dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
d7c0e68d 42#include <linux/pagewalk.h>
f8af4da3 43
31dbd01f 44#include <asm/tlbflush.h>
73848b46 45#include "internal.h"
58730ab6 46#include "mm_slot.h"
31dbd01f 47
739100c8
SR
48#define CREATE_TRACE_POINTS
49#include <trace/events/ksm.h>
50
e850dcf5
HD
51#ifdef CONFIG_NUMA
52#define NUMA(x) (x)
53#define DO_NUMA(x) do { (x); } while (0)
54#else
55#define NUMA(x) (0)
56#define DO_NUMA(x) do { } while (0)
57#endif
58
5a2ca3ef
MR
59/**
60 * DOC: Overview
61 *
31dbd01f
IE
62 * A few notes about the KSM scanning process,
63 * to make it easier to understand the data structures below:
64 *
65 * In order to reduce excessive scanning, KSM sorts the memory pages by their
66 * contents into a data structure that holds pointers to the pages' locations.
67 *
68 * Since the contents of the pages may change at any moment, KSM cannot just
69 * insert the pages into a normal sorted tree and expect it to find anything.
70 * Therefore KSM uses two data structures - the stable and the unstable tree.
71 *
72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73 * by their contents. Because each such page is write-protected, searching on
74 * this tree is fully assured to be working (except when pages are unmapped),
75 * and therefore this tree is called the stable tree.
76 *
5a2ca3ef
MR
77 * The stable tree node includes information required for reverse
78 * mapping from a KSM page to virtual addresses that map this page.
79 *
80 * In order to avoid large latencies of the rmap walks on KSM pages,
81 * KSM maintains two types of nodes in the stable tree:
82 *
83 * * the regular nodes that keep the reverse mapping structures in a
84 * linked list
85 * * the "chains" that link nodes ("dups") that represent the same
86 * write protected memory content, but each "dup" corresponds to a
87 * different KSM page copy of that content
88 *
89 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 90 * using the same struct ksm_stable_node structure.
5a2ca3ef 91 *
31dbd01f
IE
92 * In addition to the stable tree, KSM uses a second data structure called the
93 * unstable tree: this tree holds pointers to pages which have been found to
94 * be "unchanged for a period of time". The unstable tree sorts these pages
95 * by their contents, but since they are not write-protected, KSM cannot rely
96 * upon the unstable tree to work correctly - the unstable tree is liable to
97 * be corrupted as its contents are modified, and so it is called unstable.
98 *
99 * KSM solves this problem by several techniques:
100 *
101 * 1) The unstable tree is flushed every time KSM completes scanning all
102 * memory areas, and then the tree is rebuilt again from the beginning.
103 * 2) KSM will only insert into the unstable tree, pages whose hash value
104 * has not changed since the previous scan of all memory areas.
105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106 * colors of the nodes and not on their contents, assuring that even when
107 * the tree gets "corrupted" it won't get out of balance, so scanning time
108 * remains the same (also, searching and inserting nodes in an rbtree uses
109 * the same algorithm, so we have no overhead when we flush and rebuild).
110 * 4) KSM never flushes the stable tree, which means that even if it were to
111 * take 10 attempts to find a page in the unstable tree, once it is found,
112 * it is secured in the stable tree. (When we scan a new page, we first
113 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
114 *
115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
117 */
118
119/**
21fbd591 120 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 121 * @slot: hash lookup from mm to mm_slot
6514d511 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 123 */
21fbd591 124struct ksm_mm_slot {
58730ab6 125 struct mm_slot slot;
21fbd591 126 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
127};
128
129/**
130 * struct ksm_scan - cursor for scanning
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
6514d511 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
134 * @seqnr: count of completed full scans (needed when removing unstable node)
135 *
136 * There is only the one ksm_scan instance of this cursor structure.
137 */
138struct ksm_scan {
21fbd591 139 struct ksm_mm_slot *mm_slot;
31dbd01f 140 unsigned long address;
21fbd591 141 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
142 unsigned long seqnr;
143};
144
7b6ba2c7 145/**
21fbd591 146 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 147 * @node: rb node of this ksm page in the stable tree
4146d2d6 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 150 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 151 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
153 * @chain_prune_time: time of the last full garbage collection
154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 156 */
21fbd591 157struct ksm_stable_node {
4146d2d6
HD
158 union {
159 struct rb_node node; /* when node of stable tree */
160 struct { /* when listed for migration */
161 struct list_head *head;
2c653d0e
AA
162 struct {
163 struct hlist_node hlist_dup;
164 struct list_head list;
165 };
4146d2d6
HD
166 };
167 };
7b6ba2c7 168 struct hlist_head hlist;
2c653d0e
AA
169 union {
170 unsigned long kpfn;
171 unsigned long chain_prune_time;
172 };
173 /*
174 * STABLE_NODE_CHAIN can be any negative number in
175 * rmap_hlist_len negative range, but better not -1 to be able
176 * to reliably detect underflows.
177 */
178#define STABLE_NODE_CHAIN -1024
179 int rmap_hlist_len;
4146d2d6
HD
180#ifdef CONFIG_NUMA
181 int nid;
182#endif
7b6ba2c7
HD
183};
184
31dbd01f 185/**
21fbd591 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 189 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
190 * @mm: the memory structure this rmap_item is pointing into
191 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
193 * @node: rb node of this rmap_item in the unstable tree
194 * @head: pointer to stable_node heading this list in the stable tree
195 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 196 */
21fbd591
QZ
197struct ksm_rmap_item {
198 struct ksm_rmap_item *rmap_list;
bc56620b
HD
199 union {
200 struct anon_vma *anon_vma; /* when stable */
201#ifdef CONFIG_NUMA
202 int nid; /* when node of unstable tree */
203#endif
204 };
31dbd01f
IE
205 struct mm_struct *mm;
206 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 207 unsigned int oldchecksum; /* when unstable */
31dbd01f 208 union {
7b6ba2c7
HD
209 struct rb_node node; /* when node of unstable tree */
210 struct { /* when listed from stable tree */
21fbd591 211 struct ksm_stable_node *head;
7b6ba2c7
HD
212 struct hlist_node hlist;
213 };
31dbd01f
IE
214 };
215};
216
217#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
218#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
219#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
220
221/* The stable and unstable tree heads */
ef53d16c
HD
222static struct rb_root one_stable_tree[1] = { RB_ROOT };
223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224static struct rb_root *root_stable_tree = one_stable_tree;
225static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 226
4146d2d6
HD
227/* Recently migrated nodes of stable tree, pending proper placement */
228static LIST_HEAD(migrate_nodes);
2c653d0e 229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 230
4ca3a69b
SL
231#define MM_SLOTS_HASH_BITS 10
232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 233
21fbd591 234static struct ksm_mm_slot ksm_mm_head = {
58730ab6 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
236};
237static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
239};
240
241static struct kmem_cache *rmap_item_cache;
7b6ba2c7 242static struct kmem_cache *stable_node_cache;
31dbd01f
IE
243static struct kmem_cache *mm_slot_cache;
244
245/* The number of nodes in the stable tree */
b4028260 246static unsigned long ksm_pages_shared;
31dbd01f 247
e178dfde 248/* The number of page slots additionally sharing those nodes */
b4028260 249static unsigned long ksm_pages_sharing;
31dbd01f 250
473b0ce4
HD
251/* The number of nodes in the unstable tree */
252static unsigned long ksm_pages_unshared;
253
254/* The number of rmap_items in use: to calculate pages_volatile */
255static unsigned long ksm_rmap_items;
256
2c653d0e
AA
257/* The number of stable_node chains */
258static unsigned long ksm_stable_node_chains;
259
260/* The number of stable_node dups linked to the stable_node chains */
261static unsigned long ksm_stable_node_dups;
262
263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 264static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
265
266/* Maximum number of page slots sharing a stable node */
267static int ksm_max_page_sharing = 256;
268
31dbd01f 269/* Number of pages ksmd should scan in one batch */
2c6854fd 270static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
271
272/* Milliseconds ksmd should sleep between batches */
2ffd8679 273static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 274
e86c59b1
CI
275/* Checksum of an empty (zeroed) page */
276static unsigned int zero_checksum __read_mostly;
277
278/* Whether to merge empty (zeroed) pages with actual zero pages */
279static bool ksm_use_zero_pages __read_mostly;
280
e850dcf5 281#ifdef CONFIG_NUMA
90bd6fd3
PH
282/* Zeroed when merging across nodes is not allowed */
283static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 284static int ksm_nr_node_ids = 1;
e850dcf5
HD
285#else
286#define ksm_merge_across_nodes 1U
ef53d16c 287#define ksm_nr_node_ids 1
e850dcf5 288#endif
90bd6fd3 289
31dbd01f
IE
290#define KSM_RUN_STOP 0
291#define KSM_RUN_MERGE 1
292#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
293#define KSM_RUN_OFFLINE 4
294static unsigned long ksm_run = KSM_RUN_STOP;
295static void wait_while_offlining(void);
31dbd01f
IE
296
297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
299static DEFINE_MUTEX(ksm_thread_mutex);
300static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
21fbd591 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
303 sizeof(struct __struct), __alignof__(struct __struct),\
304 (__flags), NULL)
305
306static int __init ksm_slab_init(void)
307{
21fbd591 308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
309 if (!rmap_item_cache)
310 goto out;
311
21fbd591 312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
313 if (!stable_node_cache)
314 goto out_free1;
315
21fbd591 316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 317 if (!mm_slot_cache)
7b6ba2c7 318 goto out_free2;
31dbd01f
IE
319
320 return 0;
321
7b6ba2c7
HD
322out_free2:
323 kmem_cache_destroy(stable_node_cache);
324out_free1:
31dbd01f
IE
325 kmem_cache_destroy(rmap_item_cache);
326out:
327 return -ENOMEM;
328}
329
330static void __init ksm_slab_free(void)
331{
332 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 333 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
336}
337
21fbd591 338static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
339{
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341}
342
21fbd591 343static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
344{
345 return dup->head == STABLE_NODE_DUP_HEAD;
346}
347
21fbd591
QZ
348static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 struct ksm_stable_node *chain)
2c653d0e
AA
350{
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
356}
357
21fbd591 358static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 359{
b4fecc67 360 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
363}
364
21fbd591 365static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
366{
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
370 else
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372#ifdef CONFIG_DEBUG_VM
373 dup->head = NULL;
374#endif
375}
376
21fbd591 377static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 378{
21fbd591 379 struct ksm_rmap_item *rmap_item;
473b0ce4 380
5b398e41 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
383 if (rmap_item)
384 ksm_rmap_items++;
385 return rmap_item;
31dbd01f
IE
386}
387
21fbd591 388static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 389{
473b0ce4 390 ksm_rmap_items--;
cb4df4ca 391 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394}
395
21fbd591 396static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 397{
6213055f 398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
404}
405
21fbd591 406static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 407{
2c653d0e
AA
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
410 kmem_cache_free(stable_node_cache, stable_node);
411}
412
a913e182
HD
413/*
414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
417 * a special flag: they can just back out as soon as mm_users goes to zero.
418 * ksm_test_exit() is used throughout to make this test for exit: in some
419 * places for correctness, in some places just to avoid unnecessary work.
420 */
421static inline bool ksm_test_exit(struct mm_struct *mm)
422{
423 return atomic_read(&mm->mm_users) == 0;
424}
425
d7c0e68d
DH
426static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 struct mm_walk *walk)
428{
429 struct page *page = NULL;
430 spinlock_t *ptl;
431 pte_t *pte;
432 int ret;
433
434 if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435 return 0;
436
437 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 if (pte_present(*pte)) {
439 page = vm_normal_page(walk->vma, addr, *pte);
440 } else if (!pte_none(*pte)) {
441 swp_entry_t entry = pte_to_swp_entry(*pte);
442
443 /*
444 * As KSM pages remain KSM pages until freed, no need to wait
445 * here for migration to end.
446 */
447 if (is_migration_entry(entry))
448 page = pfn_swap_entry_to_page(entry);
449 }
450 ret = page && PageKsm(page);
451 pte_unmap_unlock(pte, ptl);
452 return ret;
453}
454
455static const struct mm_walk_ops break_ksm_ops = {
456 .pmd_entry = break_ksm_pmd_entry,
457};
458
31dbd01f 459/*
6cce3314
DH
460 * We use break_ksm to break COW on a ksm page by triggering unsharing,
461 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 462 *
6cce3314 463 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
464 * in case the application has unmapped and remapped mm,addr meanwhile.
465 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 466 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 467 *
6cce3314 468 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
469 * of the process that owns 'vma'. We also do not want to enforce
470 * protection keys here anyway.
