
6155 *thread_ptr = NULL;
6156 init_context.kvm = kvm;
6157 init_context.parent = current;
6158 init_context.thread_fn = thread_fn;
6159 init_context.data = data;
6160 init_completion(&init_context.init_done);
6161
6162 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6163 "%s-%d", name, task_pid_nr(current));
6164 if (IS_ERR(thread))
6165 return PTR_ERR(thread);
6166
6167 /* kthread_run is never supposed to return NULL */
6168 WARN_ON(thread == NULL);
6169
6170 wait_for_completion(&init_context.init_done);
6171
6172 if (!init_context.err)
6173 *thread_ptr = thread;
6174
6175 return init_context.err;
6176}