dm: dm-zoned: use __bio_add_page for adding single metadata page
[linux-block.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
6038def0 29#include "internal.h"
014bb1de 30#include "swap.h"
6038def0 31
a4bb1e43
AH
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
30992c97 45/**
30992c97 46 * kstrdup - allocate space for and copy an existing string
30992c97
MM
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
30992c97 51 */
2a6772eb 52noinline
30992c97
MM
53char *kstrdup(const char *s, gfp_t gfp)
54{
55 size_t len;
56 char *buf;
57
58 if (!s)
59 return NULL;
60
61 len = strlen(s) + 1;
1d2c8eea 62 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
63 if (buf)
64 memcpy(buf, s, len);
65 return buf;
66}
67EXPORT_SYMBOL(kstrdup);
96840aa0 68
a4bb1e43
AH
69/**
70 * kstrdup_const - conditionally duplicate an existing const string
71 * @s: the string to duplicate
72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73 *
295a1730
BG
74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75 * must not be passed to krealloc().
a862f68a
MR
76 *
77 * Return: source string if it is in .rodata section otherwise
78 * fallback to kstrdup.
a4bb1e43
AH
79 */
80const char *kstrdup_const(const char *s, gfp_t gfp)
81{
82 if (is_kernel_rodata((unsigned long)s))
83 return s;
84
85 return kstrdup(s, gfp);
86}
87EXPORT_SYMBOL(kstrdup_const);
88
1e66df3e
JF
89/**
90 * kstrndup - allocate space for and copy an existing string
91 * @s: the string to duplicate
92 * @max: read at most @max chars from @s
93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
94 *
95 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
96 *
97 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
98 */
99char *kstrndup(const char *s, size_t max, gfp_t gfp)
100{
101 size_t len;
102 char *buf;
103
104 if (!s)
105 return NULL;
106
107 len = strnlen(s, max);
108 buf = kmalloc_track_caller(len+1, gfp);
109 if (buf) {
110 memcpy(buf, s, len);
111 buf[len] = '\0';
112 }
113 return buf;
114}
115EXPORT_SYMBOL(kstrndup);
116
1a2f67b4
AD
117/**
118 * kmemdup - duplicate region of memory
119 *
120 * @src: memory region to duplicate
121 * @len: memory region length
122 * @gfp: GFP mask to use
a862f68a 123 *
0b7b8704
HS
124 * Return: newly allocated copy of @src or %NULL in case of error,
125 * result is physically contiguous. Use kfree() to free.
1a2f67b4
AD
126 */
127void *kmemdup(const void *src, size_t len, gfp_t gfp)
128{
129 void *p;
130
1d2c8eea 131 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
132 if (p)
133 memcpy(p, src, len);
134 return p;
135}
136EXPORT_SYMBOL(kmemdup);
137
0b7b8704
HS
138/**
139 * kvmemdup - duplicate region of memory
140 *
141 * @src: memory region to duplicate
142 * @len: memory region length
143 * @gfp: GFP mask to use
144 *
145 * Return: newly allocated copy of @src or %NULL in case of error,
146 * result may be not physically contiguous. Use kvfree() to free.
147 */
148void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149{
150 void *p;
151
152 p = kvmalloc(len, gfp);
153 if (p)
154 memcpy(p, src, len);
155 return p;
156}
157EXPORT_SYMBOL(kvmemdup);
158
f3515741
DH
159/**
160 * kmemdup_nul - Create a NUL-terminated string from unterminated data
161 * @s: The data to stringify
162 * @len: The size of the data
163 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
164 *
165 * Return: newly allocated copy of @s with NUL-termination or %NULL in
166 * case of error
f3515741
DH
167 */
168char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169{
170 char *buf;
171
172 if (!s)
173 return NULL;
174
175 buf = kmalloc_track_caller(len + 1, gfp);
176 if (buf) {
177 memcpy(buf, s, len);
178 buf[len] = '\0';
179 }
180 return buf;
181}
182EXPORT_SYMBOL(kmemdup_nul);
183
610a77e0
LZ
184/**
185 * memdup_user - duplicate memory region from user space
186 *
187 * @src: source address in user space
188 * @len: number of bytes to copy
189 *
a862f68a 190 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 191 * contiguous, to be freed by kfree().