31dbd01f 471 */
d952b791 472static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f 473{
50a7ca3c 474 vm_fault_t ret = 0;
31dbd01f
IE
475
476 do {
d7c0e68d 477 int ksm_page;
58f595c6 478
31dbd01f 479 cond_resched();
d7c0e68d
DH
480 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481 &break_ksm_ops, NULL);
482 if (WARN_ON_ONCE(ksm_page < 0))
483 return ksm_page;
58f595c6
DH
484 if (!ksm_page)
485 return 0;
486 ret = handle_mm_fault(vma, addr,
6cce3314 487 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
488 NULL);
489 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 490 /*
58f595c6
DH
491 * We must loop until we no longer find a KSM page because
492 * handle_mm_fault() may back out if there's any difficulty e.g. if
493 * pte accessed bit gets updated concurrently.
d952b791
HD
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
516}
517
d7597f59
SR
518static bool vma_ksm_compatible(struct vm_area_struct *vma)
519{
520 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
521 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
522 VM_MIXEDMAP))
523 return false; /* just ignore the advice */
524
525 if (vma_is_dax(vma))
526 return false;
527
528#ifdef VM_SAO
529 if (vma->vm_flags & VM_SAO)
530 return false;
531#endif
532#ifdef VM_SPARC_ADI
533 if (vma->vm_flags & VM_SPARC_ADI)
534 return false;
535#endif
536
537 return true;
538}
539
ef694222
BL
540static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
541 unsigned long addr)
542{
543 struct vm_area_struct *vma;
544 if (ksm_test_exit(mm))
545 return NULL;
ff69fb81
LH
546 vma = vma_lookup(mm, addr);
547 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
548 return NULL;
549 return vma;
550}
551
21fbd591 552static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 553{
8dd3557a
HD
554 struct mm_struct *mm = rmap_item->mm;
555 unsigned long addr = rmap_item->address;
31dbd01f
IE
556 struct vm_area_struct *vma;
557
4035c07a
HD
558 /*
559 * It is not an accident that whenever we want to break COW
560 * to undo, we also need to drop a reference to the anon_vma.
561 */
9e60109f 562 put_anon_vma(rmap_item->anon_vma);
4035c07a 563
d8ed45c5 564 mmap_read_lock(mm);
ef694222
BL
565 vma = find_mergeable_vma(mm, addr);
566 if (vma)
567 break_ksm(vma, addr);
d8ed45c5 568 mmap_read_unlock(mm);
31dbd01f
IE
569}
570
21fbd591 571static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
572{
573 struct mm_struct *mm = rmap_item->mm;
574 unsigned long addr = rmap_item->address;
575 struct vm_area_struct *vma;
576 struct page *page;
577
d8ed45c5 578 mmap_read_lock(mm);
ef694222
BL
579 vma = find_mergeable_vma(mm, addr);
580 if (!vma)
31dbd01f
IE
581 goto out;
582
583 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 584 if (IS_ERR_OR_NULL(page))
31dbd01f 585 goto out;
f7091ed6
HW
586 if (is_zone_device_page(page))
587 goto out_putpage;
f765f540 588 if (PageAnon(page)) {
31dbd01f
IE
589 flush_anon_page(vma, page, addr);
590 flush_dcache_page(page);
591 } else {
f7091ed6 592out_putpage:
31dbd01f 593 put_page(page);
c8f95ed1
AA
594out:
595 page = NULL;
31dbd01f 596 }
d8ed45c5 597 mmap_read_unlock(mm);
31dbd01f
IE
598 return page;
599}
600
90bd6fd3
PH
601/*
602 * This helper is used for getting right index into array of tree roots.
603 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605 * every node has its own stable and unstable tree.
606 */
607static inline int get_kpfn_nid(unsigned long kpfn)
608{
d8fc16a8 609 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
610}
611
21fbd591 612static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
613 struct rb_root *root)
614{
21fbd591 615 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
616 VM_BUG_ON(is_stable_node_chain(dup));
617 if (likely(chain)) {
618 INIT_HLIST_HEAD(&chain->hlist);
619 chain->chain_prune_time = jiffies;
620 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 622 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
623#endif
624 ksm_stable_node_chains++;
625
626 /*
627 * Put the stable node chain in the first dimension of
628 * the stable tree and at the same time remove the old
629 * stable node.
630 */
631 rb_replace_node(&dup->node, &chain->node, root);
632
633 /*
634 * Move the old stable node to the second dimension
635 * queued in the hlist_dup. The invariant is that all
636 * dup stable_nodes in the chain->hlist point to pages
457aef94 637 * that are write protected and have the exact same
2c653d0e
AA
638 * content.
639 */
640 stable_node_chain_add_dup(dup, chain);
641 }
642 return chain;
643}
644
21fbd591 645static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
646 struct rb_root *root)
647{
648 rb_erase(&chain->node, root);
649 free_stable_node(chain);
650 ksm_stable_node_chains--;
651}
652
21fbd591 653static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 654{
21fbd591 655 struct ksm_rmap_item *rmap_item;
4035c07a 656
2c653d0e
AA
657 /* check it's not STABLE_NODE_CHAIN or negative */
658 BUG_ON(stable_node->rmap_hlist_len < 0);
659
b67bfe0d 660 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 661 if (rmap_item->hlist.next) {
4035c07a 662 ksm_pages_sharing--;
739100c8
SR
663 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
664 } else {
4035c07a 665 ksm_pages_shared--;
739100c8 666 }
76093853 667
668 rmap_item->mm->ksm_merging_pages--;
669
2c653d0e
AA
670 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671 stable_node->rmap_hlist_len--;
9e60109f 672 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
673 rmap_item->address &= PAGE_MASK;
674 cond_resched();
675 }
676
2c653d0e
AA
677 /*
678 * We need the second aligned pointer of the migrate_nodes
679 * list_head to stay clear from the rb_parent_color union
680 * (aligned and different than any node) and also different
681 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 682 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 683 */
2c653d0e
AA
684 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 686
739100c8 687 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
688 if (stable_node->head == &migrate_nodes)
689 list_del(&stable_node->list);
690 else
2c653d0e 691 stable_node_dup_del(stable_node);
4035c07a
HD
692 free_stable_node(stable_node);
693}
694
2cee57d1
YS
695enum get_ksm_page_flags {
696 GET_KSM_PAGE_NOLOCK,
697 GET_KSM_PAGE_LOCK,
698 GET_KSM_PAGE_TRYLOCK
699};
700
4035c07a
HD
701/*
702 * get_ksm_page: checks if the page indicated by the stable node
703 * is still its ksm page, despite having held no reference to it.
704 * In which case we can trust the content of the page, and it
705 * returns the gotten page; but if the page has now been zapped,
706 * remove the stale node from the stable tree and return NULL.
c8d6553b 707 * But beware, the stable node's page might be being migrated.
4035c07a
HD
708 *
709 * You would expect the stable_node to hold a reference to the ksm page.
710 * But if it increments the page's count, swapping out has to wait for
711 * ksmd to come around again before it can free the page, which may take
712 * seconds or even minutes: much too unresponsive. So instead we use a
713 * "keyhole reference": access to the ksm page from the stable node peeps
714 * out through its keyhole to see if that page still holds the right key,
715 * pointing back to this stable node. This relies on freeing a PageAnon
716 * page to reset its page->mapping to NULL, and relies on no other use of
717 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
718 * is on its way to being freed; but it is an anomaly to bear in mind.
719 */
21fbd591 720static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 721 enum get_ksm_page_flags flags)
4035c07a
HD
722{
723 struct page *page;
724 void *expected_mapping;
c8d6553b 725 unsigned long kpfn;
4035c07a 726
bda807d4
MK
727 expected_mapping = (void *)((unsigned long)stable_node |
728 PAGE_MAPPING_KSM);
c8d6553b 729again:
08df4774 730 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 731 page = pfn_to_page(kpfn);
4db0c3c2 732 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 733 goto stale;
c8d6553b
HD
734
735 /*
736 * We cannot do anything with the page while its refcount is 0.
737 * Usually 0 means free, or tail of a higher-order page: in which
738 * case this node is no longer referenced, and should be freed;
1c4c3b99 739 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 740 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 741 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 742 * in folio_migrate_mapping(), it might still be our page,
52d1e606 743 * in which case it's essential to keep the node.
c8d6553b
HD
744 */
745 while (!get_page_unless_zero(page)) {
746 /*
747 * Another check for page->mapping != expected_mapping would
748 * work here too. We have chosen the !PageSwapCache test to
749 * optimize the common case, when the page is or is about to
750 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 751 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
752 * page->mapping reset to NULL later, in free_pages_prepare().
753 */
754 if (!PageSwapCache(page))
755 goto stale;
756 cpu_relax();
757 }
758
4db0c3c2 759 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
760 put_page(page);
761 goto stale;
762 }
c8d6553b 763
2cee57d1
YS
764 if (flags == GET_KSM_PAGE_TRYLOCK) {
765 if (!trylock_page(page)) {
766 put_page(page);
767 return ERR_PTR(-EBUSY);
768 }
769 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 770 lock_page(page);
2cee57d1
YS
771
772 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 773 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
774 unlock_page(page);
775 put_page(page);
776 goto stale;
777 }
778 }
4035c07a 779 return page;
c8d6553b 780
4035c07a 781stale:
c8d6553b
HD
782 /*
783 * We come here from above when page->mapping or !PageSwapCache
784 * suggests that the node is stale; but it might be under migration.
19138349 785 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
786 * before checking whether node->kpfn has been changed.
787 */
788 smp_rmb();
4db0c3c2 789 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 790 goto again;
4035c07a
HD
791 remove_node_from_stable_tree(stable_node);
792 return NULL;
793}
794
31dbd01f
IE
795/*
796 * Removing rmap_item from stable or unstable tree.
797 * This function will clean the information from the stable/unstable tree.
798 */
21fbd591 799static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 800{
7b6ba2c7 801 if (rmap_item->address & STABLE_FLAG) {
21fbd591 802 struct ksm_stable_node *stable_node;
5ad64688 803 struct page *page;
31dbd01f 804
7b6ba2c7 805 stable_node = rmap_item->head;
62862290 806 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
807 if (!page)
808 goto out;
5ad64688 809
7b6ba2c7 810 hlist_del(&rmap_item->hlist);
62862290 811 unlock_page(page);
4035c07a 812 put_page(page);
08beca44 813
98666f8a 814 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
815 ksm_pages_sharing--;
816 else
7b6ba2c7 817 ksm_pages_shared--;
76093853 818
819 rmap_item->mm->ksm_merging_pages--;
820
2c653d0e
AA
821 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822 stable_node->rmap_hlist_len--;
31dbd01f 823
9e60109f 824 put_anon_vma(rmap_item->anon_vma);
c89a384e 825 rmap_item->head = NULL;
93d17715 826 rmap_item->address &= PAGE_MASK;
31dbd01f 827
7b6ba2c7 828 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
829 unsigned char age;
830 /*
9ba69294 831 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 832 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
833 * But be careful when an mm is exiting: do the rb_erase
834 * if this rmap_item was inserted by this scan, rather
835 * than left over from before.
31dbd01f
IE
836 */
837 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 838 BUG_ON(age > 1);
31dbd01f 839 if (!age)
90bd6fd3 840 rb_erase(&rmap_item->node,
ef53d16c 841 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 842 ksm_pages_unshared--;
93d17715 843 rmap_item->address &= PAGE_MASK;
31dbd01f 844 }
4035c07a 845out:
31dbd01f
IE
846 cond_resched(); /* we're called from many long loops */
847}
848
21fbd591 849static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 850{
6514d511 851 while (*rmap_list) {
21fbd591 852 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 853 *rmap_list = rmap_item->rmap_list;
31dbd01f 854 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
855 free_rmap_item(rmap_item);
856 }
857}
858
859/*
e850dcf5 860 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
861 * than check every pte of a given vma, the locking doesn't quite work for
862 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 863 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
864 * rmap_items from parent to child at fork time (so as not to waste time
865 * if exit comes before the next scan reaches it).
81464e30
HD
866 *
867 * Similarly, although we'd like to remove rmap_items (so updating counts
868 * and freeing memory) when unmerging an area, it's easier to leave that
869 * to the next pass of ksmd - consider, for example, how ksmd might be
870 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 871 */
d952b791
HD
872static int unmerge_ksm_pages(struct vm_area_struct *vma,
873 unsigned long start, unsigned long end)
31dbd01f
IE
874{
875 unsigned long addr;
d952b791 876 int err = 0;
31dbd01f 877
d952b791 878 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
879 if (ksm_test_exit(vma->vm_mm))
880 break;
d952b791
HD
881 if (signal_pending(current))
882 err = -ERESTARTSYS;
883 else
884 err = break_ksm(vma, addr);
885 }
886 return err;
31dbd01f
IE
887}
888
21fbd591 889static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
890{
891 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
892}
893
21fbd591 894static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 895{
19138349 896 return folio_stable_node(page_folio(page));
88484826
MR
897}
898
899static inline void set_page_stable_node(struct page *page,
21fbd591 900 struct ksm_stable_node *stable_node)
88484826 901{
6c287605 902 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
903 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
904}
905
2ffd8679
HD
906#ifdef CONFIG_SYSFS
907/*
908 * Only called through the sysfs control interface:
909 */
21fbd591 910static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
911{
912 struct page *page;
913 int err;
914
2cee57d1 915 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
916 if (!page) {
917 /*
918 * get_ksm_page did remove_node_from_stable_tree itself.
