zram: use __bio_add_page for adding single page to bio
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 80 * a single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 100
312fcae2
MK
101/*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108#define OBJ_ALLOCATED_TAG 1
85b32581
NP
109
110#ifdef CONFIG_ZPOOL
111/*
112 * The second least-significant bit in the object's header identifies if the
113 * value stored at the header is a deferred handle from the last reclaim
114 * attempt.
115 *
116 * As noted above, this is valid because we have room for two bits.
117 */
118#define OBJ_DEFERRED_HANDLE_TAG 2
119#define OBJ_TAG_BITS 2
120#define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121#else
122#define OBJ_TAG_BITS 1
123#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
124#endif /* CONFIG_ZPOOL */
125
312fcae2 126#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
127#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128
a41ec880 129#define HUGE_BITS 1
4c7ac972 130#define FULLNESS_BITS 4
cf8e0fed 131#define CLASS_BITS 8
4ff93b29 132#define ISOLATED_BITS 5
cf8e0fed
JM
133#define MAGIC_VAL_BITS 8
134
0959c63f 135#define MAX(a, b) ((a) >= (b) ? (a) : (b))
4ff93b29
SS
136
137#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138
0959c63f
SJ
139/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140#define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 142/* each chunk includes extra space to keep handle */
7b60a685 143#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
144
145/*
7eb52512 146 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
147 * trader-off here:
148 * - Large number of size classes is potentially wasteful as free page are
149 * spread across these classes
150 * - Small number of size classes causes large internal fragmentation
151 * - Probably its better to use specific size classes (empirically
152 * determined). NOTE: all those class sizes must be set as multiple of
153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 *
155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156 * (reason above)
157 */
3783689a 158#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
159#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 161
4c7ac972
SS
162/*
163 * Pages are distinguished by the ratio of used memory (that is the ratio
164 * of ->inuse objects to all objects that page can store). For example,
165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
166 *
167 * The number of fullness groups is not random. It allows us to keep
168 * difference between the least busy page in the group (minimum permitted
169 * number of ->inuse objects) and the most busy page (maximum permitted
170 * number of ->inuse objects) at a reasonable value.
171 */
0959c63f 172enum fullness_group {
4c7ac972
SS
173 ZS_INUSE_RATIO_0,
174 ZS_INUSE_RATIO_10,
e1807d5d 175 /* NOTE: 8 more fullness groups here */
4c7ac972
SS
176 ZS_INUSE_RATIO_99 = 10,
177 ZS_INUSE_RATIO_100,
178 NR_FULLNESS_GROUPS,
0959c63f
SJ
179};
180
3828a764 181enum class_stat_type {
4c7ac972
SS
182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
184 ZS_OBJS_INUSE,
185 NR_CLASS_STAT_TYPES,
0f050d99
GM
186};
187
0f050d99 188struct zs_size_stat {
4c7ac972 189 unsigned long objs[NR_CLASS_STAT_TYPES];
0f050d99
GM
190};
191
57244594
SS
192#ifdef CONFIG_ZSMALLOC_STAT
193static struct dentry *zs_stat_root;
0f050d99
GM
194#endif
195
010b495e 196static size_t huge_class_size;
0959c63f
SJ
197
198struct size_class {
4c7ac972 199 struct list_head fullness_list[NR_FULLNESS_GROUPS];
0959c63f
SJ
200 /*
201 * Size of objects stored in this class. Must be multiple
202 * of ZS_ALIGN.
203 */
204 int size;
1fc6e27d 205 int objs_per_zspage;
7dfa4612
WY
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
48b4800a
MK
208
209 unsigned int index;
210 struct zs_size_stat stats;
0959c63f
SJ
211};
212
213/*
214 * Placed within free objects to form a singly linked list.
3783689a 215 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
216 *
217 * This must be power of 2 and less than or equal to ZS_ALIGN
218 */
219struct link_free {
2e40e163
MK
220 union {
221 /*
bfd093f5 222 * Free object index;
2e40e163
MK
223 * It's valid for non-allocated object
224 */
bfd093f5 225 unsigned long next;
2e40e163
MK
226 /*
227 * Handle of allocated object.
228 */
229 unsigned long handle;
85b32581
NP
230#ifdef CONFIG_ZPOOL
231 /*
232 * Deferred handle of a reclaimed object.
233 */
234 unsigned long deferred_handle;
235#endif
2e40e163 236 };
0959c63f
SJ
237};
238
239struct zs_pool {
6f3526d6 240 const char *name;
0f050d99 241
cf8e0fed 242 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 243 struct kmem_cache *handle_cachep;
3783689a 244 struct kmem_cache *zspage_cachep;
0959c63f 245
13de8933 246 atomic_long_t pages_allocated;
0f050d99 247
7d3f3938 248 struct zs_pool_stats stats;
ab9d306d
SS
249
250 /* Compact classes */
251 struct shrinker shrinker;
93144ca3 252
64f768c6
NP
253#ifdef CONFIG_ZPOOL
254 /* List tracking the zspages in LRU order by most recently added object */
255 struct list_head lru;
bd0fded2
NP
256 struct zpool *zpool;
257 const struct zpool_ops *zpool_ops;
64f768c6
NP
258#endif
259
0f050d99
GM
260#ifdef CONFIG_ZSMALLOC_STAT
261 struct dentry *stat_dentry;
262#endif
48b4800a 263#ifdef CONFIG_COMPACTION
48b4800a
MK
264 struct work_struct free_work;
265#endif
c0547d0b 266 spinlock_t lock;
d2658f20 267 atomic_t compaction_in_progress;
0959c63f 268};
61989a80 269
3783689a
MK
270struct zspage {
271 struct {
a41ec880 272 unsigned int huge:HUGE_BITS;
3783689a 273 unsigned int fullness:FULLNESS_BITS;
85d492f2 274 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
275 unsigned int isolated:ISOLATED_BITS;
276 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
277 };
278 unsigned int inuse;
bfd093f5 279 unsigned int freeobj;
3783689a
MK
280 struct page *first_page;
281 struct list_head list; /* fullness list */
64f768c6
NP
282
283#ifdef CONFIG_ZPOOL
284 /* links the zspage to the lru list in the pool */
285 struct list_head lru;
9997bc01 286 bool under_reclaim;
64f768c6
NP
287#endif
288
68f2736a 289 struct zs_pool *pool;
48b4800a 290 rwlock_t lock;
3783689a 291};
61989a80 292
f553646a 293struct mapping_area {
a3726599 294 local_lock_t lock;
f553646a 295 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
296 char *vm_addr; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm; /* mapping mode */
298};
299
a41ec880
MK
300/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
301static void SetZsHugePage(struct zspage *zspage)
302{
303 zspage->huge = 1;
304}
305
306static bool ZsHugePage(struct zspage *zspage)
307{
308 return zspage->huge;
309}
310
48b4800a
MK
311static void migrate_lock_init(struct zspage *zspage);
312static void migrate_read_lock(struct zspage *zspage);
313static void migrate_read_unlock(struct zspage *zspage);
9997bc01
NP
314
315#ifdef CONFIG_COMPACTION
b475d42d
MK
316static void migrate_write_lock(struct zspage *zspage);
317static void migrate_write_lock_nested(struct zspage *zspage);
318static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
319static void kick_deferred_free(struct zs_pool *pool);
320static void init_deferred_free(struct zs_pool *pool);
321static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
322#else
b475d42d
MK
323static void migrate_write_lock(struct zspage *zspage) {}
324static void migrate_write_lock_nested(struct zspage *zspage) {}
325static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
326static void kick_deferred_free(struct zs_pool *pool) {}
327static void init_deferred_free(struct zs_pool *pool) {}
328static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
329#endif
330
3783689a 331static int create_cache(struct zs_pool *pool)
2e40e163
MK
332{
333 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
334 0, 0, NULL);
3783689a
MK
335 if (!pool->handle_cachep)
336 return 1;
337
338 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
339 0, 0, NULL);
340 if (!pool->zspage_cachep) {
341 kmem_cache_destroy(pool->handle_cachep);
342 pool->handle_cachep = NULL;
343 return 1;
344 }
345
346 return 0;
2e40e163
MK
347}
348
3783689a 349static void destroy_cache(struct zs_pool *pool)
2e40e163 350{
cd10add0 351 kmem_cache_destroy(pool->handle_cachep);
3783689a 352 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
353}
354
3783689a 355static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
356{
357 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 358 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
359}
360
3783689a 361static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
362{
363 kmem_cache_free(pool->handle_cachep, (void *)handle);
364}
365
3783689a
MK
366static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
367{
f0231305 368 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 369 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 370}
3783689a
MK
371
372static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
373{
374 kmem_cache_free(pool->zspage_cachep, zspage);
375}
376
c0547d0b 377/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
378static void record_obj(unsigned long handle, unsigned long obj)
379{
b475d42d 380 *(unsigned long *)handle = obj;
2e40e163
MK
381}
382
c795779d
DS
383/* zpool driver */
384
385#ifdef CONFIG_ZPOOL
386
6f3526d6 387static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 388 const struct zpool_ops *zpool_ops,
479305fd 389 struct zpool *zpool)
c795779d 390{
d0d8da2d
SS
391 /*
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
394 * gfp mask.