610a77e0
LZ
192 */
193void *memdup_user(const void __user *src, size_t len)
194{
195 void *p;
196
6c8fcc09 197 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
198 if (!p)
199 return ERR_PTR(-ENOMEM);
200
201 if (copy_from_user(p, src, len)) {
202 kfree(p);
203 return ERR_PTR(-EFAULT);
204 }
205
206 return p;
207}
208EXPORT_SYMBOL(memdup_user);
209
50fd2f29
AV
210/**
211 * vmemdup_user - duplicate memory region from user space
212 *
213 * @src: source address in user space
214 * @len: number of bytes to copy
215 *
a862f68a 216 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
217 * physically contiguous. Use kvfree() to free.
218 */
219void *vmemdup_user(const void __user *src, size_t len)
220{
221 void *p;
222
223 p = kvmalloc(len, GFP_USER);
224 if (!p)
225 return ERR_PTR(-ENOMEM);
226
227 if (copy_from_user(p, src, len)) {
228 kvfree(p);
229 return ERR_PTR(-EFAULT);
230 }
231
232 return p;
233}
234EXPORT_SYMBOL(vmemdup_user);
235
b86181f1 236/**
96840aa0 237 * strndup_user - duplicate an existing string from user space
96840aa0
DA
238 * @s: The string to duplicate
239 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 240 *
e9145521 241 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
242 */
243char *strndup_user(const char __user *s, long n)
244{
245 char *p;
246 long length;
247
248 length = strnlen_user(s, n);
249
250 if (!length)
251 return ERR_PTR(-EFAULT);
252
253 if (length > n)
254 return ERR_PTR(-EINVAL);
255
90d74045 256 p = memdup_user(s, length);
96840aa0 257
90d74045
JL
258 if (IS_ERR(p))
259 return p;
96840aa0
DA
260
261 p[length - 1] = '\0';
262
263 return p;
264}
265EXPORT_SYMBOL(strndup_user);
16d69265 266
e9d408e1
AV
267/**
268 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269 *
270 * @src: source address in user space
271 * @len: number of bytes to copy
272 *
a862f68a 273 * Return: an ERR_PTR() on failure.
e9d408e1
AV
274 */
275void *memdup_user_nul(const void __user *src, size_t len)
276{
277 char *p;
278
279 /*
280 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 * cause pagefault, which makes it pointless to use GFP_NOFS
282 * or GFP_ATOMIC.
283 */
284 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 if (!p)
286 return ERR_PTR(-ENOMEM);
287
288 if (copy_from_user(p, src, len)) {
289 kfree(p);
290 return ERR_PTR(-EFAULT);
291 }
292 p[len] = '\0';
293
294 return p;
295}
296EXPORT_SYMBOL(memdup_user_nul);
297
b7643757 298/* Check if the vma is being used as a stack by this task */
d17af505 299int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 300{
d17af505
AL
301 struct task_struct * __maybe_unused t = current;
302
b7643757
SP
303 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304}
305
295992fb
CK
306/*
307 * Change backing file, only valid to use during initial VMA setup.
308 */
309void vma_set_file(struct vm_area_struct *vma, struct file *file)
310{
311 /* Changing an anonymous vma with this is illegal */
312 get_file(file);
313 swap(vma->vm_file, file);
314 fput(file);
315}
316EXPORT_SYMBOL(vma_set_file);
317
649775be
AG
318#ifndef STACK_RND_MASK
319#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
320#endif
321
322unsigned long randomize_stack_top(unsigned long stack_top)
323{
324 unsigned long random_variable = 0;
325
326 if (current->flags & PF_RANDOMIZE) {
327 random_variable = get_random_long();
328 random_variable &= STACK_RND_MASK;
329 random_variable <<= PAGE_SHIFT;
330 }
331#ifdef CONFIG_STACK_GROWSUP
332 return PAGE_ALIGN(stack_top) + random_variable;
333#else
334 return PAGE_ALIGN(stack_top) - random_variable;
335#endif
336}
337
5ad7dd88
JD
338/**
339 * randomize_page - Generate a random, page aligned address
340 * @start: The smallest acceptable address the caller will take.