919 */
920 return 0;
921 }
922
9a63236f
AR
923 /*
924 * Page could be still mapped if this races with __mmput() running in
925 * between ksm_exit() and exit_mmap(). Just refuse to let
926 * merge_across_nodes/max_page_sharing be switched.
927 */
928 err = -EBUSY;
929 if (!page_mapped(page)) {
cbf86cfe 930 /*
8fdb3dbf
HD
931 * The stable node did not yet appear stale to get_ksm_page(),
932 * since that allows for an unmapped ksm page to be recognized
933 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
934 * This page might be in a pagevec waiting to be freed,
935 * or it might be PageSwapCache (perhaps under writeback),
936 * or it might have been removed from swapcache a moment ago.
937 */
938 set_page_stable_node(page, NULL);
939 remove_node_from_stable_tree(stable_node);
940 err = 0;
941 }
942
943 unlock_page(page);
944 put_page(page);
945 return err;
946}
947
21fbd591 948static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
949 struct rb_root *root)
950{
21fbd591 951 struct ksm_stable_node *dup;
2c653d0e
AA
952 struct hlist_node *hlist_safe;
953
954 if (!is_stable_node_chain(stable_node)) {
955 VM_BUG_ON(is_stable_node_dup(stable_node));
956 if (remove_stable_node(stable_node))
957 return true;
958 else
959 return false;
960 }
961
962 hlist_for_each_entry_safe(dup, hlist_safe,
963 &stable_node->hlist, hlist_dup) {
964 VM_BUG_ON(!is_stable_node_dup(dup));
965 if (remove_stable_node(dup))
966 return true;
967 }
968 BUG_ON(!hlist_empty(&stable_node->hlist));
969 free_stable_node_chain(stable_node, root);
970 return false;
971}
972
cbf86cfe
HD
973static int remove_all_stable_nodes(void)
974{
21fbd591 975 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
976 int nid;
977 int err = 0;
978
ef53d16c 979 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
980 while (root_stable_tree[nid].rb_node) {
981 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 982 struct ksm_stable_node, node);
2c653d0e
AA
983 if (remove_stable_node_chain(stable_node,
984 root_stable_tree + nid)) {
cbf86cfe
HD
985 err = -EBUSY;
986 break; /* proceed to next nid */
987 }
988 cond_resched();
989 }
990 }
03640418 991 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
992 if (remove_stable_node(stable_node))
993 err = -EBUSY;
994 cond_resched();
995 }
cbf86cfe
HD
996 return err;
997}
998
d952b791 999static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1000{
21fbd591 1001 struct ksm_mm_slot *mm_slot;
58730ab6 1002 struct mm_slot *slot;
31dbd01f
IE
1003 struct mm_struct *mm;
1004 struct vm_area_struct *vma;
d952b791
HD
1005 int err = 0;
1006
1007 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1008 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009 struct mm_slot, mm_node);
1010 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1011 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1012
a5f18ba0
MWO
1013 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014 mm_slot = ksm_scan.mm_slot) {
58730ab6 1015 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1016
58730ab6 1017 mm = mm_slot->slot.mm;
d8ed45c5 1018 mmap_read_lock(mm);
6db504ce
LH
1019
1020 /*
1021 * Exit right away if mm is exiting to avoid lockdep issue in
1022 * the maple tree
1023 */
1024 if (ksm_test_exit(mm))
1025 goto mm_exiting;
1026
a5f18ba0 1027 for_each_vma(vmi, vma) {
31dbd01f
IE
1028 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1029 continue;
d952b791
HD
1030 err = unmerge_ksm_pages(vma,
1031 vma->vm_start, vma->vm_end);
9ba69294
HD
1032 if (err)
1033 goto error;
31dbd01f 1034 }
9ba69294 1035
6db504ce 1036mm_exiting:
420be4ed 1037 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1038 mmap_read_unlock(mm);
d952b791
HD
1039
1040 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1041 slot = list_entry(mm_slot->slot.mm_node.next,
1042 struct mm_slot, mm_node);
1043 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1044 if (ksm_test_exit(mm)) {
58730ab6
QZ
1045 hash_del(&mm_slot->slot.hash);
1046 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1047 spin_unlock(&ksm_mmlist_lock);
1048
58730ab6 1049 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1050 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1051 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1052 mmdrop(mm);
7496fea9 1053 } else
9ba69294 1054 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1055 }
1056
cbf86cfe
HD
1057 /* Clean up stable nodes, but don't worry if some are still busy */
1058 remove_all_stable_nodes();
d952b791 1059 ksm_scan.seqnr = 0;
9ba69294
HD
1060 return 0;
1061
1062error:
d8ed45c5 1063 mmap_read_unlock(mm);
31dbd01f 1064 spin_lock(&ksm_mmlist_lock);
d952b791 1065 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1066 spin_unlock(&ksm_mmlist_lock);
d952b791 1067 return err;
31dbd01f 1068}
2ffd8679 1069#endif /* CONFIG_SYSFS */
31dbd01f 1070
31dbd01f
IE
1071static u32 calc_checksum(struct page *page)
1072{
1073 u32 checksum;
9b04c5fe 1074 void *addr = kmap_atomic(page);
59e1a2f4 1075 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1076 kunmap_atomic(addr);
31dbd01f
IE
1077 return checksum;
1078}
1079
31dbd01f
IE
1080static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1081 pte_t *orig_pte)
1082{
1083 struct mm_struct *mm = vma->vm_mm;
eed05e54 1084 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1085 int swapped;
1086 int err = -EFAULT;
ac46d4f3 1087 struct mmu_notifier_range range;
6c287605 1088 bool anon_exclusive;
31dbd01f 1089
36eaff33
KS
1090 pvmw.address = page_address_in_vma(page, vma);
1091 if (pvmw.address == -EFAULT)
31dbd01f
IE
1092 goto out;
1093
29ad768c 1094 BUG_ON(PageTransCompound(page));
6bdb913f 1095
7d4a8be0 1096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1097 pvmw.address + PAGE_SIZE);
1098 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1099
36eaff33 1100 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1101 goto out_mn;
36eaff33
KS
1102 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1103 goto out_unlock;
31dbd01f 1104
6c287605 1105 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1106 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
6c287605 1107 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1108 pte_t entry;
1109
1110 swapped = PageSwapCache(page);
36eaff33 1111 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1112 /*
25985edc 1113 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1114 * take any lock, therefore the check that we are going to make
f0953a1b 1115 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1116 * O_DIRECT can happen right after the check.
1117 * So we clear the pte and flush the tlb before the check
1118 * this assure us that no O_DIRECT can happen after the check
1119 * or in the middle of the check.
0f10851e
JG
1120 *
1121 * No need to notify as we are downgrading page table to read
1122 * only not changing it to point to a new page.
1123 *
ee65728e 1124 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1125 */
0f10851e 1126 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1127 /*
1128 * Check that no O_DIRECT or similar I/O is in progress on the
1129 * page
1130 */
31e855ea 1131 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1132 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1133 goto out_unlock;
1134 }
6c287605 1135
088b8aa5 1136 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1137 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1139 goto out_unlock;
1140 }
1141
4e31635c
HD
1142 if (pte_dirty(entry))
1143 set_page_dirty(page);
6a56ccbc
DH
1144 entry = pte_mkclean(entry);
1145
1146 if (pte_write(entry))
1147 entry = pte_wrprotect(entry);
595cd8f2 1148
36eaff33 1149 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1150 }
36eaff33 1151 *orig_pte = *pvmw.pte;
31dbd01f
IE
1152 err = 0;
1153
1154out_unlock:
36eaff33 1155 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1156out_mn:
ac46d4f3 1157 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1158out:
1159 return err;
1160}
1161
1162/**
1163 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1164 * @vma: vma that holds the pte pointing to page
1165 * @page: the page we are replacing by kpage
1166 * @kpage: the ksm page we replace page by
31dbd01f
IE
1167 * @orig_pte: the original value of the pte
1168 *
1169 * Returns 0 on success, -EFAULT on failure.
1170 */
8dd3557a
HD
1171static int replace_page(struct vm_area_struct *vma, struct page *page,
1172 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1173{
1174 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1175 struct folio *folio;
31dbd01f 1176 pmd_t *pmd;
50722804 1177 pmd_t pmde;
31dbd01f 1178 pte_t *ptep;
e86c59b1 1179 pte_t newpte;
31dbd01f
IE
1180 spinlock_t *ptl;
1181 unsigned long addr;
31dbd01f 1182 int err = -EFAULT;
ac46d4f3 1183 struct mmu_notifier_range range;
31dbd01f 1184
8dd3557a 1185 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1186 if (addr == -EFAULT)
1187 goto out;
1188
6219049a
BL
1189 pmd = mm_find_pmd(mm, addr);
1190 if (!pmd)
31dbd01f 1191 goto out;
50722804
ZK
1192 /*
1193 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194 * without holding anon_vma lock for write. So when looking for a
1195 * genuine pmde (in which to find pte), test present and !THP together.
1196 */
1197 pmde = *pmd;
1198 barrier();
1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200 goto out;
31dbd01f 1201
7d4a8be0 1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1203 addr + PAGE_SIZE);
ac46d4f3 1204 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1205
31dbd01f
IE
1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207 if (!pte_same(*ptep, orig_pte)) {
1208 pte_unmap_unlock(ptep, ptl);
6bdb913f 1209 goto out_mn;
31dbd01f 1210 }
6c287605
DH
1211 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1213
e86c59b1
CI
1214 /*
1215 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1216 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1217 */
1218 if (!is_zero_pfn(page_to_pfn(kpage))) {
1219 get_page(kpage);
f1e2db12 1220 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1221 newpte = mk_pte(kpage, vma->vm_page_prot);
1222 } else {
1223 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224 vma->vm_page_prot));
a38c015f
CI
1225 /*
1226 * We're replacing an anonymous page with a zero page, which is
1227 * not anonymous. We need to do proper accounting otherwise we
1228 * will get wrong values in /proc, and a BUG message in dmesg
1229 * when tearing down the mm.
1230 */
1231 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1232 }
31dbd01f
IE
1233
1234 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1235 /*
1236 * No need to notify as we are replacing a read only page with another
1237 * read only page with the same content.
1238 *
ee65728e 1239 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1240 */
1241 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1242 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1243
b4e6f66e 1244 folio = page_folio(page);
cea86fe2 1245 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1246 if (!folio_mapped(folio))
1247 folio_free_swap(folio);
1248 folio_put(folio);
31dbd01f
IE
1249
1250 pte_unmap_unlock(ptep, ptl);
1251 err = 0;
6bdb913f 1252out_mn:
ac46d4f3 1253 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1254out:
1255 return err;
1256}
1257
1258/*
1259 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1260 * @vma: the vma that holds the pte pointing to page
1261 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1262 * @kpage: the PageKsm page that we want to map instead of page,
1263 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1264 *
1265 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266 */
1267static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1268 struct page *page, struct page *kpage)
31dbd01f
IE
1269{
1270 pte_t orig_pte = __pte(0);
1271 int err = -EFAULT;
1272
db114b83
HD
1273 if (page == kpage) /* ksm page forked */
1274 return 0;
1275
8dd3557a 1276 if (!PageAnon(page))
31dbd01f
IE
1277 goto out;
1278
31dbd01f
IE
1279 /*
1280 * We need the page lock to read a stable PageSwapCache in
1281 * write_protect_page(). We use trylock_page() instead of
1282 * lock_page() because we don't want to wait here - we
1283 * prefer to continue scanning and merging different pages,
1284 * then come back to this page when it is unlocked.
1285 */
8dd3557a 1286 if (!trylock_page(page))
31e855ea 1287 goto out;
f765f540
KS
1288
1289 if (PageTransCompound(page)) {
a7306c34 1290 if (split_huge_page(page))
f765f540
KS
1291 goto out_unlock;
1292 }
1293
31dbd01f
IE
1294 /*
1295 * If this anonymous page is mapped only here, its pte may need
1296 * to be write-protected. If it's mapped elsewhere, all of its
1297 * ptes are necessarily already write-protected. But in either
1298 * case, we need to lock and check page_count is not raised.
1299 */
80e14822
HD
1300 if (write_protect_page(vma, page, &orig_pte) == 0) {
1301 if (!kpage) {
1302 /*
1303 * While we hold page lock, upgrade page from
1304 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305 * stable_tree_insert() will update stable_node.
1306 */
1307 set_page_stable_node(page, NULL);
1308 mark_page_accessed(page);
337ed7eb
MK
1309 /*
1310 * Page reclaim just frees a clean page with no dirty
1311 * ptes: make sure that the ksm page would be swapped.