395 */
bd0fded2
NP
396 struct zs_pool *pool = zs_create_pool(name);
397
398 if (pool) {
399 pool->zpool = zpool;
400 pool->zpool_ops = zpool_ops;
401 }
402
403 return pool;
c795779d
DS
404}
405
406static void zs_zpool_destroy(void *pool)
407{
408 zs_destroy_pool(pool);
409}
410
411static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
412 unsigned long *handle)
413{
d0d8da2d 414 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 415
65917b53 416 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
417 return PTR_ERR((void *)*handle);
418 return 0;
c795779d
DS
419}
420static void zs_zpool_free(void *pool, unsigned long handle)
421{
422 zs_free(pool, handle);
423}
424
9997bc01
NP
425static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
426
427static int zs_zpool_shrink(void *pool, unsigned int pages,
428 unsigned int *reclaimed)
429{
430 unsigned int total = 0;
431 int ret = -EINVAL;
432
433 while (total < pages) {
434 ret = zs_reclaim_page(pool, 8);
435 if (ret < 0)
436 break;
437 total++;
438 }
439
440 if (reclaimed)
441 *reclaimed = total;
442
443 return ret;
444}
445
c795779d
DS
446static void *zs_zpool_map(void *pool, unsigned long handle,
447 enum zpool_mapmode mm)
448{
449 enum zs_mapmode zs_mm;
450
451 switch (mm) {
452 case ZPOOL_MM_RO:
453 zs_mm = ZS_MM_RO;
454 break;
455 case ZPOOL_MM_WO:
456 zs_mm = ZS_MM_WO;
457 break;
e4a9bc58 458 case ZPOOL_MM_RW:
c795779d
DS
459 default:
460 zs_mm = ZS_MM_RW;
461 break;
462 }
463
464 return zs_map_object(pool, handle, zs_mm);
465}
466static void zs_zpool_unmap(void *pool, unsigned long handle)
467{
468 zs_unmap_object(pool, handle);
469}
470
471static u64 zs_zpool_total_size(void *pool)
472{
722cdc17 473 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
474}
475
476static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
477 .type = "zsmalloc",
478 .owner = THIS_MODULE,
479 .create = zs_zpool_create,
480 .destroy = zs_zpool_destroy,
481 .malloc_support_movable = true,
482 .malloc = zs_zpool_malloc,
483 .free = zs_zpool_free,
9997bc01 484 .shrink = zs_zpool_shrink,
c165f25d
HZ
485 .map = zs_zpool_map,
486 .unmap = zs_zpool_unmap,
487 .total_size = zs_zpool_total_size,
c795779d
DS
488};
489
137f8cff 490MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
491#endif /* CONFIG_ZPOOL */
492
61989a80 493/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
494static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
495 .lock = INIT_LOCAL_LOCK(lock),
496};
61989a80 497
3457f414 498static __maybe_unused int is_first_page(struct page *page)
61989a80 499{
a27545bf 500 return PagePrivate(page);
61989a80
NG
501}
502
c0547d0b 503/* Protected by pool->lock */
3783689a 504static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 505{
3783689a 506 return zspage->inuse;
4f42047b
MK
507}
508
4f42047b 509
3783689a 510static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 511{
3783689a 512 zspage->inuse += val;
4f42047b
MK
513}
514
48b4800a 515static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 516{
48b4800a 517 struct page *first_page = zspage->first_page;
3783689a 518
48b4800a
MK
519 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
520 return first_page;
4f42047b
MK
521}
522
671f2fa8 523static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 524{
ffedd09f 525 return page->page_type;
48b4800a 526}
3783689a 527
671f2fa8 528static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 529{
ffedd09f 530 page->page_type = offset;
4f42047b
MK
531}
532
bfd093f5 533static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 534{
bfd093f5 535 return zspage->freeobj;
4f42047b
MK
536}
537
bfd093f5 538static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 539{
bfd093f5 540 zspage->freeobj = obj;
4f42047b
MK
541}
542
3783689a 543static void get_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
544 unsigned int *class_idx,
545 int *fullness)
61989a80 546{
48b4800a
MK
547 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
548
3783689a
MK
549 *fullness = zspage->fullness;
550 *class_idx = zspage->class;
61989a80
NG
551}
552
67f1c9cd 553static struct size_class *zspage_class(struct zs_pool *pool,
4c7ac972 554 struct zspage *zspage)
67f1c9cd
MK
555{
556 return pool->size_class[zspage->class];
557}
558
3783689a 559static void set_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
560 unsigned int class_idx,
561 int fullness)
61989a80 562{
3783689a
MK
563 zspage->class = class_idx;
564 zspage->fullness = fullness;
61989a80
NG
565}
566
c3e3e88a
NC
567/*
568 * zsmalloc divides the pool into various size classes where each
569 * class maintains a list of zspages where each zspage is divided
570 * into equal sized chunks. Each allocation falls into one of these
571 * classes depending on its size. This function returns index of the
cb152a1a 572 * size class which has chunk size big enough to hold the given size.
c3e3e88a 573 */
61989a80
NG
574static int get_size_class_index(int size)
575{
576 int idx = 0;
577
578 if (likely(size > ZS_MIN_ALLOC_SIZE))
579 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
580 ZS_SIZE_CLASS_DELTA);
581
cf8e0fed 582 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
583}
584
3828a764 585static inline void class_stat_inc(struct size_class *class,
3eb95fea 586 int type, unsigned long cnt)
248ca1b0 587{
48b4800a 588 class->stats.objs[type] += cnt;
248ca1b0
MK
589}
590
3828a764 591static inline void class_stat_dec(struct size_class *class,
3eb95fea 592 int type, unsigned long cnt)
248ca1b0 593{
48b4800a 594 class->stats.objs[type] -= cnt;
248ca1b0
MK
595}
596
4c7ac972 597static inline unsigned long zs_stat_get(struct size_class *class, int type)
248ca1b0 598{
48b4800a 599 return class->stats.objs[type];
248ca1b0
MK
600}
601
57244594
SS
602#ifdef CONFIG_ZSMALLOC_STAT
603
4abaac9b 604static void __init zs_stat_init(void)
248ca1b0 605{
4abaac9b
DS
606 if (!debugfs_initialized()) {
607 pr_warn("debugfs not available, stat dir not created\n");
608 return;
609 }
248ca1b0
MK
610
611 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
612}
613
614static void __exit zs_stat_exit(void)
615{
616 debugfs_remove_recursive(zs_stat_root);
617}
618
1120ed54
SS
619static unsigned long zs_can_compact(struct size_class *class);
620
248ca1b0
MK
621static int zs_stats_size_show(struct seq_file *s, void *v)
622{
e1807d5d 623 int i, fg;
248ca1b0
MK
624 struct zs_pool *pool = s->private;
625 struct size_class *class;
626 int objs_per_zspage;
1120ed54 627 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0 628 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 629 unsigned long total_freeable = 0;
e1807d5d 630 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
248ca1b0 631
e1807d5d
SS
632 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
633 "class", "size", "10%", "20%", "30%", "40%",
634 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
248ca1b0 635 "obj_allocated", "obj_used", "pages_used",
1120ed54 636 "pages_per_zspage", "freeable");
248ca1b0 637
cf8e0fed 638 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
4c7ac972 639
248ca1b0
MK
640 class = pool->size_class[i];
641
642 if (class->index != i)
643 continue;
644
c0547d0b 645 spin_lock(&pool->lock);
e1807d5d
SS
646
647 seq_printf(s, " %5u %5u ", i, class->size);
648 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
649 inuse_totals[fg] += zs_stat_get(class, fg);
650 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
651 }
4c7ac972
SS
652
653 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
654 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1120ed54 655 freeable = zs_can_compact(class);
c0547d0b 656 spin_unlock(&pool->lock);
248ca1b0 657
b4fd07a0 658 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
659 pages_used = obj_allocated / objs_per_zspage *
660 class->pages_per_zspage;
661
e1807d5d
SS
662 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
663 obj_allocated, obj_used, pages_used,
664 class->pages_per_zspage, freeable);
248ca1b0 665
248ca1b0
MK
666 total_objs += obj_allocated;
667 total_used_objs += obj_used;
668 total_pages += pages_used;
1120ed54 669 total_freeable += freeable;
248ca1b0
MK
670 }
671
672 seq_puts(s, "\n");
e1807d5d
SS
673 seq_printf(s, " %5s %5s ", "Total", "");
674
675 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
676 seq_printf(s, "%9lu ", inuse_totals[fg]);
677
678 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
679 total_objs, total_used_objs, total_pages, "",
680 total_freeable);
248ca1b0
MK
681
682 return 0;
683}
5ad35093 684DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 685
d34f6157 686static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 687{
4abaac9b
DS
688 if (!zs_stat_root) {
689 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 690 return;
4abaac9b 691 }
248ca1b0 692
4268509a
GKH
693 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
694
695 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
696 &zs_stats_size_fops);
248ca1b0
MK
697}
698
699static void zs_pool_stat_destroy(struct zs_pool *pool)
700{
701 debugfs_remove_recursive(pool->stat_dentry);
702}
703
704#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 705static void __init zs_stat_init(void)
248ca1b0 706{
248ca1b0
MK
707}
708
709static void __exit zs_stat_exit(void)
710{
711}
712
d34f6157 713static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 714{
248ca1b0
MK
715}
716
717static inline void zs_pool_stat_destroy(struct zs_pool *pool)
718{
719}
248ca1b0
MK
720#endif
721
48b4800a 722
c3e3e88a
NC
723/*
724 * For each size class, zspages are divided into different groups
4c7ac972 725 * depending on their usage ratio. This function returns fullness
c3e3e88a
NC
726 * status of the given page.
727 */
4c7ac972 728static int get_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80 729{
4c7ac972 730 int inuse, objs_per_zspage, ratio;
830e4bc5 731
3783689a 732 inuse = get_zspage_inuse(zspage);
1fc6e27d 733 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
734
735 if (inuse == 0)
4c7ac972
SS
736 return ZS_INUSE_RATIO_0;
737 if (inuse == objs_per_zspage)
738 return ZS_INUSE_RATIO_100;
61989a80 739
4c7ac972
SS
740 ratio = 100 * inuse / objs_per_zspage;
741 /*
742 * Take integer division into consideration: a page with one inuse
743 * object out of 127 possible, will end up having 0 usage ratio,
744 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
745 */
746 return ratio / 10 + 1;
61989a80
NG
747}
748
c3e3e88a
NC
749/*
750 * Each size class maintains various freelists and zspages are assigned
751 * to one of these freelists based on the number of live objects they
752 * have. This functions inserts the given zspage into the freelist
753 * identified by <class, fullness_group>.
754 */
251cbb95 755static void insert_zspage(struct size_class *class,
3783689a 756 struct zspage *zspage,
4c7ac972 757 int fullness)
61989a80 758{
3828a764 759 class_stat_inc(class, fullness, 1);
a40a71e8 760 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
761}
762
c3e3e88a
NC
763/*
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
766 */
251cbb95 767static void remove_zspage(struct size_class *class,
3783689a 768 struct zspage *zspage,
4c7ac972 769 int fullness)
61989a80 770{
3783689a 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 772
3783689a 773 list_del_init(&zspage->list);
3828a764 774 class_stat_dec(class, fullness, 1);
61989a80
NG
775}
776
c3e3e88a
NC
777/*
778 * Each size class maintains zspages in different fullness groups depending
779 * on the number of live objects they contain. When allocating or freeing
4c7ac972
SS
780 * objects, the fullness status of the page can change, for instance, from
781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
782 * checks if such a status change has occurred for the given page and
783 * accordingly moves the page from the list of the old fullness group to that
784 * of the new fullness group.