341 * @range: The size of the area, starting at @start, within which the
342 * random address must fall.
343 *
344 * If @start + @range would overflow, @range is capped.
345 *
346 * NOTE: Historical use of randomize_range, which this replaces, presumed that
347 * @start was already page aligned. We now align it regardless.
348 *
349 * Return: A page aligned address within [start, start + range). On error,
350 * @start is returned.
351 */
352unsigned long randomize_page(unsigned long start, unsigned long range)
353{
354 if (!PAGE_ALIGNED(start)) {
355 range -= PAGE_ALIGN(start) - start;
356 start = PAGE_ALIGN(start);
357 }
358
359 if (start > ULONG_MAX - range)
360 range = ULONG_MAX - start;
361
362 range >>= PAGE_SHIFT;
363
364 if (range == 0)
365 return start;
366
367 return start + (get_random_long() % range << PAGE_SHIFT);
368}
369
67f3977f 370#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 371unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
372{
373 /* Is the current task 32bit ? */
374 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 return randomize_page(mm->brk, SZ_32M);
376
377 return randomize_page(mm->brk, SZ_1G);
378}
379
67f3977f
AG
380unsigned long arch_mmap_rnd(void)
381{
382 unsigned long rnd;
383
384#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 if (is_compat_task())
386 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 else
388#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390
391 return rnd << PAGE_SHIFT;
392}
67f3977f
AG
393
394static int mmap_is_legacy(struct rlimit *rlim_stack)
395{
396 if (current->personality & ADDR_COMPAT_LAYOUT)
397 return 1;
398
399 if (rlim_stack->rlim_cur == RLIM_INFINITY)
400 return 1;
401
402 return sysctl_legacy_va_layout;
403}
404
405/*
406 * Leave enough space between the mmap area and the stack to honour ulimit in
407 * the face of randomisation.
408 */
409#define MIN_GAP (SZ_128M)
410#define MAX_GAP (STACK_TOP / 6 * 5)
411
412static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
413{
414 unsigned long gap = rlim_stack->rlim_cur;
415 unsigned long pad = stack_guard_gap;
416
417 /* Account for stack randomization if necessary */
418 if (current->flags & PF_RANDOMIZE)
419 pad += (STACK_RND_MASK << PAGE_SHIFT);
420
421 /* Values close to RLIM_INFINITY can overflow. */
422 if (gap + pad > gap)
423 gap += pad;
424
425 if (gap < MIN_GAP)
426 gap = MIN_GAP;
427 else if (gap > MAX_GAP)
428 gap = MAX_GAP;
429
430 return PAGE_ALIGN(STACK_TOP - gap - rnd);
431}
432
433void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
434{
435 unsigned long random_factor = 0UL;
436
437 if (current->flags & PF_RANDOMIZE)
438 random_factor = arch_mmap_rnd();
439
440 if (mmap_is_legacy(rlim_stack)) {
441 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
442 mm->get_unmapped_area = arch_get_unmapped_area;
443 } else {
444 mm->mmap_base = mmap_base(random_factor, rlim_stack);
445 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
446 }
447}
448#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 449void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
450{
451 mm->mmap_base = TASK_UNMAPPED_BASE;
452 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
453}
454#endif
912985dc 455
79eb597c
DJ
456/**
457 * __account_locked_vm - account locked pages to an mm's locked_vm
458 * @mm: mm to account against
459 * @pages: number of pages to account
460 * @inc: %true if @pages should be considered positive, %false if not
461 * @task: task used to check RLIMIT_MEMLOCK
462 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
463 *
464 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 465 * that mmap_lock is held as writer.