1312 */
1313 if (!PageDirty(page))
1314 SetPageDirty(page);
80e14822
HD
1315 err = 0;
1316 } else if (pages_identical(page, kpage))
1317 err = replace_page(vma, page, kpage, orig_pte);
1318 }
31dbd01f 1319
f765f540 1320out_unlock:
8dd3557a 1321 unlock_page(page);
31dbd01f
IE
1322out:
1323 return err;
1324}
1325
81464e30
HD
1326/*
1327 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1329 *
1330 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1331 */
21fbd591 1332static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1333 struct page *page, struct page *kpage)
81464e30 1334{
8dd3557a 1335 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1336 struct vm_area_struct *vma;
1337 int err = -EFAULT;
1338
d8ed45c5 1339 mmap_read_lock(mm);
85c6e8dd
AA
1340 vma = find_mergeable_vma(mm, rmap_item->address);
1341 if (!vma)
81464e30
HD
1342 goto out;
1343
8dd3557a 1344 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1345 if (err)
1346 goto out;
1347
bc56620b
HD
1348 /* Unstable nid is in union with stable anon_vma: remove first */
1349 remove_rmap_item_from_tree(rmap_item);
1350
c1e8d7c6 1351 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1352 rmap_item->anon_vma = vma->anon_vma;
1353 get_anon_vma(vma->anon_vma);
81464e30 1354out:
d8ed45c5 1355 mmap_read_unlock(mm);
739100c8
SR
1356 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1357 rmap_item, mm, err);
81464e30
HD
1358 return err;
1359}
1360
31dbd01f
IE
1361/*
1362 * try_to_merge_two_pages - take two identical pages and prepare them
1363 * to be merged into one page.
1364 *
8dd3557a
HD
1365 * This function returns the kpage if we successfully merged two identical
1366 * pages into one ksm page, NULL otherwise.
31dbd01f 1367 *
80e14822 1368 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1369 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1370 */
21fbd591 1371static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1372 struct page *page,
21fbd591 1373 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1374 struct page *tree_page)
31dbd01f 1375{
80e14822 1376 int err;
31dbd01f 1377
80e14822 1378 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1379 if (!err) {
8dd3557a 1380 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1381 tree_page, page);
31dbd01f 1382 /*
81464e30
HD
1383 * If that fails, we have a ksm page with only one pte
1384 * pointing to it: so break it.
31dbd01f 1385 */
4035c07a 1386 if (err)
8dd3557a 1387 break_cow(rmap_item);
31dbd01f 1388 }
80e14822 1389 return err ? NULL : page;
31dbd01f
IE
1390}
1391
2c653d0e 1392static __always_inline
21fbd591 1393bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1394{
1395 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1396 /*
1397 * Check that at least one mapping still exists, otherwise
1398 * there's no much point to merge and share with this
1399 * stable_node, as the underlying tree_page of the other
1400 * sharer is going to be freed soon.
1401 */
1402 return stable_node->rmap_hlist_len &&
1403 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1404}
1405
1406static __always_inline
21fbd591 1407bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1408{
1409 return __is_page_sharing_candidate(stable_node, 0);
1410}
1411
21fbd591
QZ
1412static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1414 struct rb_root *root,
1415 bool prune_stale_stable_nodes)
2c653d0e 1416{
21fbd591 1417 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1418 struct hlist_node *hlist_safe;
8dc5ffcd 1419 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1420 int nr = 0;
1421 int found_rmap_hlist_len;
1422
1423 if (!prune_stale_stable_nodes ||
1424 time_before(jiffies, stable_node->chain_prune_time +
1425 msecs_to_jiffies(
1426 ksm_stable_node_chains_prune_millisecs)))
1427 prune_stale_stable_nodes = false;
1428 else
1429 stable_node->chain_prune_time = jiffies;
1430
1431 hlist_for_each_entry_safe(dup, hlist_safe,
1432 &stable_node->hlist, hlist_dup) {
1433 cond_resched();
1434 /*
1435 * We must walk all stable_node_dup to prune the stale
1436 * stable nodes during lookup.
1437 *
1438 * get_ksm_page can drop the nodes from the
1439 * stable_node->hlist if they point to freed pages
1440 * (that's why we do a _safe walk). The "dup"
1441 * stable_node parameter itself will be freed from
1442 * under us if it returns NULL.
1443 */
2cee57d1 1444 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1445 if (!_tree_page)
1446 continue;
1447 nr += 1;
1448 if (is_page_sharing_candidate(dup)) {
1449 if (!found ||
1450 dup->rmap_hlist_len > found_rmap_hlist_len) {
1451 if (found)
8dc5ffcd 1452 put_page(tree_page);
2c653d0e
AA
1453 found = dup;
1454 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1455 tree_page = _tree_page;
2c653d0e 1456
8dc5ffcd 1457 /* skip put_page for found dup */
2c653d0e
AA
1458 if (!prune_stale_stable_nodes)
1459 break;
2c653d0e
AA
1460 continue;
1461 }
1462 }
1463 put_page(_tree_page);
1464 }
1465
80b18dfa
AA
1466 if (found) {
1467 /*
1468 * nr is counting all dups in the chain only if
1469 * prune_stale_stable_nodes is true, otherwise we may
1470 * break the loop at nr == 1 even if there are
1471 * multiple entries.
1472 */
1473 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1474 /*
1475 * If there's not just one entry it would
1476 * corrupt memory, better BUG_ON. In KSM
1477 * context with no lock held it's not even
1478 * fatal.
1479 */
1480 BUG_ON(stable_node->hlist.first->next);
1481
1482 /*
1483 * There's just one entry and it is below the
1484 * deduplication limit so drop the chain.
1485 */
1486 rb_replace_node(&stable_node->node, &found->node,
1487 root);
1488 free_stable_node(stable_node);
1489 ksm_stable_node_chains--;
1490 ksm_stable_node_dups--;
b4fecc67 1491 /*
0ba1d0f7
AA
1492 * NOTE: the caller depends on the stable_node
1493 * to be equal to stable_node_dup if the chain
1494 * was collapsed.
b4fecc67 1495 */
0ba1d0f7
AA
1496 *_stable_node = found;
1497 /*
f0953a1b 1498 * Just for robustness, as stable_node is
0ba1d0f7
AA
1499 * otherwise left as a stable pointer, the
1500 * compiler shall optimize it away at build
1501 * time.
1502 */
1503 stable_node = NULL;
80b18dfa
AA
1504 } else if (stable_node->hlist.first != &found->hlist_dup &&
1505 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1506 /*
80b18dfa
AA
1507 * If the found stable_node dup can accept one
1508 * more future merge (in addition to the one
1509 * that is underway) and is not at the head of
1510 * the chain, put it there so next search will
1511 * be quicker in the !prune_stale_stable_nodes
1512 * case.
1513 *
1514 * NOTE: it would be inaccurate to use nr > 1
1515 * instead of checking the hlist.first pointer
1516 * directly, because in the
1517 * prune_stale_stable_nodes case "nr" isn't
1518 * the position of the found dup in the chain,
1519 * but the total number of dups in the chain.
2c653d0e
AA
1520 */
1521 hlist_del(&found->hlist_dup);
1522 hlist_add_head(&found->hlist_dup,
1523 &stable_node->hlist);
1524 }
1525 }
1526
8dc5ffcd
AA
1527 *_stable_node_dup = found;
1528 return tree_page;
2c653d0e
AA
1529}
1530
21fbd591 1531static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1532 struct rb_root *root)
1533{
1534 if (!is_stable_node_chain(stable_node))
1535 return stable_node;
1536 if (hlist_empty(&stable_node->hlist)) {
1537 free_stable_node_chain(stable_node, root);
1538 return NULL;
1539 }
1540 return hlist_entry(stable_node->hlist.first,
1541 typeof(*stable_node), hlist_dup);
1542}
1543
8dc5ffcd
AA
1544/*
1545 * Like for get_ksm_page, this function can free the *_stable_node and
1546 * *_stable_node_dup if the returned tree_page is NULL.
1547 *
1548 * It can also free and overwrite *_stable_node with the found
1549 * stable_node_dup if the chain is collapsed (in which case
1550 * *_stable_node will be equal to *_stable_node_dup like if the chain
1551 * never existed). It's up to the caller to verify tree_page is not
1552 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1553 *
1554 * *_stable_node_dup is really a second output parameter of this
1555 * function and will be overwritten in all cases, the caller doesn't
1556 * need to initialize it.
1557 */
21fbd591
QZ
1558static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1560 struct rb_root *root,
1561 bool prune_stale_stable_nodes)
2c653d0e 1562{
21fbd591 1563 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1564 if (!is_stable_node_chain(stable_node)) {
1565 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1566 *_stable_node_dup = stable_node;
2cee57d1 1567 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1568 }
8dc5ffcd
AA
1569 /*
1570 * _stable_node_dup set to NULL means the stable_node
1571 * reached the ksm_max_page_sharing limit.
1572 */
1573 *_stable_node_dup = NULL;
2c653d0e
AA
1574 return NULL;
1575 }
8dc5ffcd 1576 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1577 prune_stale_stable_nodes);
1578}
1579
21fbd591
QZ
1580static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581 struct ksm_stable_node **s_n,
8dc5ffcd 1582 struct rb_root *root)
2c653d0e 1583{
8dc5ffcd 1584 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1585}
1586
21fbd591
QZ
1587static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588 struct ksm_stable_node *s_n,
8dc5ffcd 1589 struct rb_root *root)
2c653d0e 1590{
21fbd591 1591 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1592 struct page *tree_page;
1593
1594 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1595 /* not pruning dups so s_n cannot have changed */
1596 VM_BUG_ON(s_n != old_stable_node);
1597 return tree_page;
2c653d0e
AA
1598}
1599
31dbd01f 1600/*
8dd3557a 1601 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1602 *
1603 * This function checks if there is a page inside the stable tree
1604 * with identical content to the page that we are scanning right now.
1605 *
7b6ba2c7 1606 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1607 * NULL otherwise.
1608 */
62b61f61 1609static struct page *stable_tree_search(struct page *page)
31dbd01f 1610{
90bd6fd3 1611 int nid;
ef53d16c 1612 struct rb_root *root;
4146d2d6
HD
1613 struct rb_node **new;
1614 struct rb_node *parent;
21fbd591
QZ
1615 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616 struct ksm_stable_node *page_node;
31dbd01f 1617
4146d2d6
HD
1618 page_node = page_stable_node(page);
1619 if (page_node && page_node->head != &migrate_nodes) {
1620 /* ksm page forked */
08beca44 1621 get_page(page);
62b61f61 1622 return page;
08beca44
HD
1623 }
1624
90bd6fd3 1625 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1626 root = root_stable_tree + nid;
4146d2d6 1627again:
ef53d16c 1628 new = &root->rb_node;
4146d2d6 1629 parent = NULL;
90bd6fd3 1630
4146d2d6 1631 while (*new) {
4035c07a 1632 struct page *tree_page;
31dbd01f
IE
1633 int ret;
1634
08beca44 1635 cond_resched();
21fbd591 1636 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1637 stable_node_any = NULL;
8dc5ffcd 1638 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1639 /*
1640 * NOTE: stable_node may have been freed by
1641 * chain_prune() if the returned stable_node_dup is
1642 * not NULL. stable_node_dup may have been inserted in
1643 * the rbtree instead as a regular stable_node (in
1644 * order to collapse the stable_node chain if a single
0ba1d0f7 1645 * stable_node dup was found in it). In such case the
3413b2c8 1646 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1647 * to the stable_node_dup that was collapsed in the
1648 * stable rbtree and stable_node will be equal to
1649 * stable_node_dup like if the chain never existed.
b4fecc67 1650 */
2c653d0e
AA
1651 if (!stable_node_dup) {
1652 /*
1653 * Either all stable_node dups were full in
1654 * this stable_node chain, or this chain was
1655 * empty and should be rb_erased.
1656 */
1657 stable_node_any = stable_node_dup_any(stable_node,
1658 root);
1659 if (!stable_node_any) {
1660 /* rb_erase just run */
1661 goto again;
1662 }
1663 /*
1664 * Take any of the stable_node dups page of
1665 * this stable_node chain to let the tree walk
1666 * continue. All KSM pages belonging to the
1667 * stable_node dups in a stable_node chain
1668 * have the same content and they're
457aef94 1669 * write protected at all times. Any will work
2c653d0e
AA
1670 * fine to continue the walk.
1671 */
2cee57d1
YS
1672 tree_page = get_ksm_page(stable_node_any,
1673 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1674 }
1675 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1676 if (!tree_page) {
1677 /*
1678 * If we walked over a stale stable_node,
1679 * get_ksm_page() will call rb_erase() and it
1680 * may rebalance the tree from under us. So
1681 * restart the search from scratch. Returning
1682 * NULL would be safe too, but we'd generate
1683 * false negative insertions just because some
1684 * stable_node was stale.