c3e3e88a 785 */
4c7ac972 786static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80
NG
787{
788 int class_idx;
4c7ac972 789 int currfg, newfg;
61989a80 790
3783689a
MK
791 get_zspage_mapping(zspage, &class_idx, &currfg);
792 newfg = get_fullness_group(class, zspage);
61989a80
NG
793 if (newfg == currfg)
794 goto out;
795
c4549b87
MK
796 remove_zspage(class, zspage, currfg);
797 insert_zspage(class, zspage, newfg);
3783689a 798 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
799out:
800 return newfg;
801}
802
3783689a 803static struct zspage *get_zspage(struct page *page)
61989a80 804{
a6c5e0f7 805 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
806
807 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808 return zspage;
61989a80
NG
809}
810
811static struct page *get_next_page(struct page *page)
812{
a41ec880
MK
813 struct zspage *zspage = get_zspage(page);
814
815 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
816 return NULL;
817
ffedd09f 818 return (struct page *)page->index;
61989a80
NG
819}
820
bfd093f5
MK
821/**
822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 823 * @obj: the encoded object value
bfd093f5
MK
824 * @page: page object resides in zspage
825 * @obj_idx: object index
67296874 826 */
bfd093f5
MK
827static void obj_to_location(unsigned long obj, struct page **page,
828 unsigned int *obj_idx)
61989a80 829{
bfd093f5
MK
830 obj >>= OBJ_TAG_BITS;
831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 *obj_idx = (obj & OBJ_INDEX_MASK);
833}
61989a80 834
67f1c9cd
MK
835static void obj_to_page(unsigned long obj, struct page **page)
836{
837 obj >>= OBJ_TAG_BITS;
838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839}
840
bfd093f5
MK
841/**
842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843 * @page: page object resides in zspage
844 * @obj_idx: object index
845 */
846static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847{
848 unsigned long obj;
61989a80 849
312fcae2 850 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 851 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 852 obj <<= OBJ_TAG_BITS;
61989a80 853
bfd093f5 854 return obj;
61989a80
NG
855}
856
2e40e163
MK
857static unsigned long handle_to_obj(unsigned long handle)
858{
859 return *(unsigned long *)handle;
860}
861
85b32581
NP
862static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
863 int tag)
312fcae2 864{
3ae92ac2 865 unsigned long handle;
a41ec880 866 struct zspage *zspage = get_zspage(page);
3ae92ac2 867
a41ec880 868 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 869 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 870 handle = page->index;
7b60a685 871 } else
3ae92ac2
MK
872 handle = *(unsigned long *)obj;
873
85b32581 874 if (!(handle & tag))
3ae92ac2
MK
875 return false;
876
85b32581
NP
877 /* Clear all tags before returning the handle */
878 *phandle = handle & ~OBJ_TAG_MASK;
3ae92ac2 879 return true;
312fcae2
MK
880}
881
85b32581
NP
882static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
883{
884 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
885}
886
887#ifdef CONFIG_ZPOOL
888static bool obj_stores_deferred_handle(struct page *page, void *obj,
889 unsigned long *phandle)
890{
891 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
892}
893#endif
894
f4477e90
NG
895static void reset_page(struct page *page)
896{
48b4800a 897 __ClearPageMovable(page);
18fd06bf 898 ClearPagePrivate(page);
f4477e90 899 set_page_private(page, 0);
48b4800a 900 page_mapcount_reset(page);
ffedd09f 901 page->index = 0;
48b4800a
MK
902}
903
4d0a5402 904static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
905{
906 struct page *cursor, *fail;
907
908 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
909 get_next_page(cursor)) {
910 if (!trylock_page(cursor)) {
911 fail = cursor;
912 goto unlock;
913 }
914 }
915
916 return 1;
917unlock:
918 for (cursor = get_first_page(zspage); cursor != fail; cursor =
919 get_next_page(cursor))
920 unlock_page(cursor);
921
922 return 0;
f4477e90
NG
923}
924
9997bc01 925#ifdef CONFIG_ZPOOL
85b32581
NP
926static unsigned long find_deferred_handle_obj(struct size_class *class,
927 struct page *page, int *obj_idx);
928
9997bc01
NP
929/*
930 * Free all the deferred handles whose objects are freed in zs_free.
931 */
85b32581
NP
932static void free_handles(struct zs_pool *pool, struct size_class *class,
933 struct zspage *zspage)
9997bc01 934{
85b32581
NP
935 int obj_idx = 0;
936 struct page *page = get_first_page(zspage);
937 unsigned long handle;
9997bc01 938
85b32581
NP
939 while (1) {
940 handle = find_deferred_handle_obj(class, page, &obj_idx);
941 if (!handle) {
942 page = get_next_page(page);
943 if (!page)
944 break;
945 obj_idx = 0;
946 continue;
947 }
9997bc01
NP
948
949 cache_free_handle(pool, handle);
85b32581 950 obj_idx++;
9997bc01
NP
951 }
952}
953#else
85b32581
NP
954static inline void free_handles(struct zs_pool *pool, struct size_class *class,
955 struct zspage *zspage) {}
9997bc01
NP
956#endif
957
48b4800a
MK
958static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959 struct zspage *zspage)
61989a80 960{
3783689a 961 struct page *page, *next;
4c7ac972 962 int fg;
48b4800a
MK
963 unsigned int class_idx;
964
965 get_zspage_mapping(zspage, &class_idx, &fg);
966
c0547d0b 967 assert_spin_locked(&pool->lock);
61989a80 968
3783689a 969 VM_BUG_ON(get_zspage_inuse(zspage));
4c7ac972 970 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
61989a80 971
9997bc01 972 /* Free all deferred handles from zs_free */
85b32581 973 free_handles(pool, class, zspage);
9997bc01 974
48b4800a 975 next = page = get_first_page(zspage);
3783689a 976 do {
48b4800a
MK
977 VM_BUG_ON_PAGE(!PageLocked(page), page);
978 next = get_next_page(page);
3783689a 979 reset_page(page);
48b4800a 980 unlock_page(page);
91537fee 981 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
982 put_page(page);
983 page = next;
984 } while (page != NULL);
61989a80 985
3783689a 986 cache_free_zspage(pool, zspage);
48b4800a 987
4c7ac972
SS
988 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
989 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
48b4800a
MK
990}
991
992static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 struct zspage *zspage)
994{
995 VM_BUG_ON(get_zspage_inuse(zspage));
996 VM_BUG_ON(list_empty(&zspage->list));
997
b475d42d
MK
998 /*
999 * Since zs_free couldn't be sleepable, this function cannot call
1000 * lock_page. The page locks trylock_zspage got will be released
1001 * by __free_zspage.
1002 */
48b4800a
MK
1003 if (!trylock_zspage(zspage)) {
1004 kick_deferred_free(pool);
1005 return;
1006 }
1007
4c7ac972 1008 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
64f768c6
NP
1009#ifdef CONFIG_ZPOOL
1010 list_del(&zspage->lru);
1011#endif
48b4800a 1012 __free_zspage(pool, class, zspage);
61989a80
NG
1013}
1014
1015/* Initialize a newly allocated zspage */
3783689a 1016static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1017{
bfd093f5 1018 unsigned int freeobj = 1;
61989a80 1019 unsigned long off = 0;
48b4800a 1020 struct page *page = get_first_page(zspage);
830e4bc5 1021
61989a80
NG
1022 while (page) {
1023 struct page *next_page;
1024 struct link_free *link;
af4ee5e9 1025 void *vaddr;
61989a80 1026
3783689a 1027 set_first_obj_offset(page, off);
61989a80 1028
af4ee5e9
MK
1029 vaddr = kmap_atomic(page);
1030 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1031
1032 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1033 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1034 link += class->size / sizeof(*link);
61989a80
NG
1035 }
1036
1037 /*
1038 * We now come to the last (full or partial) object on this
1039 * page, which must point to the first object on the next
1040 * page (if present)
1041 */
1042 next_page = get_next_page(page);
bfd093f5 1043 if (next_page) {
3b1d9ca6 1044 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1045 } else {
1046 /*
3b1d9ca6 1047 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1048 * whether it's allocated object or not.
1049 */
01a6ad9a 1050 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1051 }
af4ee5e9 1052 kunmap_atomic(vaddr);
61989a80 1053 page = next_page;
5538c562 1054 off %= PAGE_SIZE;
61989a80 1055 }
bdb0af7c 1056
64f768c6
NP
1057#ifdef CONFIG_ZPOOL
1058 INIT_LIST_HEAD(&zspage->lru);
9997bc01 1059 zspage->under_reclaim = false;
64f768c6
NP
1060#endif
1061
bfd093f5 1062 set_freeobj(zspage, 0);
61989a80
NG
1063}
1064
48b4800a
MK
1065static void create_page_chain(struct size_class *class, struct zspage *zspage,
1066 struct page *pages[])
61989a80 1067{
bdb0af7c
MK
1068 int i;
1069 struct page *page;
1070 struct page *prev_page = NULL;
48b4800a 1071 int nr_pages = class->pages_per_zspage;
61989a80
NG
1072
1073 /*
1074 * Allocate individual pages and link them together as:
ffedd09f 1075 * 1. all pages are linked together using page->index
3783689a 1076 * 2. each sub-page point to zspage using page->private
61989a80 1077 *
3783689a 1078 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1079 * has this flag set).