79eb597c
DJ
466 *
467 * Return:
468 * * 0 on success
469 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
470 */
471int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
472 struct task_struct *task, bool bypass_rlim)
473{
474 unsigned long locked_vm, limit;
475 int ret = 0;
476
42fc5414 477 mmap_assert_write_locked(mm);
79eb597c
DJ
478
479 locked_vm = mm->locked_vm;
480 if (inc) {
481 if (!bypass_rlim) {
482 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
483 if (locked_vm + pages > limit)
484 ret = -ENOMEM;
485 }
486 if (!ret)
487 mm->locked_vm = locked_vm + pages;
488 } else {
489 WARN_ON_ONCE(pages > locked_vm);
490 mm->locked_vm = locked_vm - pages;
491 }
492
493 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
494 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
495 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
496 ret ? " - exceeded" : "");
497
498 return ret;
499}
500EXPORT_SYMBOL_GPL(__account_locked_vm);
501
502/**
503 * account_locked_vm - account locked pages to an mm's locked_vm
504 * @mm: mm to account against, may be NULL
505 * @pages: number of pages to account
506 * @inc: %true if @pages should be considered positive, %false if not
507 *
508 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
509 *
510 * Return:
511 * * 0 on success, or if mm is NULL
512 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
513 */
514int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
515{
516 int ret;
517
518 if (pages == 0 || !mm)
519 return 0;
520
d8ed45c5 521 mmap_write_lock(mm);
79eb597c
DJ
522 ret = __account_locked_vm(mm, pages, inc, current,
523 capable(CAP_IPC_LOCK));
d8ed45c5 524 mmap_write_unlock(mm);
79eb597c
DJ
525
526 return ret;
527}
528EXPORT_SYMBOL_GPL(account_locked_vm);
529
eb36c587
AV
530unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
531 unsigned long len, unsigned long prot,
9fbeb5ab 532 unsigned long flag, unsigned long pgoff)
eb36c587
AV
533{
534 unsigned long ret;
535 struct mm_struct *mm = current->mm;
41badc15 536 unsigned long populate;
897ab3e0 537 LIST_HEAD(uf);
eb36c587
AV
538
539 ret = security_mmap_file(file, prot, flag);
540 if (!ret) {
d8ed45c5 541 if (mmap_write_lock_killable(mm))
9fbeb5ab 542 return -EINTR;
45e55300
PC
543 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
544 &uf);
d8ed45c5 545 mmap_write_unlock(mm);
897ab3e0 546 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
547 if (populate)
548 mm_populate(ret, populate);
eb36c587
AV
549 }
550 return ret;
551}
552
553unsigned long vm_mmap(struct file *file, unsigned long addr,
554 unsigned long len, unsigned long prot,
555 unsigned long flag, unsigned long offset)
556{
557 if (unlikely(offset + PAGE_ALIGN(len) < offset))
558 return -EINVAL;
ea53cde0 559 if (unlikely(offset_in_page(offset)))
eb36c587
AV
560 return -EINVAL;
561
9fbeb5ab 562 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
563}
564EXPORT_SYMBOL(vm_mmap);
565
a7c3e901
MH
566/**
567 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
568 * failure, fall back to non-contiguous (vmalloc) allocation.
569 * @size: size of the request.
570 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
571 * @node: numa node to allocate from
572 *
573 * Uses kmalloc to get the memory but if the allocation fails then falls back
574 * to the vmalloc allocator. Use kvfree for freeing the memory.
575 *
a421ef30 576 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
577 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
578 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 579 *
a862f68a 580 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901
MH
581 */
582void *kvmalloc_node(size_t size, gfp_t flags, int node)
583{
584 gfp_t kmalloc_flags = flags;
585 void *ret;
586
a7c3e901 587 /*
4f4f2ba9
MH
588 * We want to attempt a large physically contiguous block first because
589 * it is less likely to fragment multiple larger blocks and therefore
590 * contribute to a long term fragmentation less than vmalloc fallback.