1685 */
1686 goto again;
1687 }
31dbd01f 1688
4035c07a 1689 ret = memcmp_pages(page, tree_page);
c8d6553b 1690 put_page(tree_page);
31dbd01f 1691
4146d2d6 1692 parent = *new;
c8d6553b 1693 if (ret < 0)
4146d2d6 1694 new = &parent->rb_left;
c8d6553b 1695 else if (ret > 0)
4146d2d6 1696 new = &parent->rb_right;
c8d6553b 1697 else {
2c653d0e
AA
1698 if (page_node) {
1699 VM_BUG_ON(page_node->head != &migrate_nodes);
1700 /*
1701 * Test if the migrated page should be merged
1702 * into a stable node dup. If the mapcount is
1703 * 1 we can migrate it with another KSM page
1704 * without adding it to the chain.
1705 */
1706 if (page_mapcount(page) > 1)
1707 goto chain_append;
1708 }
1709
1710 if (!stable_node_dup) {
1711 /*
1712 * If the stable_node is a chain and
1713 * we got a payload match in memcmp
1714 * but we cannot merge the scanned
1715 * page in any of the existing
1716 * stable_node dups because they're
1717 * all full, we need to wait the
1718 * scanned page to find itself a match
1719 * in the unstable tree to create a
1720 * brand new KSM page to add later to
1721 * the dups of this stable_node.
1722 */
1723 return NULL;
1724 }
1725
c8d6553b
HD
1726 /*
1727 * Lock and unlock the stable_node's page (which
1728 * might already have been migrated) so that page
1729 * migration is sure to notice its raised count.
1730 * It would be more elegant to return stable_node
1731 * than kpage, but that involves more changes.
1732 */
2cee57d1
YS
1733 tree_page = get_ksm_page(stable_node_dup,
1734 GET_KSM_PAGE_TRYLOCK);
1735
1736 if (PTR_ERR(tree_page) == -EBUSY)
1737 return ERR_PTR(-EBUSY);
1738
2c653d0e
AA
1739 if (unlikely(!tree_page))
1740 /*
1741 * The tree may have been rebalanced,
1742 * so re-evaluate parent and new.
1743 */
4146d2d6 1744 goto again;
2c653d0e
AA
1745 unlock_page(tree_page);
1746
1747 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1748 NUMA(stable_node_dup->nid)) {
1749 put_page(tree_page);
1750 goto replace;
1751 }
1752 return tree_page;
c8d6553b 1753 }
31dbd01f
IE
1754 }
1755
4146d2d6
HD
1756 if (!page_node)
1757 return NULL;
1758
1759 list_del(&page_node->list);
1760 DO_NUMA(page_node->nid = nid);
1761 rb_link_node(&page_node->node, parent, new);
ef53d16c 1762 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1763out:
1764 if (is_page_sharing_candidate(page_node)) {
1765 get_page(page);
1766 return page;
1767 } else
1768 return NULL;
4146d2d6
HD
1769
1770replace:
b4fecc67
AA
1771 /*
1772 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1773 * stable_node has been updated to be the new regular
1774 * stable_node. A collapse of the chain is indistinguishable
1775 * from the case there was no chain in the stable
1776 * rbtree. Otherwise stable_node is the chain and
1777 * stable_node_dup is the dup to replace.
b4fecc67 1778 */
0ba1d0f7 1779 if (stable_node_dup == stable_node) {
b4fecc67
AA
1780 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1782 /* there is no chain */
1783 if (page_node) {
1784 VM_BUG_ON(page_node->head != &migrate_nodes);
1785 list_del(&page_node->list);
1786 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1787 rb_replace_node(&stable_node_dup->node,
1788 &page_node->node,
2c653d0e
AA
1789 root);
1790 if (is_page_sharing_candidate(page_node))
1791 get_page(page);
1792 else
1793 page = NULL;
1794 } else {
b4fecc67 1795 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1796 page = NULL;
1797 }
4146d2d6 1798 } else {
2c653d0e
AA
1799 VM_BUG_ON(!is_stable_node_chain(stable_node));
1800 __stable_node_dup_del(stable_node_dup);
1801 if (page_node) {
1802 VM_BUG_ON(page_node->head != &migrate_nodes);
1803 list_del(&page_node->list);
1804 DO_NUMA(page_node->nid = nid);
1805 stable_node_chain_add_dup(page_node, stable_node);
1806 if (is_page_sharing_candidate(page_node))
1807 get_page(page);
1808 else
1809 page = NULL;
1810 } else {
1811 page = NULL;
1812 }
4146d2d6 1813 }
2c653d0e
AA
1814 stable_node_dup->head = &migrate_nodes;
1815 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1816 return page;
2c653d0e
AA
1817
1818chain_append:
1819 /* stable_node_dup could be null if it reached the limit */
1820 if (!stable_node_dup)
1821 stable_node_dup = stable_node_any;
b4fecc67
AA
1822 /*
1823 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1824 * stable_node has been updated to be the new regular
1825 * stable_node. A collapse of the chain is indistinguishable
1826 * from the case there was no chain in the stable
1827 * rbtree. Otherwise stable_node is the chain and
1828 * stable_node_dup is the dup to replace.
b4fecc67 1829 */
0ba1d0f7 1830 if (stable_node_dup == stable_node) {
b4fecc67 1831 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1832 /* chain is missing so create it */
1833 stable_node = alloc_stable_node_chain(stable_node_dup,
1834 root);
1835 if (!stable_node)
1836 return NULL;
1837 }
1838 /*
1839 * Add this stable_node dup that was
1840 * migrated to the stable_node chain
1841 * of the current nid for this page
1842 * content.
1843 */
b4fecc67 1844 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1845 VM_BUG_ON(page_node->head != &migrate_nodes);
1846 list_del(&page_node->list);
1847 DO_NUMA(page_node->nid = nid);
1848 stable_node_chain_add_dup(page_node, stable_node);
1849 goto out;
31dbd01f
IE
1850}
1851
1852/*
e850dcf5 1853 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1854 * into the stable tree.
1855 *
7b6ba2c7
HD
1856 * This function returns the stable tree node just allocated on success,
1857 * NULL otherwise.
31dbd01f 1858 */
21fbd591 1859static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1860{
90bd6fd3
PH
1861 int nid;
1862 unsigned long kpfn;
ef53d16c 1863 struct rb_root *root;
90bd6fd3 1864 struct rb_node **new;
f2e5ff85 1865 struct rb_node *parent;
21fbd591 1866 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1867 bool need_chain = false;
31dbd01f 1868
90bd6fd3
PH
1869 kpfn = page_to_pfn(kpage);
1870 nid = get_kpfn_nid(kpfn);
ef53d16c 1871 root = root_stable_tree + nid;
f2e5ff85
AA
1872again:
1873 parent = NULL;
ef53d16c 1874 new = &root->rb_node;
90bd6fd3 1875
31dbd01f 1876 while (*new) {
4035c07a 1877 struct page *tree_page;
31dbd01f
IE
1878 int ret;
1879
08beca44 1880 cond_resched();
21fbd591 1881 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1882 stable_node_any = NULL;
8dc5ffcd 1883 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1884 if (!stable_node_dup) {
1885 /*
1886 * Either all stable_node dups were full in
1887 * this stable_node chain, or this chain was
1888 * empty and should be rb_erased.
1889 */
1890 stable_node_any = stable_node_dup_any(stable_node,
1891 root);
1892 if (!stable_node_any) {
1893 /* rb_erase just run */
1894 goto again;
1895 }
1896 /*
1897 * Take any of the stable_node dups page of
1898 * this stable_node chain to let the tree walk
1899 * continue. All KSM pages belonging to the
1900 * stable_node dups in a stable_node chain
1901 * have the same content and they're
457aef94 1902 * write protected at all times. Any will work
2c653d0e
AA
1903 * fine to continue the walk.
1904 */
2cee57d1
YS
1905 tree_page = get_ksm_page(stable_node_any,
1906 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1907 }
1908 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1909 if (!tree_page) {
1910 /*
1911 * If we walked over a stale stable_node,
1912 * get_ksm_page() will call rb_erase() and it
1913 * may rebalance the tree from under us. So
1914 * restart the search from scratch. Returning
1915 * NULL would be safe too, but we'd generate
1916 * false negative insertions just because some
1917 * stable_node was stale.
1918 */
1919 goto again;
1920 }
31dbd01f 1921
4035c07a
HD
1922 ret = memcmp_pages(kpage, tree_page);
1923 put_page(tree_page);
31dbd01f
IE
1924
1925 parent = *new;
1926 if (ret < 0)
1927 new = &parent->rb_left;
1928 else if (ret > 0)
1929 new = &parent->rb_right;
1930 else {
2c653d0e
AA
1931 need_chain = true;
1932 break;
31dbd01f
IE
1933 }
1934 }
1935
2c653d0e
AA
1936 stable_node_dup = alloc_stable_node();
1937 if (!stable_node_dup)
7b6ba2c7 1938 return NULL;
31dbd01f 1939
2c653d0e
AA
1940 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941 stable_node_dup->kpfn = kpfn;
1942 set_page_stable_node(kpage, stable_node_dup);
1943 stable_node_dup->rmap_hlist_len = 0;
1944 DO_NUMA(stable_node_dup->nid = nid);
1945 if (!need_chain) {
1946 rb_link_node(&stable_node_dup->node, parent, new);
1947 rb_insert_color(&stable_node_dup->node, root);
1948 } else {
1949 if (!is_stable_node_chain(stable_node)) {
21fbd591 1950 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1951 /* chain is missing so create it */
1952 stable_node = alloc_stable_node_chain(orig, root);
1953 if (!stable_node) {
1954 free_stable_node(stable_node_dup);
1955 return NULL;
1956 }
1957 }
1958 stable_node_chain_add_dup(stable_node_dup, stable_node);
1959 }
08beca44 1960
2c653d0e 1961 return stable_node_dup;
31dbd01f
IE
1962}
1963
1964/*
8dd3557a
HD
1965 * unstable_tree_search_insert - search for identical page,
1966 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1967 *
1968 * This function searches for a page in the unstable tree identical to the
1969 * page currently being scanned; and if no identical page is found in the
1970 * tree, we insert rmap_item as a new object into the unstable tree.
1971 *
1972 * This function returns pointer to rmap_item found to be identical
1973 * to the currently scanned page, NULL otherwise.
1974 *
1975 * This function does both searching and inserting, because they share
1976 * the same walking algorithm in an rbtree.
1977 */
8dd3557a 1978static
21fbd591 1979struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1980 struct page *page,
1981 struct page **tree_pagep)
31dbd01f 1982{
90bd6fd3
PH
1983 struct rb_node **new;
1984 struct rb_root *root;
31dbd01f 1985 struct rb_node *parent = NULL;
90bd6fd3
PH
1986 int nid;
1987
1988 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1989 root = root_unstable_tree + nid;
90bd6fd3 1990 new = &root->rb_node;
31dbd01f
IE
1991
1992 while (*new) {
21fbd591 1993 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1994 struct page *tree_page;
31dbd01f
IE
1995 int ret;
1996
d178f27f 1997 cond_resched();
21fbd591 1998 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 1999 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2000 if (!tree_page)
31dbd01f
IE
2001 return NULL;
2002
2003 /*
8dd3557a 2004 * Don't substitute a ksm page for a forked page.
31dbd01f 2005 */
8dd3557a
HD
2006 if (page == tree_page) {
2007 put_page(tree_page);
31dbd01f
IE
2008 return NULL;
2009 }
2010
8dd3557a 2011 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2012
2013 parent = *new;
2014 if (ret < 0) {
8dd3557a 2015 put_page(tree_page);
31dbd01f
IE
2016 new = &parent->rb_left;
2017 } else if (ret > 0) {
8dd3557a 2018 put_page(tree_page);
31dbd01f 2019 new = &parent->rb_right;
b599cbdf
HD
2020 } else if (!ksm_merge_across_nodes &&
2021 page_to_nid(tree_page) != nid) {
2022 /*
2023 * If tree_page has been migrated to another NUMA node,
2024 * it will be flushed out and put in the right unstable
2025 * tree next time: only merge with it when across_nodes.
2026 */
2027 put_page(tree_page);
2028 return NULL;
31dbd01f 2029 } else {
8dd3557a 2030 *tree_pagep = tree_page;
31dbd01f
IE
2031 return tree_rmap_item;
2032 }
2033 }
2034
7b6ba2c7 2035 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2036 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2037 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2038 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2039 rb_insert_color(&rmap_item->node, root);
31dbd01f 2040
473b0ce4 2041 ksm_pages_unshared++;
31dbd01f
IE
2042 return NULL;
2043}
2044
2045/*
2046 * stable_tree_append - add another rmap_item to the linked list of
2047 * rmap_items hanging off a given node of the stable tree, all sharing
2048 * the same ksm page.
2049 */
21fbd591
QZ
2050static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051 struct ksm_stable_node *stable_node,
2c653d0e 2052 bool max_page_sharing_bypass)
31dbd01f 2053{
2c653d0e
AA
2054 /*
2055 * rmap won't find this mapping if we don't insert the
2056 * rmap_item in the right stable_node
2057 * duplicate. page_migration could break later if rmap breaks,
2058 * so we can as well crash here. We really need to check for
2059 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2060 * for other negative values as an underflow if detected here
2c653d0e
AA
2061 * for the first time (and not when decreasing rmap_hlist_len)
2062 * would be sign of memory corruption in the stable_node.