61989a80 1080 */
bdb0af7c
MK
1081 for (i = 0; i < nr_pages; i++) {
1082 page = pages[i];
3783689a 1083 set_page_private(page, (unsigned long)zspage);
ffedd09f 1084 page->index = 0;
bdb0af7c 1085 if (i == 0) {
3783689a 1086 zspage->first_page = page;
a27545bf 1087 SetPagePrivate(page);
48b4800a
MK
1088 if (unlikely(class->objs_per_zspage == 1 &&
1089 class->pages_per_zspage == 1))
a41ec880 1090 SetZsHugePage(zspage);
3783689a 1091 } else {
ffedd09f 1092 prev_page->index = (unsigned long)page;
61989a80 1093 }
61989a80
NG
1094 prev_page = page;
1095 }
bdb0af7c 1096}
61989a80 1097
bdb0af7c
MK
1098/*
1099 * Allocate a zspage for the given size class
1100 */
3783689a
MK
1101static struct zspage *alloc_zspage(struct zs_pool *pool,
1102 struct size_class *class,
1103 gfp_t gfp)
bdb0af7c
MK
1104{
1105 int i;
bdb0af7c 1106 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1107 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1108
1109 if (!zspage)
1110 return NULL;
1111
48b4800a
MK
1112 zspage->magic = ZSPAGE_MAGIC;
1113 migrate_lock_init(zspage);
61989a80 1114
bdb0af7c
MK
1115 for (i = 0; i < class->pages_per_zspage; i++) {
1116 struct page *page;
61989a80 1117
3783689a 1118 page = alloc_page(gfp);
bdb0af7c 1119 if (!page) {
91537fee
MK
1120 while (--i >= 0) {
1121 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1122 __free_page(pages[i]);
91537fee 1123 }
3783689a 1124 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1125 return NULL;
1126 }
91537fee
MK
1127
1128 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1129 pages[i] = page;
61989a80
NG
1130 }
1131
48b4800a 1132 create_page_chain(class, zspage, pages);
3783689a 1133 init_zspage(class, zspage);
68f2736a 1134 zspage->pool = pool;
bdb0af7c 1135
3783689a 1136 return zspage;
61989a80
NG
1137}
1138
3783689a 1139static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1140{
1141 int i;
3783689a 1142 struct zspage *zspage;
61989a80 1143
4c7ac972 1144 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
3783689a 1145 zspage = list_first_entry_or_null(&class->fullness_list[i],
4c7ac972 1146 struct zspage, list);
3783689a 1147 if (zspage)
61989a80
NG
1148 break;
1149 }
1150
3783689a 1151 return zspage;
61989a80
NG
1152}
1153
f553646a
SJ
1154static inline int __zs_cpu_up(struct mapping_area *area)
1155{
1156 /*
1157 * Make sure we don't leak memory if a cpu UP notification
1158 * and zs_init() race and both call zs_cpu_up() on the same cpu
1159 */
1160 if (area->vm_buf)
1161 return 0;
40f9fb8c 1162 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1163 if (!area->vm_buf)
1164 return -ENOMEM;
1165 return 0;
1166}
1167
1168static inline void __zs_cpu_down(struct mapping_area *area)
1169{
40f9fb8c 1170 kfree(area->vm_buf);
f553646a
SJ
1171 area->vm_buf = NULL;
1172}
1173
1174static void *__zs_map_object(struct mapping_area *area,
1175 struct page *pages[2], int off, int size)
5f601902 1176{
5f601902
SJ
1177 int sizes[2];
1178 void *addr;
f553646a 1179 char *buf = area->vm_buf;
5f601902 1180
f553646a
SJ
1181 /* disable page faults to match kmap_atomic() return conditions */
1182 pagefault_disable();
1183
1184 /* no read fastpath */
1185 if (area->vm_mm == ZS_MM_WO)
1186 goto out;
5f601902
SJ
1187
1188 sizes[0] = PAGE_SIZE - off;
1189 sizes[1] = size - sizes[0];
1190
5f601902
SJ
1191 /* copy object to per-cpu buffer */
1192 addr = kmap_atomic(pages[0]);
1193 memcpy(buf, addr + off, sizes[0]);
1194 kunmap_atomic(addr);
1195 addr = kmap_atomic(pages[1]);
1196 memcpy(buf + sizes[0], addr, sizes[1]);
1197 kunmap_atomic(addr);
f553646a
SJ
1198out:
1199 return area->vm_buf;
5f601902
SJ
1200}
1201
f553646a
SJ
1202static void __zs_unmap_object(struct mapping_area *area,
1203 struct page *pages[2], int off, int size)
5f601902 1204{
5f601902
SJ
1205 int sizes[2];
1206 void *addr;
2e40e163 1207 char *buf;
5f601902 1208
f553646a
SJ
1209 /* no write fastpath */
1210 if (area->vm_mm == ZS_MM_RO)
1211 goto out;
5f601902 1212
7b60a685 1213 buf = area->vm_buf;
a82cbf07
YX
1214 buf = buf + ZS_HANDLE_SIZE;
1215 size -= ZS_HANDLE_SIZE;
1216 off += ZS_HANDLE_SIZE;
2e40e163 1217
5f601902
SJ
1218 sizes[0] = PAGE_SIZE - off;
1219 sizes[1] = size - sizes[0];
1220
1221 /* copy per-cpu buffer to object */
1222 addr = kmap_atomic(pages[0]);
1223 memcpy(addr + off, buf, sizes[0]);
1224 kunmap_atomic(addr);
1225 addr = kmap_atomic(pages[1]);
1226 memcpy(addr, buf + sizes[0], sizes[1]);
1227 kunmap_atomic(addr);
f553646a
SJ
1228
1229out:
1230 /* enable page faults to match kunmap_atomic() return conditions */
1231 pagefault_enable();
5f601902 1232}
61989a80 1233
215c89d0 1234static int zs_cpu_prepare(unsigned int cpu)
61989a80 1235{
61989a80
NG
1236 struct mapping_area *area;
1237
215c89d0
SAS
1238 area = &per_cpu(zs_map_area, cpu);
1239 return __zs_cpu_up(area);
61989a80
NG
1240}
1241
215c89d0 1242static int zs_cpu_dead(unsigned int cpu)
61989a80 1243{
215c89d0 1244 struct mapping_area *area;
40f9fb8c 1245
215c89d0
SAS
1246 area = &per_cpu(zs_map_area, cpu);
1247 __zs_cpu_down(area);
1248 return 0;
b1b00a5b
SS
1249}
1250
64d90465
GM
1251static bool can_merge(struct size_class *prev, int pages_per_zspage,
1252 int objs_per_zspage)
9eec4cd5 1253{
64d90465
GM
1254 if (prev->pages_per_zspage == pages_per_zspage &&
1255 prev->objs_per_zspage == objs_per_zspage)
1256 return true;
9eec4cd5 1257
64d90465 1258 return false;
9eec4cd5
JK
1259}
1260
3783689a 1261static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1262{
3783689a 1263 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1264}
7c2af309
AR
1265
1266/**
1267 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1268 * that hold objects of the provided size.
1269 * @pool: zsmalloc pool to use
1270 * @size: object size
1271 *
1272 * Context: Any context.
1273 *
1274 * Return: the index of the zsmalloc &size_class that hold objects of the
1275 * provided size.
1276 */
1277unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1278{
1279 struct size_class *class;
1280
1281 class = pool->size_class[get_size_class_index(size)];
1282
1283 return class->index;
1284}
1285EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1286
66cdef66
GM
1287unsigned long zs_get_total_pages(struct zs_pool *pool)
1288{
1289 return atomic_long_read(&pool->pages_allocated);
1290}
1291EXPORT_SYMBOL_GPL(zs_get_total_pages);
1292
4bbc0bc0 1293/**
66cdef66
GM
1294 * zs_map_object - get address of allocated object from handle.
1295 * @pool: pool from which the object was allocated
1296 * @handle: handle returned from zs_malloc
f0953a1b 1297 * @mm: mapping mode to use
4bbc0bc0 1298 *
66cdef66
GM
1299 * Before using an object allocated from zs_malloc, it must be mapped using
1300 * this function. When done with the object, it must be unmapped using
1301 * zs_unmap_object.
4bbc0bc0 1302 *
66cdef66
GM
1303 * Only one object can be mapped per cpu at a time. There is no protection
1304 * against nested mappings.
1305 *
1306 * This function returns with preemption and page faults disabled.
4bbc0bc0 1307 */
66cdef66
GM
1308void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1309 enum zs_mapmode mm)
61989a80 1310{
3783689a 1311 struct zspage *zspage;
66cdef66 1312 struct page *page;
bfd093f5
MK
1313 unsigned long obj, off;
1314 unsigned int obj_idx;
61989a80 1315
66cdef66
GM
1316 struct size_class *class;
1317 struct mapping_area *area;
1318 struct page *pages[2];
2e40e163 1319 void *ret;
61989a80 1320
9eec4cd5 1321 /*
66cdef66
GM
1322 * Because we use per-cpu mapping areas shared among the
1323 * pools/users, we can't allow mapping in interrupt context
1324 * because it can corrupt another users mappings.
9eec4cd5 1325 */
1aedcafb 1326 BUG_ON(in_interrupt());
61989a80 1327
b475d42d 1328 /* It guarantees it can get zspage from handle safely */
c0547d0b 1329 spin_lock(&pool->lock);
2e40e163
MK
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
3783689a 1332 zspage = get_zspage(page);
48b4800a 1333
64f768c6
NP
1334#ifdef CONFIG_ZPOOL
1335 /*
1336 * Move the zspage to front of pool's LRU.
1337 *
1338 * Note that this is swap-specific, so by definition there are no ongoing
1339 * accesses to the memory while the page is swapped out that would make
1340 * it "hot". A new entry is hot, then ages to the tail until it gets either
1341 * written back or swaps back in.
1342 *
1343 * Furthermore, map is also called during writeback. We must not put an
1344 * isolated page on the LRU mid-reclaim.
1345 *
1346 * As a result, only update the LRU when the page is mapped for write
1347 * when it's first instantiated.
1348 *
1349 * This is a deviation from the other backends, which perform this update
1350 * in the allocation function (zbud_alloc, z3fold_alloc).
1351 */
1352 if (mm == ZS_MM_WO) {
1353 if (!list_empty(&zspage->lru))
1354 list_del(&zspage->lru);
1355 list_add(&zspage->lru, &pool->lru);
1356 }
1357#endif
1358
b475d42d 1359 /*
c0547d0b 1360 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1361 * is too heavy since callers would take some time until they calls
1362 * zs_unmap_object API so delegate the locking from class to zspage
1363 * which is smaller granularity.
1364 */
48b4800a 1365 migrate_read_lock(zspage);
c0547d0b 1366 spin_unlock(&pool->lock);
48b4800a 1367
67f1c9cd 1368 class = zspage_class(pool, zspage);
bfd093f5 1369 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1370
a3726599
MG
1371 local_lock(&zs_map_area.lock);
1372 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1373 area->vm_mm = mm;
1374 if (off + class->size <= PAGE_SIZE) {
1375 /* this object is contained entirely within a page */
1376 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1377 ret = area->vm_addr + off;
1378 goto out;
61989a80
NG
1379 }
1380
66cdef66
GM
1381 /* this object spans two pages */
1382 pages[0] = page;
1383 pages[1] = get_next_page(page);
1384 BUG_ON(!pages[1]);
9eec4cd5 1385
2e40e163
MK
1386 ret = __zs_map_object(area, pages, off, class->size);
1387out:
a41ec880 1388 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1389 ret += ZS_HANDLE_SIZE;
1390
1391 return ret;
61989a80 1392}
66cdef66 1393EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1394
66cdef66 1395void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1396{
3783689a 1397 struct zspage *zspage;
66cdef66 1398 struct page *page;
bfd093f5
MK
1399 unsigned long obj, off;
1400 unsigned int obj_idx;
61989a80 1401
66cdef66
GM
1402 struct size_class *class;
1403 struct mapping_area *area;
9eec4cd5 1404
2e40e163
MK
1405 obj = handle_to_obj(handle);
1406 obj_to_location(obj, &page, &obj_idx);
3783689a 1407 zspage = get_zspage(page);
67f1c9cd 1408 class = zspage_class(pool, zspage);
bfd093f5 1409 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1410
66cdef66
GM
1411 area = this_cpu_ptr(&zs_map_area);
1412 if (off + class->size <= PAGE_SIZE)
1413 kunmap_atomic(area->vm_addr);
1414 else {
1415 struct page *pages[2];
40f9fb8c 1416
66cdef66
GM
1417 pages[0] = page;
1418 pages[1] = get_next_page(page);
1419 BUG_ON(!pages[1]);
1420
1421 __zs_unmap_object(area, pages, off, class->size);
1422 }
a3726599 1423 local_unlock(&zs_map_area.lock);
48b4800a
MK
1424
1425 migrate_read_unlock(zspage);
61989a80 1426}
66cdef66 1427EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1428
010b495e
SS
1429/**
1430 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1431 * zsmalloc &size_class.
1432 * @pool: zsmalloc pool to use
1433 *
1434 * The function returns the size of the first huge class - any object of equal
1435 * or bigger size will be stored in zspage consisting of a single physical
1436 * page.
1437 *
1438 * Context: Any context.
1439 *
1440 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1441 */
1442size_t zs_huge_class_size(struct zs_pool *pool)
1443{
1444 return huge_class_size;
1445}
1446EXPORT_SYMBOL_GPL(zs_huge_class_size);
1447
0a5f079b 1448static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1449 struct zspage *zspage, unsigned long handle)
c7806261 1450{
bfd093f5 1451 int i, nr_page, offset;
c7806261
MK
1452 unsigned long obj;
1453 struct link_free *link;
0a5f079b 1454 struct size_class *class;
c7806261
MK
1455
1456 struct page *m_page;
bfd093f5 1457 unsigned long m_offset;
c7806261
MK
1458 void *vaddr;
1459
0a5f079b 1460 class = pool->size_class[zspage->class];
312fcae2 1461 handle |= OBJ_ALLOCATED_TAG;
3783689a 1462 obj = get_freeobj(zspage);
bfd093f5
MK
1463
1464 offset = obj * class->size;
1465 nr_page = offset >> PAGE_SHIFT;
1466 m_offset = offset & ~PAGE_MASK;
1467 m_page = get_first_page(zspage);
1468
1469 for (i = 0; i < nr_page; i++)
1470 m_page = get_next_page(m_page);
c7806261
MK
1471
1472 vaddr = kmap_atomic(m_page);
1473 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1474 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1475 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1476 /* record handle in the header of allocated chunk */
1477 link->handle = handle;
1478 else
3783689a
MK
1479 /* record handle to page->index */
1480 zspage->first_page->index = handle;
1481
c7806261 1482 kunmap_atomic(vaddr);
3783689a 1483 mod_zspage_inuse(zspage, 1);
c7806261 1484
bfd093f5
MK
1485 obj = location_to_obj(m_page, obj);
1486
c7806261
MK
1487 return obj;
1488}
1489
1490
61989a80
NG
1491/**
1492 * zs_malloc - Allocate block of given size from pool.