591 * However make sure that larger requests are not too disruptive - no
592 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 593 */
6c5ab651
MH
594 if (size > PAGE_SIZE) {
595 kmalloc_flags |= __GFP_NOWARN;
596
cc965a29 597 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 598 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
599
600 /* nofail semantic is implemented by the vmalloc fallback */
601 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 602 }
a7c3e901
MH
603
604 ret = kmalloc_node(size, kmalloc_flags, node);
605
606 /*
607 * It doesn't really make sense to fallback to vmalloc for sub page
608 * requests
609 */
610 if (ret || size <= PAGE_SIZE)
611 return ret;
612
30c19366
FW
613 /* non-sleeping allocations are not supported by vmalloc */
614 if (!gfpflags_allow_blocking(flags))
615 return NULL;
616
7661809d 617 /* Don't even allow crazy sizes */
0708a0af
DB
618 if (unlikely(size > INT_MAX)) {
619 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 620 return NULL;
0708a0af 621 }
7661809d 622
9becb688
LT
623 /*
624 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
625 * since the callers already cannot assume anything
626 * about the resulting pointer, and cannot play
627 * protection games.
628 */
629 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
630 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
631 node, __builtin_return_address(0));
a7c3e901
MH
632}
633EXPORT_SYMBOL(kvmalloc_node);
634
ff4dc772 635/**
04b8e946
AM
636 * kvfree() - Free memory.
637 * @addr: Pointer to allocated memory.
ff4dc772 638 *
04b8e946
AM
639 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
640 * It is slightly more efficient to use kfree() or vfree() if you are certain
641 * that you know which one to use.
642 *
52414d33 643 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 644 */
39f1f78d
AV
645void kvfree(const void *addr)
646{
647 if (is_vmalloc_addr(addr))
648 vfree(addr);
649 else
650 kfree(addr);
651}
652EXPORT_SYMBOL(kvfree);
653
d4eaa283
WL
654/**
655 * kvfree_sensitive - Free a data object containing sensitive information.
656 * @addr: address of the data object to be freed.
657 * @len: length of the data object.
658 *
659 * Use the special memzero_explicit() function to clear the content of a
660 * kvmalloc'ed object containing sensitive data to make sure that the
661 * compiler won't optimize out the data clearing.
662 */
663void kvfree_sensitive(const void *addr, size_t len)
664{
665 if (likely(!ZERO_OR_NULL_PTR(addr))) {
666 memzero_explicit((void *)addr, len);
667 kvfree(addr);
668 }
669}
670EXPORT_SYMBOL(kvfree_sensitive);
671
de2860f4
DC
672void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
673{
674 void *newp;
675
676 if (oldsize >= newsize)
677 return (void *)p;
678 newp = kvmalloc(newsize, flags);
679 if (!newp)
680 return NULL;
681 memcpy(newp, p, oldsize);
682 kvfree(p);
683 return newp;
684}
685EXPORT_SYMBOL(kvrealloc);
686
a8749a35
PB
687/**
688 * __vmalloc_array - allocate memory for a virtually contiguous array.
689 * @n: number of elements.
690 * @size: element size.
691 * @flags: the type of memory to allocate (see kmalloc).
692 */
693void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
694{
695 size_t bytes;
696
697 if (unlikely(check_mul_overflow(n, size, &bytes)))
698 return NULL;
699 return __vmalloc(bytes, flags);
700}
701EXPORT_SYMBOL(__vmalloc_array);
702
703/**
704 * vmalloc_array - allocate memory for a virtually contiguous array.
705 * @n: number of elements.
706 * @size: element size.
707 */
708void *vmalloc_array(size_t n, size_t size)
709{
710 return __vmalloc_array(n, size, GFP_KERNEL);
711}
712EXPORT_SYMBOL(vmalloc_array);
713
714/**
715 * __vcalloc - allocate and zero memory for a virtually contiguous array.
716 * @n: number of elements.
717 * @size: element size.
718 * @flags: the type of memory to allocate (see kmalloc).
719 */
720void *__vcalloc(size_t n, size_t size, gfp_t flags)
721{
722 return __vmalloc_array(n, size, flags | __GFP_ZERO);
723}
724EXPORT_SYMBOL(__vcalloc);
725
726/**
727 * vcalloc - allocate and zero memory for a virtually contiguous array.
728 * @n: number of elements.
729 * @size: element size.