2063 */
2064 BUG_ON(stable_node->rmap_hlist_len < 0);
2065
2066 stable_node->rmap_hlist_len++;
2067 if (!max_page_sharing_bypass)
2068 /* possibly non fatal but unexpected overflow, only warn */
2069 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070 ksm_max_page_sharing);
2071
7b6ba2c7 2072 rmap_item->head = stable_node;
31dbd01f 2073 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2074 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2075
7b6ba2c7
HD
2076 if (rmap_item->hlist.next)
2077 ksm_pages_sharing++;
2078 else
2079 ksm_pages_shared++;
76093853 2080
2081 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2082}
2083
2084/*
81464e30
HD
2085 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086 * if not, compare checksum to previous and if it's the same, see if page can
2087 * be inserted into the unstable tree, or merged with a page already there and
2088 * both transferred to the stable tree.
31dbd01f
IE
2089 *
2090 * @page: the page that we are searching identical page to.
2091 * @rmap_item: the reverse mapping into the virtual address of this page
2092 */
21fbd591 2093static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2094{
4b22927f 2095 struct mm_struct *mm = rmap_item->mm;
21fbd591 2096 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2097 struct page *tree_page = NULL;
21fbd591 2098 struct ksm_stable_node *stable_node;
8dd3557a 2099 struct page *kpage;
31dbd01f
IE
2100 unsigned int checksum;
2101 int err;
2c653d0e 2102 bool max_page_sharing_bypass = false;
31dbd01f 2103
4146d2d6
HD
2104 stable_node = page_stable_node(page);
2105 if (stable_node) {
2106 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2107 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2108 NUMA(stable_node->nid)) {
2109 stable_node_dup_del(stable_node);
4146d2d6
HD
2110 stable_node->head = &migrate_nodes;
2111 list_add(&stable_node->list, stable_node->head);
2112 }
2113 if (stable_node->head != &migrate_nodes &&
2114 rmap_item->head == stable_node)
2115 return;
2c653d0e
AA
2116 /*
2117 * If it's a KSM fork, allow it to go over the sharing limit
2118 * without warnings.
2119 */
2120 if (!is_page_sharing_candidate(stable_node))
2121 max_page_sharing_bypass = true;
4146d2d6 2122 }
31dbd01f
IE
2123
2124 /* We first start with searching the page inside the stable tree */
62b61f61 2125 kpage = stable_tree_search(page);
4146d2d6
HD
2126 if (kpage == page && rmap_item->head == stable_node) {
2127 put_page(kpage);
2128 return;
2129 }
2130
2131 remove_rmap_item_from_tree(rmap_item);
2132
62b61f61 2133 if (kpage) {
2cee57d1
YS
2134 if (PTR_ERR(kpage) == -EBUSY)
2135 return;
2136
08beca44 2137 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2138 if (!err) {
2139 /*
2140 * The page was successfully merged:
2141 * add its rmap_item to the stable tree.
2142 */
5ad64688 2143 lock_page(kpage);
2c653d0e
AA
2144 stable_tree_append(rmap_item, page_stable_node(kpage),
2145 max_page_sharing_bypass);
5ad64688 2146 unlock_page(kpage);
31dbd01f 2147 }
8dd3557a 2148 put_page(kpage);
31dbd01f
IE
2149 return;
2150 }
2151
2152 /*
4035c07a
HD
2153 * If the hash value of the page has changed from the last time
2154 * we calculated it, this page is changing frequently: therefore we
2155 * don't want to insert it in the unstable tree, and we don't want
2156 * to waste our time searching for something identical to it there.
31dbd01f
IE
2157 */
2158 checksum = calc_checksum(page);
2159 if (rmap_item->oldchecksum != checksum) {
2160 rmap_item->oldchecksum = checksum;
2161 return;
2162 }
2163
e86c59b1
CI
2164 /*
2165 * Same checksum as an empty page. We attempt to merge it with the
2166 * appropriate zero page if the user enabled this via sysfs.
2167 */
2168 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169 struct vm_area_struct *vma;
2170
d8ed45c5 2171 mmap_read_lock(mm);
4b22927f 2172 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2173 if (vma) {
2174 err = try_to_merge_one_page(vma, page,
2175 ZERO_PAGE(rmap_item->address));
739100c8
SR
2176 trace_ksm_merge_one_page(
2177 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178 rmap_item, mm, err);
56df70a6
MS
2179 } else {
2180 /*
2181 * If the vma is out of date, we do not need to
2182 * continue.
2183 */
2184 err = 0;
2185 }
d8ed45c5 2186 mmap_read_unlock(mm);
e86c59b1
CI
2187 /*
2188 * In case of failure, the page was not really empty, so we
2189 * need to continue. Otherwise we're done.
2190 */
2191 if (!err)
2192 return;
2193 }
8dd3557a
HD
2194 tree_rmap_item =
2195 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2196 if (tree_rmap_item) {
77da2ba0
CI
2197 bool split;
2198
8dd3557a
HD
2199 kpage = try_to_merge_two_pages(rmap_item, page,
2200 tree_rmap_item, tree_page);
77da2ba0
CI
2201 /*
2202 * If both pages we tried to merge belong to the same compound
2203 * page, then we actually ended up increasing the reference
2204 * count of the same compound page twice, and split_huge_page
2205 * failed.
2206 * Here we set a flag if that happened, and we use it later to
2207 * try split_huge_page again. Since we call put_page right
2208 * afterwards, the reference count will be correct and
2209 * split_huge_page should succeed.
2210 */
2211 split = PageTransCompound(page)
2212 && compound_head(page) == compound_head(tree_page);
8dd3557a 2213 put_page(tree_page);
8dd3557a 2214 if (kpage) {
bc56620b
HD
2215 /*
2216 * The pages were successfully merged: insert new
2217 * node in the stable tree and add both rmap_items.
2218 */
5ad64688 2219 lock_page(kpage);
7b6ba2c7
HD
2220 stable_node = stable_tree_insert(kpage);
2221 if (stable_node) {
2c653d0e
AA
2222 stable_tree_append(tree_rmap_item, stable_node,
2223 false);
2224 stable_tree_append(rmap_item, stable_node,
2225 false);
7b6ba2c7 2226 }
5ad64688 2227 unlock_page(kpage);
7b6ba2c7 2228
31dbd01f
IE
2229 /*
2230 * If we fail to insert the page into the stable tree,
2231 * we will have 2 virtual addresses that are pointing
2232 * to a ksm page left outside the stable tree,
2233 * in which case we need to break_cow on both.
2234 */
7b6ba2c7 2235 if (!stable_node) {
8dd3557a
HD
2236 break_cow(tree_rmap_item);
2237 break_cow(rmap_item);
31dbd01f 2238 }
77da2ba0
CI
2239 } else if (split) {
2240 /*
2241 * We are here if we tried to merge two pages and
2242 * failed because they both belonged to the same
2243 * compound page. We will split the page now, but no
2244 * merging will take place.
2245 * We do not want to add the cost of a full lock; if
2246 * the page is locked, it is better to skip it and
2247 * perhaps try again later.
2248 */
2249 if (!trylock_page(page))
2250 return;
2251 split_huge_page(page);
2252 unlock_page(page);
31dbd01f 2253 }
31dbd01f
IE
2254 }
2255}
2256
21fbd591
QZ
2257static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2259 unsigned long addr)
2260{
21fbd591 2261 struct ksm_rmap_item *rmap_item;
31dbd01f 2262
6514d511
HD
2263 while (*rmap_list) {
2264 rmap_item = *rmap_list;
93d17715 2265 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2266 return rmap_item;
31dbd01f
IE
2267 if (rmap_item->address > addr)
2268 break;
6514d511 2269 *rmap_list = rmap_item->rmap_list;
31dbd01f 2270 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2271 free_rmap_item(rmap_item);
2272 }
2273
2274 rmap_item = alloc_rmap_item();
2275 if (rmap_item) {
2276 /* It has already been zeroed */
58730ab6 2277 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2278 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2279 rmap_item->address = addr;
6514d511
HD
2280 rmap_item->rmap_list = *rmap_list;
2281 *rmap_list = rmap_item;
31dbd01f
IE
2282 }
2283 return rmap_item;
2284}
2285
21fbd591 2286static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2287{
2288 struct mm_struct *mm;
58730ab6
QZ
2289 struct ksm_mm_slot *mm_slot;
2290 struct mm_slot *slot;
31dbd01f 2291 struct vm_area_struct *vma;
21fbd591 2292 struct ksm_rmap_item *rmap_item;
a5f18ba0 2293 struct vma_iterator vmi;
90bd6fd3 2294 int nid;
31dbd01f 2295
58730ab6 2296 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2297 return NULL;
2298
58730ab6
QZ
2299 mm_slot = ksm_scan.mm_slot;
2300 if (mm_slot == &ksm_mm_head) {
739100c8
SR
2301 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2302
2919bfd0
HD
2303 /*
2304 * A number of pages can hang around indefinitely on per-cpu
2305 * pagevecs, raised page count preventing write_protect_page
2306 * from merging them. Though it doesn't really matter much,
2307 * it is puzzling to see some stuck in pages_volatile until
2308 * other activity jostles them out, and they also prevented
2309 * LTP's KSM test from succeeding deterministically; so drain
2310 * them here (here rather than on entry to ksm_do_scan(),
2311 * so we don't IPI too often when pages_to_scan is set low).
2312 */
2313 lru_add_drain_all();
2314
4146d2d6
HD
2315 /*
2316 * Whereas stale stable_nodes on the stable_tree itself
2317 * get pruned in the regular course of stable_tree_search(),
2318 * those moved out to the migrate_nodes list can accumulate:
2319 * so prune them once before each full scan.
2320 */
2321 if (!ksm_merge_across_nodes) {
21fbd591 2322 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2323 struct page *page;
2324
03640418
GT
2325 list_for_each_entry_safe(stable_node, next,
2326 &migrate_nodes, list) {
2cee57d1
YS
2327 page = get_ksm_page(stable_node,
2328 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2329 if (page)
2330 put_page(page);
2331 cond_resched();
2332 }
2333 }
2334
ef53d16c 2335 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2336 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2337
2338 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2339 slot = list_entry(mm_slot->slot.mm_node.next,
2340 struct mm_slot, mm_node);
2341 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342 ksm_scan.mm_slot = mm_slot;
31dbd01f 2343 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2344 /*
2345 * Although we tested list_empty() above, a racing __ksm_exit
2346 * of the last mm on the list may have removed it since then.
2347 */
58730ab6 2348 if (mm_slot == &ksm_mm_head)
2b472611 2349 return NULL;
31dbd01f
IE
2350next_mm:
2351 ksm_scan.address = 0;
58730ab6 2352 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2353 }
2354
58730ab6 2355 slot = &mm_slot->slot;
31dbd01f 2356 mm = slot->mm;
a5f18ba0
MWO
2357 vma_iter_init(&vmi, mm, ksm_scan.address);
2358
d8ed45c5 2359 mmap_read_lock(mm);
9ba69294 2360 if (ksm_test_exit(mm))
a5f18ba0 2361 goto no_vmas;
9ba69294 2362
a5f18ba0 2363 for_each_vma(vmi, vma) {
31dbd01f
IE
2364 if (!(vma->vm_flags & VM_MERGEABLE))
2365 continue;
2366 if (ksm_scan.address < vma->vm_start)
2367 ksm_scan.address = vma->vm_start;
2368 if (!vma->anon_vma)
2369 ksm_scan.address = vma->vm_end;
2370
2371 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2372 if (ksm_test_exit(mm))
2373 break;
31dbd01f 2374 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2375 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2376 ksm_scan.address += PAGE_SIZE;
2377 cond_resched();
2378 continue;
2379 }
f7091ed6
HW
2380 if (is_zone_device_page(*page))
2381 goto next_page;
f765f540 2382 if (PageAnon(*page)) {
31dbd01f
IE
2383 flush_anon_page(vma, *page, ksm_scan.address);
2384 flush_dcache_page(*page);
58730ab6 2385 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2386 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2387 if (rmap_item) {
6514d511
HD
2388 ksm_scan.rmap_list =
2389 &rmap_item->rmap_list;
31dbd01f
IE
2390 ksm_scan.address += PAGE_SIZE;
2391 } else
2392 put_page(*page);
d8ed45c5 2393 mmap_read_unlock(mm);
31dbd01f
IE
2394 return rmap_item;
2395 }
f7091ed6 2396next_page:
21ae5b01 2397 put_page(*page);
31dbd01f
IE
2398 ksm_scan.address += PAGE_SIZE;
2399 cond_resched();
2400 }
2401 }
2402
9ba69294 2403 if (ksm_test_exit(mm)) {
a5f18ba0 2404no_vmas:
9ba69294 2405 ksm_scan.address = 0;
58730ab6 2406 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2407 }
31dbd01f
IE
2408 /*
2409 * Nuke all the rmap_items that are above this current rmap:
2410 * because there were no VM_MERGEABLE vmas with such addresses.