1493 * @pool: pool to allocate from
1494 * @size: size of block to allocate
fd854463 1495 * @gfp: gfp flags when allocating object
61989a80 1496 *
00a61d86 1497 * On success, handle to the allocated object is returned,
c7e6f17b 1498 * otherwise an ERR_PTR().
61989a80
NG
1499 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1500 */
d0d8da2d 1501unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1502{
2e40e163 1503 unsigned long handle, obj;
61989a80 1504 struct size_class *class;
4c7ac972 1505 int newfg;
3783689a 1506 struct zspage *zspage;
61989a80 1507
7b60a685 1508 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1509 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1510
3783689a 1511 handle = cache_alloc_handle(pool, gfp);
2e40e163 1512 if (!handle)
c7e6f17b 1513 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1514
2e40e163
MK
1515 /* extra space in chunk to keep the handle */
1516 size += ZS_HANDLE_SIZE;
9eec4cd5 1517 class = pool->size_class[get_size_class_index(size)];
61989a80 1518
c0547d0b
NP
1519 /* pool->lock effectively protects the zpage migration */
1520 spin_lock(&pool->lock);
3783689a 1521 zspage = find_get_zspage(class);
48b4800a 1522 if (likely(zspage)) {
0a5f079b 1523 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1524 /* Now move the zspage to another fullness group, if required */
1525 fix_fullness_group(class, zspage);
1526 record_obj(handle, obj);
4c7ac972 1527 class_stat_inc(class, ZS_OBJS_INUSE, 1);
c0547d0b 1528 spin_unlock(&pool->lock);
61989a80 1529
48b4800a
MK
1530 return handle;
1531 }
0f050d99 1532
c0547d0b 1533 spin_unlock(&pool->lock);
48b4800a
MK
1534
1535 zspage = alloc_zspage(pool, class, gfp);
1536 if (!zspage) {
1537 cache_free_handle(pool, handle);
c7e6f17b 1538 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1539 }
1540
c0547d0b 1541 spin_lock(&pool->lock);
0a5f079b 1542 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1543 newfg = get_fullness_group(class, zspage);
1544 insert_zspage(class, zspage, newfg);
1545 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1546 record_obj(handle, obj);
4c7ac972
SS
1547 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1548 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1549 class_stat_inc(class, ZS_OBJS_INUSE, 1);
48b4800a
MK
1550
1551 /* We completely set up zspage so mark them as movable */
1552 SetZsPageMovable(pool, zspage);
c0547d0b 1553 spin_unlock(&pool->lock);
61989a80 1554
2e40e163 1555 return handle;
61989a80
NG
1556}
1557EXPORT_SYMBOL_GPL(zs_malloc);
1558
85b32581 1559static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
61989a80
NG
1560{
1561 struct link_free *link;
3783689a
MK
1562 struct zspage *zspage;
1563 struct page *f_page;
bfd093f5
MK
1564 unsigned long f_offset;
1565 unsigned int f_objidx;
af4ee5e9 1566 void *vaddr;
61989a80 1567
2e40e163 1568 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1569 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1570 zspage = get_zspage(f_page);
61989a80 1571
c7806261 1572 vaddr = kmap_atomic(f_page);
af4ee5e9 1573 link = (struct link_free *)(vaddr + f_offset);
85b32581
NP
1574
1575 if (handle) {
1576#ifdef CONFIG_ZPOOL
1577 /* Stores the (deferred) handle in the object's header */
1578 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1579 *handle &= ~OBJ_ALLOCATED_TAG;
1580
1581 if (likely(!ZsHugePage(zspage)))
1582 link->deferred_handle = *handle;
1583 else
1584 f_page->index = *handle;
1585#endif
1586 } else {
1587 /* Insert this object in containing zspage's freelist */
1588 if (likely(!ZsHugePage(zspage)))
1589 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1590 else
1591 f_page->index = 0;
1592 set_freeobj(zspage, f_objidx);
1593 }
1594
af4ee5e9 1595 kunmap_atomic(vaddr);
3783689a 1596 mod_zspage_inuse(zspage, -1);
c7806261
MK
1597}
1598
1599void zs_free(struct zs_pool *pool, unsigned long handle)
1600{
3783689a
MK
1601 struct zspage *zspage;
1602 struct page *f_page;
bfd093f5 1603 unsigned long obj;
c7806261 1604 struct size_class *class;
4c7ac972 1605 int fullness;
c7806261 1606
a5d21721 1607 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1608 return;
1609
b475d42d 1610 /*
c0547d0b 1611 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1612 * so it's safe to get the page from handle.
1613 */
c0547d0b 1614 spin_lock(&pool->lock);
c7806261 1615 obj = handle_to_obj(handle);
67f1c9cd 1616 obj_to_page(obj, &f_page);
3783689a 1617 zspage = get_zspage(f_page);
67f1c9cd 1618 class = zspage_class(pool, zspage);
b475d42d 1619
4c7ac972 1620 class_stat_dec(class, ZS_OBJS_INUSE, 1);
9997bc01
NP
1621
1622#ifdef CONFIG_ZPOOL
1623 if (zspage->under_reclaim) {
1624 /*
1625 * Reclaim needs the handles during writeback. It'll free
1626 * them along with the zspage when it's done with them.
1627 *
85b32581 1628 * Record current deferred handle in the object's header.
9997bc01 1629 */
85b32581 1630 obj_free(class->size, obj, &handle);
9997bc01
NP
1631 spin_unlock(&pool->lock);
1632 return;
1633 }
1634#endif
85b32581
NP
1635 obj_free(class->size, obj, NULL);
1636
3783689a 1637 fullness = fix_fullness_group(class, zspage);
4c7ac972 1638 if (fullness == ZS_INUSE_RATIO_0)
9997bc01 1639 free_zspage(pool, class, zspage);
48b4800a 1640
c0547d0b 1641 spin_unlock(&pool->lock);
3783689a 1642 cache_free_handle(pool, handle);
312fcae2
MK
1643}
1644EXPORT_SYMBOL_GPL(zs_free);
1645
251cbb95
MK
1646static void zs_object_copy(struct size_class *class, unsigned long dst,
1647 unsigned long src)
312fcae2
MK
1648{
1649 struct page *s_page, *d_page;
bfd093f5 1650 unsigned int s_objidx, d_objidx;
312fcae2
MK
1651 unsigned long s_off, d_off;
1652 void *s_addr, *d_addr;
1653 int s_size, d_size, size;
1654 int written = 0;
1655
1656 s_size = d_size = class->size;
1657
1658 obj_to_location(src, &s_page, &s_objidx);
1659 obj_to_location(dst, &d_page, &d_objidx);
1660
bfd093f5
MK
1661 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1662 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1663
1664 if (s_off + class->size > PAGE_SIZE)
1665 s_size = PAGE_SIZE - s_off;
1666
1667 if (d_off + class->size > PAGE_SIZE)
1668 d_size = PAGE_SIZE - d_off;
1669
1670 s_addr = kmap_atomic(s_page);
1671 d_addr = kmap_atomic(d_page);
1672
1673 while (1) {
1674 size = min(s_size, d_size);
1675 memcpy(d_addr + d_off, s_addr + s_off, size);
1676 written += size;
1677
1678 if (written == class->size)
1679 break;
1680
495819ea
SS
1681 s_off += size;
1682 s_size -= size;
1683 d_off += size;
1684 d_size -= size;
1685
050a388b
AR
1686 /*
1687 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1688 * calls must occurs in reverse order of calls to kmap_atomic().
1689 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1690 * kunmap_atomic(d_addr). For more details see
1691 * Documentation/mm/highmem.rst.
050a388b 1692 */
495819ea 1693 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1694 kunmap_atomic(d_addr);
1695 kunmap_atomic(s_addr);
1696 s_page = get_next_page(s_page);
312fcae2
MK
1697 s_addr = kmap_atomic(s_page);
1698 d_addr = kmap_atomic(d_page);
1699 s_size = class->size - written;
1700 s_off = 0;
312fcae2
MK
1701 }
1702
495819ea 1703 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1704 kunmap_atomic(d_addr);
1705 d_page = get_next_page(d_page);
312fcae2
MK
1706 d_addr = kmap_atomic(d_page);
1707 d_size = class->size - written;
1708 d_off = 0;
312fcae2
MK
1709 }
1710 }
1711
1712 kunmap_atomic(d_addr);
1713 kunmap_atomic(s_addr);
1714}
1715
1716/*
85b32581 1717 * Find object with a certain tag in zspage from index object and
312fcae2
MK
1718 * return handle.
1719 */
85b32581
NP
1720static unsigned long find_tagged_obj(struct size_class *class,
1721 struct page *page, int *obj_idx, int tag)
312fcae2 1722{
671f2fa8 1723 unsigned int offset;
cf675acb 1724 int index = *obj_idx;
312fcae2
MK
1725 unsigned long handle = 0;
1726 void *addr = kmap_atomic(page);
1727
3783689a 1728 offset = get_first_obj_offset(page);
312fcae2
MK
1729 offset += class->size * index;
1730
1731 while (offset < PAGE_SIZE) {
85b32581 1732 if (obj_tagged(page, addr + offset, &handle, tag))
b475d42d 1733 break;
312fcae2
MK
1734
1735 offset += class->size;
1736 index++;
1737 }
1738
1739 kunmap_atomic(addr);
cf675acb
GM
1740
1741 *obj_idx = index;
1742
312fcae2
MK
1743 return handle;
1744}
1745
85b32581
NP
1746/*
1747 * Find alloced object in zspage from index object and
1748 * return handle.
1749 */
1750static unsigned long find_alloced_obj(struct size_class *class,
1751 struct page *page, int *obj_idx)
1752{
1753 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1754}
1755
1756#ifdef CONFIG_ZPOOL
1757/*
1758 * Find object storing a deferred handle in header in zspage from index object
1759 * and return handle.