730 */
731void *vcalloc(size_t n, size_t size)
732{
733 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
734}
735EXPORT_SYMBOL(vcalloc);
736
e39155ea
KS
737/* Neutral page->mapping pointer to address_space or anon_vma or other */
738void *page_rmapping(struct page *page)
739{
64601000 740 return folio_raw_mapping(page_folio(page));
e39155ea
KS
741}
742
e05b3453 743struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 744{
64601000 745 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 746
e39155ea
KS
747 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
748 return NULL;
64601000 749 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
750}
751
2f52578f
MWO
752/**
753 * folio_mapping - Find the mapping where this folio is stored.
754 * @folio: The folio.
755 *
756 * For folios which are in the page cache, return the mapping that this
757 * page belongs to. Folios in the swap cache return the swap mapping
758 * this page is stored in (which is different from the mapping for the
759 * swap file or swap device where the data is stored).
760 *
761 * You can call this for folios which aren't in the swap cache or page
762 * cache and it will return NULL.
763 */
764struct address_space *folio_mapping(struct folio *folio)
9800339b 765{
1c290f64
KS
766 struct address_space *mapping;
767
03e5ac2f 768 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 769 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
770 return NULL;
771
2f52578f
MWO
772 if (unlikely(folio_test_swapcache(folio)))
773 return swap_address_space(folio_swap_entry(folio));
e39155ea 774
2f52578f 775 mapping = folio->mapping;
68f2736a 776 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 777 return NULL;
bda807d4 778
68f2736a 779 return mapping;
9800339b 780}
2f52578f 781EXPORT_SYMBOL(folio_mapping);
9800339b 782
715cbfd6
MWO
783/**
784 * folio_copy - Copy the contents of one folio to another.
785 * @dst: Folio to copy to.
786 * @src: Folio to copy from.
787 *
788 * The bytes in the folio represented by @src are copied to @dst.
789 * Assumes the caller has validated that @dst is at least as large as @src.
790 * Can be called in atomic context for order-0 folios, but if the folio is
791 * larger, it may sleep.
792 */
793void folio_copy(struct folio *dst, struct folio *src)
79789db0 794{
715cbfd6
MWO
795 long i = 0;
796 long nr = folio_nr_pages(src);
79789db0 797
715cbfd6
MWO
798 for (;;) {
799 copy_highpage(folio_page(dst, i), folio_page(src, i));
800 if (++i == nr)
801 break;
79789db0 802 cond_resched();
79789db0
MWO
803 }
804}
805
39a1aa8e
AR
806int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
807int sysctl_overcommit_ratio __read_mostly = 50;
808unsigned long sysctl_overcommit_kbytes __read_mostly;
809int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
810unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
811unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
812
32927393
CH
813int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
814 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
815{
816 int ret;
817
818 ret = proc_dointvec(table, write, buffer, lenp, ppos);
819 if (ret == 0 && write)
820 sysctl_overcommit_kbytes = 0;
821 return ret;
822}
823
56f3547b
FT
824static void sync_overcommit_as(struct work_struct *dummy)
825{
826 percpu_counter_sync(&vm_committed_as);
827}
828
829int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
830 size_t *lenp, loff_t *ppos)
831{
832 struct ctl_table t;
bcbda810 833 int new_policy = -1;
56f3547b
FT
834 int ret;
835
836 /*
837 * The deviation of sync_overcommit_as could be big with loose policy
838 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
839 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 840 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
841 * though user usually won't too frequently do the switching to policy
842 * OVERCOMMIT_NEVER), the switch is done in the following order:
843 * 1. changing the batch
844 * 2. sync percpu count on each CPU
845 * 3. switch the policy
846 */
847 if (write) {
848 t = *table;
849 t.data = &new_policy;
850 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 851 if (ret || new_policy == -1)
56f3547b
FT
852 return ret;
853
854 mm_compute_batch(new_policy);
855 if (new_policy == OVERCOMMIT_NEVER)
856 schedule_on_each_cpu(sync_overcommit_as);
857 sysctl_overcommit_memory = new_policy;
858 } else {
859 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
860 }
861
862 return ret;
863}
864
32927393
CH
865int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
866 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
867{
868 int ret;
869
870 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
871 if (ret == 0 && write)
872 sysctl_overcommit_ratio = 0;
873 return ret;
874}
875
00619bcc
JM
876/*
877 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
878 */
879unsigned long vm_commit_limit(void)
880{
49f0ce5f
JM
881 unsigned long allowed;
882
883 if (sysctl_overcommit_kbytes)
884 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
885 else
ca79b0c2 886 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
887 * sysctl_overcommit_ratio / 100);
888 allowed += total_swap_pages;
889
890 return allowed;
00619bcc
JM
891}
892
39a1aa8e
AR
893/*
894 * Make sure vm_committed_as in one cacheline and not cacheline shared with
895 * other variables. It can be updated by several CPUs frequently.