2411 */
420be4ed 2412 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2413
2414 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2415 slot = list_entry(mm_slot->slot.mm_node.next,
2416 struct mm_slot, mm_node);
2417 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2418 if (ksm_scan.address == 0) {
2419 /*
c1e8d7c6 2420 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2421 * throughout, and found no VM_MERGEABLE: so do the same as
2422 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2423 * This applies either when cleaning up after __ksm_exit
2424 * (but beware: we can reach here even before __ksm_exit),
2425 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2426 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2427 */
58730ab6
QZ
2428 hash_del(&mm_slot->slot.hash);
2429 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2430 spin_unlock(&ksm_mmlist_lock);
2431
58730ab6 2432 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2433 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2434 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2435 mmap_read_unlock(mm);
9ba69294
HD
2436 mmdrop(mm);
2437 } else {
d8ed45c5 2438 mmap_read_unlock(mm);
7496fea9 2439 /*
3e4e28c5 2440 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2441 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442 * already have been freed under us by __ksm_exit()
2443 * because the "mm_slot" is still hashed and
2444 * ksm_scan.mm_slot doesn't point to it anymore.
2445 */
2446 spin_unlock(&ksm_mmlist_lock);
cd551f97 2447 }
31dbd01f
IE
2448
2449 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2450 mm_slot = ksm_scan.mm_slot;
2451 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2452 goto next_mm;
2453
739100c8 2454 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2455 ksm_scan.seqnr++;
2456 return NULL;
2457}
2458
2459/**
2460 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2461 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2462 */
2463static void ksm_do_scan(unsigned int scan_npages)
2464{
21fbd591 2465 struct ksm_rmap_item *rmap_item;
3f649ab7 2466 struct page *page;
31dbd01f 2467
878aee7d 2468 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2469 cond_resched();
2470 rmap_item = scan_get_next_rmap_item(&page);
2471 if (!rmap_item)
2472 return;
4146d2d6 2473 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2474 put_page(page);
2475 }
2476}
2477
6e158384
HD
2478static int ksmd_should_run(void)
2479{
58730ab6 2480 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2481}
2482
31dbd01f
IE
2483static int ksm_scan_thread(void *nothing)
2484{
fcf9a0ef
KT
2485 unsigned int sleep_ms;
2486
878aee7d 2487 set_freezable();
339aa624 2488 set_user_nice(current, 5);
31dbd01f
IE
2489
2490 while (!kthread_should_stop()) {
6e158384 2491 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2492 wait_while_offlining();
6e158384 2493 if (ksmd_should_run())
31dbd01f 2494 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2495 mutex_unlock(&ksm_thread_mutex);
2496
878aee7d
AA
2497 try_to_freeze();
2498
6e158384 2499 if (ksmd_should_run()) {
fcf9a0ef
KT
2500 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501 wait_event_interruptible_timeout(ksm_iter_wait,
2502 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503 msecs_to_jiffies(sleep_ms));
31dbd01f 2504 } else {
878aee7d 2505 wait_event_freezable(ksm_thread_wait,
6e158384 2506 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2507 }
2508 }
2509 return 0;
2510}
2511
d7597f59
SR
2512static void __ksm_add_vma(struct vm_area_struct *vma)
2513{
2514 unsigned long vm_flags = vma->vm_flags;
2515
2516 if (vm_flags & VM_MERGEABLE)
2517 return;
2518
2519 if (vma_ksm_compatible(vma))
2520 vm_flags_set(vma, VM_MERGEABLE);
2521}
2522
24139c07
DH
2523static int __ksm_del_vma(struct vm_area_struct *vma)
2524{
2525 int err;
2526
2527 if (!(vma->vm_flags & VM_MERGEABLE))
2528 return 0;
2529
2530 if (vma->anon_vma) {
2531 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2532 if (err)
2533 return err;
2534 }
2535
2536 vm_flags_clear(vma, VM_MERGEABLE);
2537 return 0;
2538}
d7597f59
SR
2539/**
2540 * ksm_add_vma - Mark vma as mergeable if compatible
2541 *
2542 * @vma: Pointer to vma
2543 */
2544void ksm_add_vma(struct vm_area_struct *vma)
2545{
2546 struct mm_struct *mm = vma->vm_mm;
2547
2548 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2549 __ksm_add_vma(vma);
2550}
2551
2552static void ksm_add_vmas(struct mm_struct *mm)
2553{
2554 struct vm_area_struct *vma;
2555
2556 VMA_ITERATOR(vmi, mm, 0);
2557 for_each_vma(vmi, vma)
2558 __ksm_add_vma(vma);
2559}
2560
24139c07
DH
2561static int ksm_del_vmas(struct mm_struct *mm)
2562{
2563 struct vm_area_struct *vma;
2564 int err;
2565
2566 VMA_ITERATOR(vmi, mm, 0);
2567 for_each_vma(vmi, vma) {
2568 err = __ksm_del_vma(vma);
2569 if (err)
2570 return err;
2571 }
2572 return 0;
2573}
2574
d7597f59
SR
2575/**
2576 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2577 * compatible VMA's
2578 *
2579 * @mm: Pointer to mm
2580 *
2581 * Returns 0 on success, otherwise error code
2582 */
2583int ksm_enable_merge_any(struct mm_struct *mm)
2584{
2585 int err;
2586
2587 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2588 return 0;
2589
2590 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2591 err = __ksm_enter(mm);
2592 if (err)
2593 return err;
2594 }
2595
2596 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2597 ksm_add_vmas(mm);
2598
2599 return 0;
2600}
2601
24139c07
DH
2602/**
2603 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2604 * previously enabled via ksm_enable_merge_any().
2605 *
2606 * Disabling merging implies unmerging any merged pages, like setting
2607 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2608 * merging on all compatible VMA's remains enabled.
2609 *
2610 * @mm: Pointer to mm
2611 *
2612 * Returns 0 on success, otherwise error code
2613 */
2614int ksm_disable_merge_any(struct mm_struct *mm)
2615{
2616 int err;
2617
2618 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2619 return 0;
2620
2621 err = ksm_del_vmas(mm);
2622 if (err) {
2623 ksm_add_vmas(mm);
2624 return err;
2625 }
2626
2627 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2628 return 0;
2629}
2630
2c281f54
DH
2631int ksm_disable(struct mm_struct *mm)
2632{
2633 mmap_assert_write_locked(mm);
2634
2635 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2636 return 0;
2637 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2638 return ksm_disable_merge_any(mm);
2639 return ksm_del_vmas(mm);
2640}
2641
f8af4da3
HD
2642int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2643 unsigned long end, int advice, unsigned long *vm_flags)
2644{
2645 struct mm_struct *mm = vma->vm_mm;
d952b791 2646 int err;
f8af4da3
HD
2647
2648 switch (advice) {
2649 case MADV_MERGEABLE:
d7597f59 2650 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2651 return 0;
d7597f59 2652 if (!vma_ksm_compatible(vma))
74a04967 2653 return 0;
cc2383ec 2654
d952b791
HD
2655 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2656 err = __ksm_enter(mm);
2657 if (err)
2658 return err;
2659 }
f8af4da3
HD
2660
2661 *vm_flags |= VM_MERGEABLE;
2662 break;
2663
2664 case MADV_UNMERGEABLE:
2665 if (!(*vm_flags & VM_MERGEABLE))
2666 return 0; /* just ignore the advice */
2667
d952b791
HD
2668 if (vma->anon_vma) {
2669 err = unmerge_ksm_pages(vma, start, end);
2670 if (err)
2671 return err;
2672 }
f8af4da3
HD
2673
2674 *vm_flags &= ~VM_MERGEABLE;
2675 break;
2676 }
2677
2678 return 0;
2679}
33cf1707 2680EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2681
2682int __ksm_enter(struct mm_struct *mm)
2683{
21fbd591 2684 struct ksm_mm_slot *mm_slot;
58730ab6 2685 struct mm_slot *slot;
6e158384
HD
2686 int needs_wakeup;
2687
58730ab6 2688 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2689 if (!mm_slot)
2690 return -ENOMEM;
2691
58730ab6
QZ
2692 slot = &mm_slot->slot;
2693
6e158384 2694 /* Check ksm_run too? Would need tighter locking */
58730ab6 2695 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2696
31dbd01f 2697 spin_lock(&ksm_mmlist_lock);
58730ab6 2698 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2699 /*
cbf86cfe
HD
2700 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2701 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2702 * down a little; when fork is followed by immediate exec, we don't
2703 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2704 *
2705 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2706 * scanning cursor, otherwise KSM pages in newly forked mms will be
2707 * missed: then we might as well insert at the end of the list.
31dbd01f 2708 */
cbf86cfe 2709 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2710 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2711 else
58730ab6 2712 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2713 spin_unlock(&ksm_mmlist_lock);
2714
f8af4da3 2715 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2716 mmgrab(mm);
6e158384
HD
2717
2718 if (needs_wakeup)
2719 wake_up_interruptible(&ksm_thread_wait);
2720
739100c8 2721 trace_ksm_enter(mm);
f8af4da3
HD
2722 return 0;
2723}
2724
1c2fb7a4 2725void __ksm_exit(struct mm_struct *mm)
f8af4da3 2726{
21fbd591 2727 struct ksm_mm_slot *mm_slot;
58730ab6 2728 struct mm_slot *slot;
9ba69294 2729 int easy_to_free = 0;
cd551f97 2730
31dbd01f 2731 /*
9ba69294
HD
2732 * This process is exiting: if it's straightforward (as is the
2733 * case when ksmd was never running), free mm_slot immediately.
2734 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2735 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2736 * are freed, and leave the mm_slot on the list for ksmd to free.
2737 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2738 */
9ba69294 2739
cd551f97 2740 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2741 slot = mm_slot_lookup(mm_slots_hash, mm);
2742 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2743 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2744 if (!mm_slot->rmap_list) {
58730ab6
QZ
2745 hash_del(&slot->hash);
2746 list_del(&slot->mm_node);
9ba69294
HD
2747 easy_to_free = 1;
2748 } else {
58730ab6
QZ
2749 list_move(&slot->mm_node,
2750 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2751 }
cd551f97 2752 }
cd551f97
HD
2753 spin_unlock(&ksm_mmlist_lock);
2754
9ba69294 2755 if (easy_to_free) {
58730ab6 2756 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 2757 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
2758 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2759 mmdrop(mm);
2760 } else if (mm_slot) {
d8ed45c5
ML
2761 mmap_write_lock(mm);
2762 mmap_write_unlock(mm);
9ba69294 2763 }
739100c8
SR
2764
2765 trace_ksm_exit(mm);
31dbd01f
IE
2766}
2767
cbf86cfe 2768struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2769 struct vm_area_struct *vma, unsigned long address)
2770{
e05b3453
MWO
2771 struct folio *folio = page_folio(page);
2772 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2773 struct page *new_page;
2774
cbf86cfe
HD
2775 if (PageKsm(page)) {
2776 if (page_stable_node(page) &&
2777 !(ksm_run & KSM_RUN_UNMERGE))
2778 return page; /* no need to copy it */
2779 } else if (!anon_vma) {
2780 return page; /* no need to copy it */
e1c63e11
NS
2781 } else if (page->index == linear_page_index(vma, address) &&
2782 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2783 return page; /* still no need to copy it */
2784 }
2785 if (!PageUptodate(page))
2786 return page; /* let do_swap_page report the error */
2787
5ad64688 2788 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2789 if (new_page &&
2790 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2791 put_page(new_page);
2792 new_page = NULL;
2793 }
5ad64688 2794 if (new_page) {
6b970599
KW
2795 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2796 put_page(new_page);
2797 memory_failure_queue(page_to_pfn(page), 0);
2798 return ERR_PTR(-EHWPOISON);
2799 }
5ad64688
HD
2800 SetPageDirty(new_page);
2801 __SetPageUptodate(new_page);
48c935ad 2802 __SetPageLocked(new_page);
4d45c3af
YY
2803#ifdef CONFIG_SWAP
2804 count_vm_event(KSM_SWPIN_COPY);
2805#endif
5ad64688
HD
2806 }
2807
5ad64688
HD
2808 return new_page;
2809}
2810
6d4675e6 2811void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2812{
21fbd591
QZ
2813 struct ksm_stable_node *stable_node;
2814 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2815 int search_new_forks = 0;
2816
2f031c6f 2817 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2818
2819 /*
2820 * Rely on the page lock to protect against concurrent modifications
2821 * to that page's node of the stable tree.