1760 */
1761static unsigned long find_deferred_handle_obj(struct size_class *class,
1762 struct page *page, int *obj_idx)
1763{
1764 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1765}
1766#endif
1767
312fcae2 1768struct zs_compact_control {
3783689a 1769 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1770 struct page *s_page;
1771 /* Destination page for migration which should be a first page
1772 * of zspage. */
1773 struct page *d_page;
1774 /* Starting object index within @s_page which used for live object
1775 * in the subpage. */
41b88e14 1776 int obj_idx;
312fcae2
MK
1777};
1778
5a845e9f
SS
1779static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1780 struct zs_compact_control *cc)
312fcae2
MK
1781{
1782 unsigned long used_obj, free_obj;
1783 unsigned long handle;
1784 struct page *s_page = cc->s_page;
1785 struct page *d_page = cc->d_page;
41b88e14 1786 int obj_idx = cc->obj_idx;
312fcae2
MK
1787
1788 while (1) {
cf675acb 1789 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1790 if (!handle) {
1791 s_page = get_next_page(s_page);
1792 if (!s_page)
1793 break;
41b88e14 1794 obj_idx = 0;
312fcae2
MK
1795 continue;
1796 }
1797
1798 /* Stop if there is no more space */
5a845e9f 1799 if (zspage_full(class, get_zspage(d_page)))
312fcae2 1800 break;
312fcae2
MK
1801
1802 used_obj = handle_to_obj(handle);
0a5f079b 1803 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1804 zs_object_copy(class, free_obj, used_obj);
41b88e14 1805 obj_idx++;
312fcae2 1806 record_obj(handle, free_obj);
85b32581 1807 obj_free(class->size, used_obj, NULL);
312fcae2
MK
1808 }
1809
1810 /* Remember last position in this iteration */
1811 cc->s_page = s_page;
41b88e14 1812 cc->obj_idx = obj_idx;
312fcae2
MK
1813}
1814
4c7ac972 1815static struct zspage *isolate_src_zspage(struct size_class *class)
312fcae2 1816{
3783689a 1817 struct zspage *zspage;
4c7ac972 1818 int fg;
312fcae2 1819
4c7ac972
SS
1820 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1821 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1822 struct zspage, list);
1823 if (zspage) {
1824 remove_zspage(class, zspage, fg);
1825 return zspage;
1826 }
3783689a
MK
1827 }
1828
4c7ac972
SS
1829 return zspage;
1830}
1831
1832static struct zspage *isolate_dst_zspage(struct size_class *class)
1833{
1834 struct zspage *zspage;
1835 int fg;
1836
1837 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1838 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1839 struct zspage, list);
3783689a 1840 if (zspage) {
4c7ac972 1841 remove_zspage(class, zspage, fg);
3783689a 1842 return zspage;
312fcae2
MK
1843 }
1844 }
1845
3783689a 1846 return zspage;
312fcae2
MK
1847}
1848
860c707d 1849/*
3783689a 1850 * putback_zspage - add @zspage into right class's fullness list
860c707d 1851 * @class: destination class
3783689a 1852 * @zspage: target page
860c707d 1853 *
4c7ac972 1854 * Return @zspage's fullness status
860c707d 1855 */
4c7ac972 1856static int putback_zspage(struct size_class *class, struct zspage *zspage)
312fcae2 1857{
4c7ac972 1858 int fullness;
312fcae2 1859
3783689a
MK
1860 fullness = get_fullness_group(class, zspage);
1861 insert_zspage(class, zspage, fullness);
1862 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1863
860c707d 1864 return fullness;
61989a80 1865}
312fcae2 1866
9997bc01 1867#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
4d0a5402
CIK
1868/*
1869 * To prevent zspage destroy during migration, zspage freeing should
1870 * hold locks of all pages in the zspage.
1871 */
1872static void lock_zspage(struct zspage *zspage)
1873{
2505a981 1874 struct page *curr_page, *page;
4d0a5402 1875
2505a981
SA
1876 /*
1877 * Pages we haven't locked yet can be migrated off the list while we're
1878 * trying to lock them, so we need to be careful and only attempt to
1879 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1880 * may no longer belong to the zspage. This means that we may wait for
1881 * the wrong page to unlock, so we must take a reference to the page
1882 * prior to waiting for it to unlock outside migrate_read_lock().
1883 */
1884 while (1) {
1885 migrate_read_lock(zspage);
1886 page = get_first_page(zspage);
1887 if (trylock_page(page))
1888 break;
1889 get_page(page);
1890 migrate_read_unlock(zspage);
1891 wait_on_page_locked(page);
1892 put_page(page);
1893 }
1894
1895 curr_page = page;
1896 while ((page = get_next_page(curr_page))) {
1897 if (trylock_page(page)) {
1898 curr_page = page;
1899 } else {
1900 get_page(page);
1901 migrate_read_unlock(zspage);
1902 wait_on_page_locked(page);
1903 put_page(page);
1904 migrate_read_lock(zspage);
1905 }
1906 }
1907 migrate_read_unlock(zspage);
4d0a5402 1908}
9997bc01
NP
1909#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1910
1911#ifdef CONFIG_ZPOOL
1912/*
1913 * Unlocks all the pages of the zspage.
1914 *
1915 * pool->lock must be held before this function is called
1916 * to prevent the underlying pages from migrating.
1917 */
1918static void unlock_zspage(struct zspage *zspage)
1919{
1920 struct page *page = get_first_page(zspage);
1921
1922 do {
1923 unlock_page(page);
1924 } while ((page = get_next_page(page)) != NULL);
1925}
1926#endif /* CONFIG_ZPOOL */
4d0a5402 1927
48b4800a
MK
1928static void migrate_lock_init(struct zspage *zspage)
1929{
1930 rwlock_init(&zspage->lock);
1931}
1932
cfc451cf 1933static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1934{
1935 read_lock(&zspage->lock);
1936}
1937
8a374ccc 1938static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1939{
1940 read_unlock(&zspage->lock);
1941}
1942
9997bc01 1943#ifdef CONFIG_COMPACTION
48b4800a
MK
1944static void migrate_write_lock(struct zspage *zspage)
1945{
1946 write_lock(&zspage->lock);
1947}
1948
b475d42d
MK
1949static void migrate_write_lock_nested(struct zspage *zspage)
1950{
1951 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1952}
1953
48b4800a
MK
1954static void migrate_write_unlock(struct zspage *zspage)
1955{
1956 write_unlock(&zspage->lock);
1957}
1958
1959/* Number of isolated subpage for *page migration* in this zspage */
1960static void inc_zspage_isolation(struct zspage *zspage)
1961{
1962 zspage->isolated++;
1963}
1964
1965static void dec_zspage_isolation(struct zspage *zspage)
1966{
c4549b87 1967 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1968 zspage->isolated--;
1969}
1970
68f2736a
MWO
1971static const struct movable_operations zsmalloc_mops;
1972
48b4800a
MK
1973static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1974 struct page *newpage, struct page *oldpage)
1975{
1976 struct page *page;
1977 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1978 int idx = 0;
1979
1980 page = get_first_page(zspage);
1981 do {
1982 if (page == oldpage)
1983 pages[idx] = newpage;
1984 else
1985 pages[idx] = page;
1986 idx++;
1987 } while ((page = get_next_page(page)) != NULL);
1988
1989 create_page_chain(class, zspage, pages);
1990 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1991 if (unlikely(ZsHugePage(zspage)))
48b4800a 1992 newpage->index = oldpage->index;
68f2736a 1993 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1994}
1995
4d0a5402 1996static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1997{
48b4800a 1998 struct zspage *zspage;
48b4800a
MK
1999
2000 /*
2001 * Page is locked so zspage couldn't be destroyed. For detail, look at
2002 * lock_zspage in free_zspage.
2003 */
48b4800a
MK
2004 VM_BUG_ON_PAGE(PageIsolated(page), page);
2005
2006 zspage = get_zspage(page);
c4549b87 2007 migrate_write_lock(zspage);
48b4800a 2008 inc_zspage_isolation(zspage);
c4549b87 2009 migrate_write_unlock(zspage);
48b4800a
MK
2010
2011 return true;
2012}
2013
68f2736a
MWO
2014static int zs_page_migrate(struct page *newpage, struct page *page,
2015 enum migrate_mode mode)
48b4800a
MK
2016{
2017 struct zs_pool *pool;
2018 struct size_class *class;
48b4800a
MK
2019 struct zspage *zspage;
2020 struct page *dummy;
2021 void *s_addr, *d_addr, *addr;
671f2fa8 2022 unsigned int offset;
3ae92ac2 2023 unsigned long handle;
48b4800a
MK
2024 unsigned long old_obj, new_obj;
2025 unsigned int obj_idx;
48b4800a 2026
2916ecc0
JG
2027 /*
2028 * We cannot support the _NO_COPY case here, because copy needs to
2029 * happen under the zs lock, which does not work with
2030 * MIGRATE_SYNC_NO_COPY workflow.
2031 */
2032 if (mode == MIGRATE_SYNC_NO_COPY)
2033 return -EINVAL;
2034
48b4800a
MK
2035 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2036
68f2736a
MWO
2037 /* The page is locked, so this pointer must remain valid */
2038 zspage = get_zspage(page);
2039 pool = zspage->pool;
b475d42d
MK
2040
2041 /*
c0547d0b 2042 * The pool's lock protects the race between zpage migration
b475d42d
MK
2043 * and zs_free.
2044 */
c0547d0b 2045 spin_lock(&pool->lock);
67f1c9cd 2046 class = zspage_class(pool, zspage);
48b4800a 2047
b475d42d
MK
2048 /* the migrate_write_lock protects zpage access via zs_map_object */
2049 migrate_write_lock(zspage);
48b4800a 2050
b475d42d 2051 offset = get_first_obj_offset(page);
48b4800a 2052 s_addr = kmap_atomic(page);
48b4800a
MK
2053
2054 /*
2055 * Here, any user cannot access all objects in the zspage so let's move.
2056 */
2057 d_addr = kmap_atomic(newpage);
2058 memcpy(d_addr, s_addr, PAGE_SIZE);
2059 kunmap_atomic(d_addr);
2060
b475d42d 2061 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 2062 addr += class->size) {
3ae92ac2 2063 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
2064
2065 old_obj = handle_to_obj(handle);
2066 obj_to_location(old_obj, &dummy, &obj_idx);
2067 new_obj = (unsigned long)location_to_obj(newpage,
2068 obj_idx);
48b4800a
MK
2069 record_obj(handle, new_obj);
2070 }
2071 }
b475d42d 2072 kunmap_atomic(s_addr);
48b4800a
MK
2073
2074 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
2075 /*
2076 * Since we complete the data copy and set up new zspage structure,
c0547d0b 2077 * it's okay to release the pool's lock.
b475d42d 2078 */
c0547d0b 2079 spin_unlock(&pool->lock);
48b4800a 2080 dec_zspage_isolation(zspage);
b475d42d 2081 migrate_write_unlock(zspage);
48b4800a 2082
b475d42d 2083 get_page(newpage);
ac8f05da
CM
2084 if (page_zone(newpage) != page_zone(page)) {
2085 dec_zone_page_state(page, NR_ZSPAGES);
2086 inc_zone_page_state(newpage, NR_ZSPAGES);
2087 }
2088
48b4800a
MK
2089 reset_page(page);
2090 put_page(page);
48b4800a 2091
b475d42d 2092 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
2093}
2094
4d0a5402 2095static void zs_page_putback(struct page *page)
48b4800a 2096{
48b4800a
MK
2097 struct zspage *zspage;
2098
48b4800a
MK
2099 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2100
2101 zspage = get_zspage(page);
c4549b87 2102 migrate_write_lock(zspage);
48b4800a 2103 dec_zspage_isolation(zspage);
c4549b87 2104 migrate_write_unlock(zspage);
48b4800a
MK
2105}
2106
68f2736a 2107static const struct movable_operations zsmalloc_mops = {
48b4800a 2108 .isolate_page = zs_page_isolate,
68f2736a 2109 .migrate_page = zs_page_migrate,
48b4800a
MK
2110 .putback_page = zs_page_putback,
2111};
2112
48b4800a
MK
2113/*
2114 * Caller should hold page_lock of all pages in the zspage
2115 * In here, we cannot use zspage meta data.