896 */
897struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
898
899/*
900 * The global memory commitment made in the system can be a metric
901 * that can be used to drive ballooning decisions when Linux is hosted
902 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
903 * balancing memory across competing virtual machines that are hosted.
904 * Several metrics drive this policy engine including the guest reported
905 * memory commitment.
4e2ee51e
FT
906 *
907 * The time cost of this is very low for small platforms, and for big
908 * platform like a 2S/36C/72T Skylake server, in worst case where
909 * vm_committed_as's spinlock is under severe contention, the time cost
910 * could be about 30~40 microseconds.
39a1aa8e
AR
911 */
912unsigned long vm_memory_committed(void)
913{
4e2ee51e 914 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
915}
916EXPORT_SYMBOL_GPL(vm_memory_committed);
917
918/*
919 * Check that a process has enough memory to allocate a new virtual
920 * mapping. 0 means there is enough memory for the allocation to
921 * succeed and -ENOMEM implies there is not.
922 *
923 * We currently support three overcommit policies, which are set via the
ee65728e 924 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
925 *
926 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
927 * Additional code 2002 Jul 20 by Robert Love.
928 *
929 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
930 *
931 * Note this is a helper function intended to be used by LSMs which
932 * wish to use this logic.
933 */
934int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
935{
8c7829b0 936 long allowed;
39a1aa8e 937
39a1aa8e
AR
938 vm_acct_memory(pages);
939
940 /*
941 * Sometimes we want to use more memory than we have
942 */
943 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
944 return 0;
945
946 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 947 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 948 goto error;
8c7829b0 949 return 0;
39a1aa8e
AR
950 }
951
952 allowed = vm_commit_limit();
953 /*
954 * Reserve some for root
955 */
956 if (!cap_sys_admin)
957 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
958
959 /*
960 * Don't let a single process grow so big a user can't recover
961 */
962 if (mm) {
8c7829b0
JW
963 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
964
39a1aa8e
AR
965 allowed -= min_t(long, mm->total_vm / 32, reserve);
966 }
967
968 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
969 return 0;
970error:
6bdfc60c 971 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
44b414c8 972 __func__, current->pid, current->comm);
39a1aa8e
AR
973 vm_unacct_memory(pages);
974
975 return -ENOMEM;
976}
977
a9090253
WR
978/**
979 * get_cmdline() - copy the cmdline value to a buffer.
980 * @task: the task whose cmdline value to copy.
981 * @buffer: the buffer to copy to.
982 * @buflen: the length of the buffer. Larger cmdline values are truncated
983 * to this length.
a862f68a
MR
984 *
985 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
986 * not guarantee an ending NULL byte.
987 */
988int get_cmdline(struct task_struct *task, char *buffer, int buflen)
989{
990 int res = 0;
991 unsigned int len;
992 struct mm_struct *mm = get_task_mm(task);
a3b609ef 993 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
994 if (!mm)
995 goto out;
996 if (!mm->arg_end)
997 goto out_mm; /* Shh! No looking before we're done */
998
bc81426f 999 spin_lock(&mm->arg_lock);
a3b609ef
MG
1000 arg_start = mm->arg_start;
1001 arg_end = mm->arg_end;
1002 env_start = mm->env_start;
1003 env_end = mm->env_end;
bc81426f 1004 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1005
1006 len = arg_end - arg_start;
a9090253
WR
1007
1008 if (len > buflen)
1009 len = buflen;
1010
f307ab6d 1011 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1012
1013 /*
1014 * If the nul at the end of args has been overwritten, then
1015 * assume application is using setproctitle(3).