2116 */
2117static void async_free_zspage(struct work_struct *work)
2118{
2119 int i;
2120 struct size_class *class;
2121 unsigned int class_idx;
4c7ac972 2122 int fullness;
48b4800a
MK
2123 struct zspage *zspage, *tmp;
2124 LIST_HEAD(free_pages);
2125 struct zs_pool *pool = container_of(work, struct zs_pool,
2126 free_work);
2127
cf8e0fed 2128 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2129 class = pool->size_class[i];
2130 if (class->index != i)
2131 continue;
2132
c0547d0b 2133 spin_lock(&pool->lock);
4c7ac972
SS
2134 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2135 &free_pages);
c0547d0b 2136 spin_unlock(&pool->lock);
48b4800a
MK
2137 }
2138
48b4800a
MK
2139 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2140 list_del(&zspage->list);
2141 lock_zspage(zspage);
2142
2143 get_zspage_mapping(zspage, &class_idx, &fullness);
4c7ac972 2144 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
48b4800a 2145 class = pool->size_class[class_idx];
c0547d0b 2146 spin_lock(&pool->lock);
64f768c6
NP
2147#ifdef CONFIG_ZPOOL
2148 list_del(&zspage->lru);
2149#endif
33848337 2150 __free_zspage(pool, class, zspage);
c0547d0b 2151 spin_unlock(&pool->lock);
48b4800a
MK
2152 }
2153};
2154
2155static void kick_deferred_free(struct zs_pool *pool)
2156{
2157 schedule_work(&pool->free_work);
2158}
2159
68f2736a
MWO
2160static void zs_flush_migration(struct zs_pool *pool)
2161{
2162 flush_work(&pool->free_work);
2163}
2164
48b4800a
MK
2165static void init_deferred_free(struct zs_pool *pool)
2166{
2167 INIT_WORK(&pool->free_work, async_free_zspage);
2168}
2169
2170static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2171{
2172 struct page *page = get_first_page(zspage);
2173
2174 do {
2175 WARN_ON(!trylock_page(page));
68f2736a 2176 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2177 unlock_page(page);
2178 } while ((page = get_next_page(page)) != NULL);
2179}
68f2736a
MWO
2180#else
2181static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2182#endif
2183
04f05909
SS
2184/*
2185 *
2186 * Based on the number of unused allocated objects calculate
2187 * and return the number of pages that we can free.
04f05909
SS
2188 */
2189static unsigned long zs_can_compact(struct size_class *class)
2190{
2191 unsigned long obj_wasted;
4c7ac972
SS
2192 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2193 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
04f05909 2194
44f43e99
SS
2195 if (obj_allocated <= obj_used)
2196 return 0;
04f05909 2197
44f43e99 2198 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2199 obj_wasted /= class->objs_per_zspage;
04f05909 2200
6cbf16b3 2201 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2202}
2203
23959281
RY
2204static unsigned long __zs_compact(struct zs_pool *pool,
2205 struct size_class *class)
312fcae2 2206{
312fcae2 2207 struct zs_compact_control cc;
5a845e9f 2208 struct zspage *src_zspage = NULL;
3783689a 2209 struct zspage *dst_zspage = NULL;
23959281 2210 unsigned long pages_freed = 0;
312fcae2 2211
c0547d0b
NP
2212 /*
2213 * protect the race between zpage migration and zs_free
2214 * as well as zpage allocation/free
2215 */
2216 spin_lock(&pool->lock);
5a845e9f
SS
2217 while (zs_can_compact(class)) {
2218 int fg;
312fcae2 2219
5a845e9f
SS
2220 if (!dst_zspage) {
2221 dst_zspage = isolate_dst_zspage(class);
2222 if (!dst_zspage)
2223 break;
2224 migrate_write_lock(dst_zspage);
2225 cc.d_page = get_first_page(dst_zspage);
2226 }
2227
2228 src_zspage = isolate_src_zspage(class);
2229 if (!src_zspage)
04f05909
SS
2230 break;
2231
5a845e9f
SS
2232 migrate_write_lock_nested(src_zspage);
2233
41b88e14 2234 cc.obj_idx = 0;
48b4800a 2235 cc.s_page = get_first_page(src_zspage);
5a845e9f
SS
2236 migrate_zspage(pool, class, &cc);
2237 fg = putback_zspage(class, src_zspage);
2238 migrate_write_unlock(src_zspage);
312fcae2 2239
5a845e9f
SS
2240 if (fg == ZS_INUSE_RATIO_0) {
2241 free_zspage(pool, class, src_zspage);
2242 pages_freed += class->pages_per_zspage;
5a845e9f 2243 }
f7ddb612 2244 src_zspage = NULL;
312fcae2 2245
5a845e9f
SS
2246 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2247 || spin_is_contended(&pool->lock)) {
4aa409ca 2248 putback_zspage(class, dst_zspage);
b475d42d
MK
2249 migrate_write_unlock(dst_zspage);
2250 dst_zspage = NULL;
b475d42d 2251
5a845e9f
SS
2252 spin_unlock(&pool->lock);
2253 cond_resched();
2254 spin_lock(&pool->lock);
2255 }
312fcae2
MK
2256 }
2257
b475d42d 2258 if (src_zspage) {
4aa409ca 2259 putback_zspage(class, src_zspage);
b475d42d
MK
2260 migrate_write_unlock(src_zspage);
2261 }
312fcae2 2262
5a845e9f
SS
2263 if (dst_zspage) {
2264 putback_zspage(class, dst_zspage);
2265 migrate_write_unlock(dst_zspage);
2266 }
c0547d0b 2267 spin_unlock(&pool->lock);
23959281
RY
2268
2269 return pages_freed;
312fcae2
MK
2270}
2271
2272unsigned long zs_compact(struct zs_pool *pool)
2273{
2274 int i;
312fcae2 2275 struct size_class *class;
23959281 2276 unsigned long pages_freed = 0;
312fcae2 2277
d2658f20
SS
2278 /*
2279 * Pool compaction is performed under pool->lock so it is basically
2280 * single-threaded. Having more than one thread in __zs_compact()
2281 * will increase pool->lock contention, which will impact other
2282 * zsmalloc operations that need pool->lock.
2283 */
2284 if (atomic_xchg(&pool->compaction_in_progress, 1))
2285 return 0;
2286
cf8e0fed 2287 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2288 class = pool->size_class[i];
312fcae2
MK
2289 if (class->index != i)
2290 continue;
23959281 2291 pages_freed += __zs_compact(pool, class);
312fcae2 2292 }
23959281 2293 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
d2658f20 2294 atomic_set(&pool->compaction_in_progress, 0);
312fcae2 2295
23959281 2296 return pages_freed;
312fcae2
MK
2297}
2298EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2299
7d3f3938
SS
2300void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2301{
2302 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2303}
2304EXPORT_SYMBOL_GPL(zs_pool_stats);
2305
ab9d306d
SS
2306static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2307 struct shrink_control *sc)
2308{
2309 unsigned long pages_freed;
2310 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2311 shrinker);
2312
ab9d306d
SS
2313 /*
2314 * Compact classes and calculate compaction delta.
2315 * Can run concurrently with a manually triggered
2316 * (by user) compaction.
2317 */
23959281 2318 pages_freed = zs_compact(pool);
ab9d306d
SS
2319
2320 return pages_freed ? pages_freed : SHRINK_STOP;
2321}
2322
2323static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2324 struct shrink_control *sc)
2325{
2326 int i;
2327 struct size_class *class;
2328 unsigned long pages_to_free = 0;
2329 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2330 shrinker);
2331
cf8e0fed 2332 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2333 class = pool->size_class[i];
ab9d306d
SS
2334 if (class->index != i)
2335 continue;
2336
ab9d306d 2337 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2338 }
2339
2340 return pages_to_free;
2341}
2342
2343static void zs_unregister_shrinker(struct zs_pool *pool)
2344{
93144ca3 2345 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2346}
2347
2348static int zs_register_shrinker(struct zs_pool *pool)
2349{
2350 pool->shrinker.scan_objects = zs_shrinker_scan;
2351 pool->shrinker.count_objects = zs_shrinker_count;
2352 pool->shrinker.batch = 0;
2353 pool->shrinker.seeks = DEFAULT_SEEKS;
2354
e33c267a
RG
2355 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2356 pool->name);
ab9d306d
SS
2357}
2358
6260ae35
SS
2359static int calculate_zspage_chain_size(int class_size)
2360{
2361 int i, min_waste = INT_MAX;
2362 int chain_size = 1;
2363
e1d1f354
SS
2364 if (is_power_of_2(class_size))
2365 return chain_size;
2366
6260ae35
SS
2367 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2368 int waste;
2369
2370 waste = (i * PAGE_SIZE) % class_size;
2371 if (waste < min_waste) {
2372 min_waste = waste;
2373 chain_size = i;
2374 }
2375 }
2376
2377 return chain_size;
2378}
2379
00a61d86 2380/**
66cdef66 2381 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2382 * @name: pool name to be created
166cfda7 2383 *
66cdef66
GM
2384 * This function must be called before anything when using
2385 * the zsmalloc allocator.
166cfda7 2386 *
66cdef66
GM
2387 * On success, a pointer to the newly created pool is returned,
2388 * otherwise NULL.
396b7fd6 2389 */
d0d8da2d 2390struct zs_pool *zs_create_pool(const char *name)
61989a80 2391{
66cdef66
GM
2392 int i;
2393 struct zs_pool *pool;
2394 struct size_class *prev_class = NULL;
61989a80 2395
66cdef66
GM
2396 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2397 if (!pool)
2398 return NULL;
61989a80 2399
48b4800a 2400 init_deferred_free(pool);
c0547d0b 2401 spin_lock_init(&pool->lock);
d2658f20 2402 atomic_set(&pool->compaction_in_progress, 0);
61989a80 2403
2e40e163
MK
2404 pool->name = kstrdup(name, GFP_KERNEL);
2405 if (!pool->name)
2406 goto err;
2407
3783689a 2408 if (create_cache(pool))
2e40e163
MK
2409 goto err;
2410
c60369f0 2411 /*
399d8eeb 2412 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2413 * for merging should be larger or equal to current size.
c60369f0 2414 */
cf8e0fed 2415 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2416 int size;
2417 int pages_per_zspage;
64d90465 2418 int objs_per_zspage;
66cdef66 2419 struct size_class *class;
4c7ac972 2420 int fullness;
c60369f0 2421
66cdef66
GM
2422 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2423 if (size > ZS_MAX_ALLOC_SIZE)
2424 size = ZS_MAX_ALLOC_SIZE;
6260ae35 2425 pages_per_zspage = calculate_zspage_chain_size(size);
64d90465 2426 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2427
010b495e
SS
2428 /*
2429 * We iterate from biggest down to smallest classes,
2430 * so huge_class_size holds the size of the first huge
2431 * class. Any object bigger than or equal to that will
2432 * endup in the huge class.
2433 */
2434 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2435 !huge_class_size) {
2436 huge_class_size = size;
2437 /*
2438 * The object uses ZS_HANDLE_SIZE bytes to store the
2439 * handle. We need to subtract it, because zs_malloc()
2440 * unconditionally adds handle size before it performs
2441 * size class search - so object may be smaller than
2442 * huge class size, yet it still can end up in the huge
2443 * class because it grows by ZS_HANDLE_SIZE extra bytes
2444 * right before class lookup.
2445 */
2446 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2447 }
2448
66cdef66
GM
2449 /*
2450 * size_class is used for normal zsmalloc operation such
2451 * as alloc/free for that size. Although it is natural that we
2452 * have one size_class for each size, there is a chance that we
2453 * can get more memory utilization if we use one size_class for
2454 * many different sizes whose size_class have same
2455 * characteristics. So, we makes size_class point to
2456 * previous size_class if possible.
2457 */
2458 if (prev_class) {
64d90465 2459 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2460 pool->size_class[i] = prev_class;
2461 continue;
2462 }
2463 }
2464
2465 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2466 if (!class)
2467 goto err;
2468
2469 class->size = size;
2470 class->index = i;
2471 class->pages_per_zspage = pages_per_zspage;
64d90465 2472 class->objs_per_zspage = objs_per_zspage;
66cdef66 2473 pool->size_class[i] = class;
4c7ac972
SS
2474
2475 fullness = ZS_INUSE_RATIO_0;
2476 while (fullness < NR_FULLNESS_GROUPS) {
3783689a 2477 INIT_LIST_HEAD(&class->fullness_list[fullness]);
4c7ac972
SS
2478 fullness++;
2479 }
66cdef66
GM
2480
2481 prev_class = class;
61989a80
NG
2482 }
2483
d34f6157
DS
2484 /* debug only, don't abort if it fails */
2485 zs_pool_stat_create(pool, name);
0f050d99 2486
ab9d306d 2487 /*
93144ca3
AK
2488 * Not critical since shrinker is only used to trigger internal
2489 * defragmentation of the pool which is pretty optional thing. If
2490 * registration fails we still can use the pool normally and user can
2491 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2492 */
93144ca3
AK
2493 zs_register_shrinker(pool);
2494
64f768c6
NP
2495#ifdef CONFIG_ZPOOL
2496 INIT_LIST_HEAD(&pool->lru);
2497#endif
2498
66cdef66
GM
2499 return pool;
2500
2501err:
2502 zs_destroy_pool(pool);
2503 return NULL;
61989a80 2504}
66cdef66 2505EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2506
66cdef66 2507void zs_destroy_pool(struct zs_pool *pool)
61989a80 2508{
66cdef66 2509 int i;
61989a80 2510
ab9d306d 2511 zs_unregister_shrinker(pool);
68f2736a 2512 zs_flush_migration(pool);
0f050d99
GM
2513 zs_pool_stat_destroy(pool);
2514
cf8e0fed 2515 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2516 int fg;
2517 struct size_class *class = pool->size_class[i];
61989a80 2518
4249a05f
AR
2519 if (!class)
2520 continue;
2521
66cdef66
GM
2522 if (class->index != i)
2523 continue;
61989a80 2524
4c7ac972
SS
2525 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2526 if (list_empty(&class->fullness_list[fg]))
2527 continue;
2528
2529 pr_err("Class-%d fullness group %d is not empty\n",
2530 class->size, fg);
66cdef66
GM
2531 }
2532 kfree(class);
2533 }
f553646a 2534
3783689a 2535 destroy_cache(pool);
0f050d99 2536 kfree(pool->name);
66cdef66
GM
2537 kfree(pool);
2538}
2539EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2540
9997bc01 2541#ifdef CONFIG_ZPOOL
85b32581
NP
2542static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2543 struct zspage *zspage)
2544{
2545 unsigned int obj_idx = 0;
2546 unsigned long handle, off = 0; /* off is within-page offset */
2547 struct page *page = get_first_page(zspage);
2548 struct link_free *prev_free = NULL;
2549 void *prev_page_vaddr = NULL;
2550
2551 /* in case no free object found */
2552 set_freeobj(zspage, (unsigned int)(-1UL));
2553
2554 while (page) {
2555 void *vaddr = kmap_atomic(page);
2556 struct page *next_page;
2557
2558 while (off < PAGE_SIZE) {
2559 void *obj_addr = vaddr + off;
2560
2561 /* skip allocated object */
2562 if (obj_allocated(page, obj_addr, &handle)) {
2563 obj_idx++;
2564 off += class->size;
2565 continue;
2566 }
2567
2568 /* free deferred handle from reclaim attempt */
2569 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2570 cache_free_handle(pool, handle);
2571
2572 if (prev_free)
2573 prev_free->next = obj_idx << OBJ_TAG_BITS;
2574 else /* first free object found */
2575 set_freeobj(zspage, obj_idx);
2576
2577 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2578 /* if last free object in a previous page, need to unmap */
2579 if (prev_page_vaddr) {
2580 kunmap_atomic(prev_page_vaddr);
2581 prev_page_vaddr = NULL;
2582 }
2583
2584 obj_idx++;
2585 off += class->size;
2586 }
2587
2588 /*
2589 * Handle the last (full or partial) object on this page.
2590 */
2591 next_page = get_next_page(page);
2592 if (next_page) {
2593 if (!prev_free || prev_page_vaddr) {
2594 /*
2595 * There is no free object in this page, so we can safely
2596 * unmap it.
2597 */
2598 kunmap_atomic(vaddr);
2599 } else {
2600 /* update prev_page_vaddr since prev_free is on this page */
2601 prev_page_vaddr = vaddr;
2602 }
2603 } else { /* this is the last page */
2604 if (prev_free) {
2605 /*
2606 * Reset OBJ_TAG_BITS bit to last link to tell
2607 * whether it's allocated object or not.
2608 */
2609 prev_free->next = -1UL << OBJ_TAG_BITS;
2610 }
2611
2612 /* unmap previous page (if not done yet) */
2613 if (prev_page_vaddr) {
2614 kunmap_atomic(prev_page_vaddr);
2615 prev_page_vaddr = NULL;
2616 }
2617
2618 kunmap_atomic(vaddr);
2619 }
2620
2621 page = next_page;
2622 off %= PAGE_SIZE;
2623 }
2624}
2625
9997bc01
NP
2626static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2627{
2628 int i, obj_idx, ret = 0;
2629 unsigned long handle;
2630 struct zspage *zspage;
2631 struct page *page;
4c7ac972 2632 int fullness;
9997bc01
NP
2633
2634 /* Lock LRU and fullness list */
2635 spin_lock(&pool->lock);
2636 if (list_empty(&pool->lru)) {
2637 spin_unlock(&pool->lock);
2638 return -EINVAL;
2639 }
2640
2641 for (i = 0; i < retries; i++) {
2642 struct size_class *class;
2643
2644 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2645 list_del(&zspage->lru);
2646
2647 /* zs_free may free objects, but not the zspage and handles */
2648 zspage->under_reclaim = true;
2649
2650 class = zspage_class(pool, zspage);
2651 fullness = get_fullness_group(class, zspage);
2652
2653 /* Lock out object allocations and object compaction */
2654 remove_zspage(class, zspage, fullness);
2655
2656 spin_unlock(&pool->lock);
2657 cond_resched();
2658
2659 /* Lock backing pages into place */
2660 lock_zspage(zspage);
2661
2662 obj_idx = 0;
2663 page = get_first_page(zspage);
2664 while (1) {
2665 handle = find_alloced_obj(class, page, &obj_idx);
2666 if (!handle) {
2667 page = get_next_page(page);
2668 if (!page)
2669 break;
2670 obj_idx = 0;
2671 continue;
2672 }
2673
2674 /*
2675 * This will write the object and call zs_free.
2676 *
2677 * zs_free will free the object, but the
2678 * under_reclaim flag prevents it from freeing
2679 * the zspage altogether. This is necessary so
2680 * that we can continue working with the
2681 * zspage potentially after the last object
2682 * has been freed.
2683 */
2684 ret = pool->zpool_ops->evict(pool->zpool, handle);
2685 if (ret)
2686 goto next;
2687
2688 obj_idx++;
2689 }
2690
2691next:
2692 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2693 spin_lock(&pool->lock);
2694 zspage->under_reclaim = false;
2695
2696 if (!get_zspage_inuse(zspage)) {
2697 /*
2698 * Fullness went stale as zs_free() won't touch it
2699 * while the page is removed from the pool. Fix it
2700 * up for the check in __free_zspage().
2701 */
4c7ac972 2702 zspage->fullness = ZS_INUSE_RATIO_0;
9997bc01
NP
2703
2704 __free_zspage(pool, class, zspage);
2705 spin_unlock(&pool->lock);
2706 return 0;
2707 }
2708
85b32581
NP
2709 /*
2710 * Eviction fails on one of the handles, so we need to restore zspage.
2711 * We need to rebuild its freelist (and free stored deferred handles),
2712 * put it back to the correct size class, and add it to the LRU list.
2713 */
2714 restore_freelist(pool, class, zspage);
9997bc01
NP
2715 putback_zspage(class, zspage);
2716 list_add(&zspage->lru, &pool->lru);
2717 unlock_zspage(zspage);
2718 }
2719
2720 spin_unlock(&pool->lock);
2721 return -EAGAIN;
2722}
2723#endif /* CONFIG_ZPOOL */
2724
66cdef66
GM
2725static int __init zs_init(void)
2726{
48b4800a
MK
2727 int ret;
2728
215c89d0
SAS
2729 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2730 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2731 if (ret)
68f2736a 2732 goto out;
66cdef66 2733
66cdef66
GM
2734#ifdef CONFIG_ZPOOL
2735 zpool_register_driver(&zs_zpool_driver);
2736#endif
0f050d99 2737
4abaac9b
DS
2738 zs_stat_init();
2739
66cdef66 2740 return 0;
0f050d99 2741
48b4800a 2742out:
0f050d99 2743 return ret;
61989a80 2744}
61989a80 2745
66cdef66 2746static void __exit zs_exit(void)
61989a80 2747{
66cdef66
GM
2748#ifdef CONFIG_ZPOOL
2749 zpool_unregister_driver(&zs_zpool_driver);
2750#endif
215c89d0 2751 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2752
2753 zs_stat_exit();
61989a80 2754}
069f101f
BH
2755
2756module_init(zs_init);
2757module_exit(zs_exit);
2758
2759MODULE_LICENSE("Dual BSD/GPL");
2760MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");