1016 */
1017 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1018 len = strnlen(buffer, res);
1019 if (len < res) {
1020 res = len;
1021 } else {
a3b609ef 1022 len = env_end - env_start;
a9090253
WR
1023 if (len > buflen - res)
1024 len = buflen - res;
a3b609ef 1025 res += access_process_vm(task, env_start,
f307ab6d
LS
1026 buffer+res, len,
1027 FOLL_FORCE);
a9090253
WR
1028 res = strnlen(buffer, res);
1029 }
1030 }
1031out_mm:
1032 mmput(mm);
1033out:
1034 return res;
1035}
010c164a 1036
4d1a8a2d 1037int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1038{
1039 char *addr1, *addr2;
1040 int ret;
1041
1042 addr1 = kmap_atomic(page1);
1043 addr2 = kmap_atomic(page2);
1044 ret = memcmp(addr1, addr2, PAGE_SIZE);
1045 kunmap_atomic(addr2);
1046 kunmap_atomic(addr1);
1047 return ret;
1048}
8e7f37f2 1049
5bb1bb35 1050#ifdef CONFIG_PRINTK
8e7f37f2
PM
1051/**
1052 * mem_dump_obj - Print available provenance information
1053 * @object: object for which to find provenance information.
1054 *
1055 * This function uses pr_cont(), so that the caller is expected to have
1056 * printed out whatever preamble is appropriate. The provenance information
1057 * depends on the type of object and on how much debugging is enabled.
1058 * For example, for a slab-cache object, the slab name is printed, and,
1059 * if available, the return address and stack trace from the allocation
e548eaa1 1060 * and last free path of that object.
8e7f37f2
PM
1061 */
1062void mem_dump_obj(void *object)
1063{
2521781c
JP
1064 const char *type;
1065
98f18083
PM
1066 if (kmem_valid_obj(object)) {
1067 kmem_dump_obj(object);
1068 return;
1069 }
2521781c 1070
98f18083
PM
1071 if (vmalloc_dump_obj(object))
1072 return;
2521781c
JP
1073
1074 if (virt_addr_valid(object))
1075 type = "non-slab/vmalloc memory";
1076 else if (object == NULL)
1077 type = "NULL pointer";
1078 else if (object == ZERO_SIZE_PTR)
1079 type = "zero-size pointer";
1080 else
1081 type = "non-paged memory";
1082
1083 pr_cont(" %s\n", type);
8e7f37f2 1084}
0d3dd2c8 1085EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1086#endif
82840451
DH
1087
1088/*
1089 * A driver might set a page logically offline -- PageOffline() -- and
1090 * turn the page inaccessible in the hypervisor; after that, access to page
1091 * content can be fatal.
1092 *
1093 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1094 * pages after checking PageOffline(); however, these PFN walkers can race
1095 * with drivers that set PageOffline().
1096 *
1097 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1098 * synchronize with such drivers, achieving that a page cannot be set
1099 * PageOffline() while frozen.
1100 *
1101 * page_offline_begin()/page_offline_end() is used by drivers that care about
1102 * such races when setting a page PageOffline().
1103 */
1104static DECLARE_RWSEM(page_offline_rwsem);
1105
1106void page_offline_freeze(void)
1107{
1108 down_read(&page_offline_rwsem);
1109}
1110
1111void page_offline_thaw(void)
1112{
1113 up_read(&page_offline_rwsem);
1114}
1115
1116void page_offline_begin(void)
1117{
1118 down_write(&page_offline_rwsem);
1119}
1120EXPORT_SYMBOL(page_offline_begin);
1121
1122void page_offline_end(void)
1123{
1124 up_write(&page_offline_rwsem);
1125}
1126EXPORT_SYMBOL(page_offline_end);
08b0b005
MWO
1127
1128#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1129void flush_dcache_folio(struct folio *folio)
1130{
1131 long i, nr = folio_nr_pages(folio);
1132
1133 for (i = 0; i < nr; i++)
1134 flush_dcache_page(folio_page(folio, i));
1135}
1136EXPORT_SYMBOL(flush_dcache_folio);
1137#endif