2822 */
2f031c6f 2823 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2824
2f031c6f 2825 stable_node = folio_stable_node(folio);
e9995ef9 2826 if (!stable_node)
1df631ae 2827 return;
e9995ef9 2828again:
b67bfe0d 2829 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2830 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2831 struct anon_vma_chain *vmac;
e9995ef9
HD
2832 struct vm_area_struct *vma;
2833
ad12695f 2834 cond_resched();
6d4675e6
MK
2835 if (!anon_vma_trylock_read(anon_vma)) {
2836 if (rwc->try_lock) {
2837 rwc->contended = true;
2838 return;
2839 }
2840 anon_vma_lock_read(anon_vma);
2841 }
bf181b9f
ML
2842 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2843 0, ULONG_MAX) {
1105a2fc
JH
2844 unsigned long addr;
2845
ad12695f 2846 cond_resched();
5beb4930 2847 vma = vmac->vma;
1105a2fc
JH
2848
2849 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2850 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2851
2852 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2853 continue;
2854 /*
2855 * Initially we examine only the vma which covers this
2856 * rmap_item; but later, if there is still work to do,
2857 * we examine covering vmas in other mms: in case they
2858 * were forked from the original since ksmd passed.
2859 */
2860 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2861 continue;
2862
0dd1c7bb
JK
2863 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2864 continue;
2865
2f031c6f 2866 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2867 anon_vma_unlock_read(anon_vma);
1df631ae 2868 return;
e9995ef9 2869 }
2f031c6f 2870 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2871 anon_vma_unlock_read(anon_vma);
1df631ae 2872 return;
0dd1c7bb 2873 }
e9995ef9 2874 }
b6b19f25 2875 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2876 }
2877 if (!search_new_forks++)
2878 goto again;
e9995ef9
HD
2879}
2880
4248d008
LX
2881#ifdef CONFIG_MEMORY_FAILURE
2882/*
2883 * Collect processes when the error hit an ksm page.
2884 */
2885void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2886 int force_early)
2887{
2888 struct ksm_stable_node *stable_node;
2889 struct ksm_rmap_item *rmap_item;
2890 struct folio *folio = page_folio(page);
2891 struct vm_area_struct *vma;
2892 struct task_struct *tsk;
2893
2894 stable_node = folio_stable_node(folio);
2895 if (!stable_node)
2896 return;
2897 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2898 struct anon_vma *av = rmap_item->anon_vma;
2899
2900 anon_vma_lock_read(av);
2901 read_lock(&tasklist_lock);
2902 for_each_process(tsk) {
2903 struct anon_vma_chain *vmac;
2904 unsigned long addr;
2905 struct task_struct *t =
2906 task_early_kill(tsk, force_early);
2907 if (!t)
2908 continue;
2909 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2910 ULONG_MAX)
2911 {
2912 vma = vmac->vma;
2913 if (vma->vm_mm == t->mm) {
2914 addr = rmap_item->address & PAGE_MASK;
2915 add_to_kill_ksm(t, page, vma, to_kill,
2916 addr);
2917 }
2918 }
2919 }
2920 read_unlock(&tasklist_lock);
2921 anon_vma_unlock_read(av);
2922 }
2923}
2924#endif
2925
52629506 2926#ifdef CONFIG_MIGRATION
19138349 2927void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2928{
21fbd591 2929 struct ksm_stable_node *stable_node;
e9995ef9 2930
19138349
MWO
2931 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2932 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2933 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2934
19138349 2935 stable_node = folio_stable_node(folio);
e9995ef9 2936 if (stable_node) {
19138349
MWO
2937 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2938 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2939 /*
19138349 2940 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2941 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2942 * to get_ksm_page() before it can see that folio->mapping
2943 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2944 */
2945 smp_wmb();
19138349 2946 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2947 }
2948}
2949#endif /* CONFIG_MIGRATION */
2950
62b61f61 2951#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2952static void wait_while_offlining(void)
2953{
2954 while (ksm_run & KSM_RUN_OFFLINE) {
2955 mutex_unlock(&ksm_thread_mutex);
2956 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2957 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2958 mutex_lock(&ksm_thread_mutex);
2959 }
2960}
2961
21fbd591 2962static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2963 unsigned long start_pfn,
2964 unsigned long end_pfn)
2965{
2966 if (stable_node->kpfn >= start_pfn &&
2967 stable_node->kpfn < end_pfn) {
2968 /*
2969 * Don't get_ksm_page, page has already gone:
2970 * which is why we keep kpfn instead of page*
2971 */
2972 remove_node_from_stable_tree(stable_node);
2973 return true;
2974 }
2975 return false;
2976}
2977
21fbd591 2978static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2979 unsigned long start_pfn,
2980 unsigned long end_pfn,
2981 struct rb_root *root)
2982{
21fbd591 2983 struct ksm_stable_node *dup;
2c653d0e
AA
2984 struct hlist_node *hlist_safe;
2985
2986 if (!is_stable_node_chain(stable_node)) {
2987 VM_BUG_ON(is_stable_node_dup(stable_node));
2988 return stable_node_dup_remove_range(stable_node, start_pfn,
2989 end_pfn);
2990 }
2991
2992 hlist_for_each_entry_safe(dup, hlist_safe,
2993 &stable_node->hlist, hlist_dup) {
2994 VM_BUG_ON(!is_stable_node_dup(dup));
2995 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2996 }
2997 if (hlist_empty(&stable_node->hlist)) {
2998 free_stable_node_chain(stable_node, root);
2999 return true; /* notify caller that tree was rebalanced */
3000 } else
3001 return false;
3002}
3003
ee0ea59c
HD
3004static void ksm_check_stable_tree(unsigned long start_pfn,
3005 unsigned long end_pfn)
62b61f61 3006{
21fbd591 3007 struct ksm_stable_node *stable_node, *next;
62b61f61 3008 struct rb_node *node;
90bd6fd3 3009 int nid;
62b61f61 3010
ef53d16c
HD
3011 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3012 node = rb_first(root_stable_tree + nid);
ee0ea59c 3013 while (node) {
21fbd591 3014 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3015 if (stable_node_chain_remove_range(stable_node,
3016 start_pfn, end_pfn,
3017 root_stable_tree +
3018 nid))
ef53d16c 3019 node = rb_first(root_stable_tree + nid);
2c653d0e 3020 else
ee0ea59c
HD
3021 node = rb_next(node);
3022 cond_resched();
90bd6fd3 3023 }
ee0ea59c 3024 }
03640418 3025 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3026 if (stable_node->kpfn >= start_pfn &&
3027 stable_node->kpfn < end_pfn)
3028 remove_node_from_stable_tree(stable_node);
3029 cond_resched();
3030 }
62b61f61
HD
3031}
3032
3033static int ksm_memory_callback(struct notifier_block *self,
3034 unsigned long action, void *arg)
3035{
3036 struct memory_notify *mn = arg;
62b61f61
HD
3037
3038 switch (action) {
3039 case MEM_GOING_OFFLINE:
3040 /*
ef4d43a8
HD
3041 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3042 * and remove_all_stable_nodes() while memory is going offline:
3043 * it is unsafe for them to touch the stable tree at this time.
3044 * But unmerge_ksm_pages(), rmap lookups and other entry points
3045 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3046 */
ef4d43a8
HD
3047 mutex_lock(&ksm_thread_mutex);
3048 ksm_run |= KSM_RUN_OFFLINE;
3049 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3050 break;
3051
3052 case MEM_OFFLINE:
3053 /*
3054 * Most of the work is done by page migration; but there might
3055 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
3056 * pages which have been offlined: prune those from the tree,
3057 * otherwise get_ksm_page() might later try to access a
3058 * non-existent struct page.
62b61f61 3059 */
ee0ea59c
HD
3060 ksm_check_stable_tree(mn->start_pfn,
3061 mn->start_pfn + mn->nr_pages);
e4a9bc58 3062 fallthrough;
62b61f61 3063 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3064 mutex_lock(&ksm_thread_mutex);
3065 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3066 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3067
3068 smp_mb(); /* wake_up_bit advises this */
3069 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3070 break;
3071 }
3072 return NOTIFY_OK;
3073}
ef4d43a8
HD
3074#else
3075static void wait_while_offlining(void)
3076{
3077}
62b61f61
HD
3078#endif /* CONFIG_MEMORY_HOTREMOVE */
3079
d21077fb
SR
3080#ifdef CONFIG_PROC_FS
3081long ksm_process_profit(struct mm_struct *mm)
3082{
3083 return mm->ksm_merging_pages * PAGE_SIZE -
3084 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3085}
3086#endif /* CONFIG_PROC_FS */
3087
2ffd8679
HD
3088#ifdef CONFIG_SYSFS
3089/*
3090 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3091 */
3092
31dbd01f
IE
3093#define KSM_ATTR_RO(_name) \
3094 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3095#define KSM_ATTR(_name) \
1bad2e5c 3096 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3097
3098static ssize_t sleep_millisecs_show(struct kobject *kobj,
3099 struct kobj_attribute *attr, char *buf)
3100{
ae7a927d 3101 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3102}
3103
3104static ssize_t sleep_millisecs_store(struct kobject *kobj,
3105 struct kobj_attribute *attr,
3106 const char *buf, size_t count)
3107{
dfefd226 3108 unsigned int msecs;
31dbd01f
IE
3109 int err;
3110
dfefd226
AD
3111 err = kstrtouint(buf, 10, &msecs);
3112 if (err)
31dbd01f
IE
3113 return -EINVAL;
3114
3115 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3116 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3117
3118 return count;
3119}
3120KSM_ATTR(sleep_millisecs);
3121
3122static ssize_t pages_to_scan_show(struct kobject *kobj,
3123 struct kobj_attribute *attr, char *buf)
3124{
ae7a927d 3125 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3126}
3127
3128static ssize_t pages_to_scan_store(struct kobject *kobj,
3129 struct kobj_attribute *attr,
3130 const char *buf, size_t count)
3131{
dfefd226 3132 unsigned int nr_pages;
31dbd01f 3133 int err;
31dbd01f 3134
dfefd226
AD
3135 err = kstrtouint(buf, 10, &nr_pages);
3136 if (err)
31dbd01f
IE
3137 return -EINVAL;
3138
3139 ksm_thread_pages_to_scan = nr_pages;
3140
3141 return count;
3142}
3143KSM_ATTR(pages_to_scan);
3144
3145static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3146 char *buf)
3147{
ae7a927d 3148 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3149}
3150
3151static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3152 const char *buf, size_t count)
3153{
dfefd226 3154 unsigned int flags;
31dbd01f 3155 int err;
31dbd01f 3156
dfefd226
AD
3157 err = kstrtouint(buf, 10, &flags);
3158 if (err)
31dbd01f
IE
3159 return -EINVAL;
3160 if (flags > KSM_RUN_UNMERGE)
3161 return -EINVAL;
3162
3163 /*
3164 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3165 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3166 * breaking COW to free the pages_shared (but leaves mm_slots
3167 * on the list for when ksmd may be set running again).
31dbd01f
IE
3168 */
3169
3170 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3171 wait_while_offlining();
31dbd01f
IE
3172 if (ksm_run != flags) {
3173 ksm_run = flags;
d952b791 3174 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3175 set_current_oom_origin();
d952b791 3176 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3177 clear_current_oom_origin();
d952b791
HD
3178 if (err) {
3179 ksm_run = KSM_RUN_STOP;
3180 count = err;
3181 }
3182 }
31dbd01f
IE
3183 }
3184 mutex_unlock(&ksm_thread_mutex);
3185
3186 if (flags & KSM_RUN_MERGE)
3187 wake_up_interruptible(&ksm_thread_wait);
3188
3189 return count;
3190}
3191KSM_ATTR(run);
3192
90bd6fd3
PH
3193#ifdef CONFIG_NUMA
3194static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3195 struct kobj_attribute *attr, char *buf)
90bd6fd3 3196{
ae7a927d 3197 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3198}
3199
3200static ssize_t merge_across_nodes_store(struct kobject *kobj,
3201 struct kobj_attribute *attr,
3202 const char *buf, size_t count)
3203{
3204 int err;
3205 unsigned long knob;
3206
3207 err = kstrtoul(buf, 10, &knob);
3208 if (err)
3209 return err;
3210 if (knob > 1)
3211 return -EINVAL;
3212
3213 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3214 wait_while_offlining();
90bd6fd3 3215 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3216 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3217 err = -EBUSY;
ef53d16c
HD
3218 else if (root_stable_tree == one_stable_tree) {
3219 struct rb_root *buf;
3220 /*
3221 * This is the first time that we switch away from the
3222 * default of merging across nodes: must now allocate
3223 * a buffer to hold as many roots as may be needed.
3224 * Allocate stable and unstable together:
3225 * MAXSMP NODES_SHIFT 10 will use 16kB.
3226 */
bafe1e14
JP
3227 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3228 GFP_KERNEL);
ef53d16c
HD
3229 /* Let us assume that RB_ROOT is NULL is zero */
3230 if (!buf)
3231 err = -ENOMEM;
3232 else {
3233 root_stable_tree = buf;
3234 root_unstable_tree = buf + nr_node_ids;
3235 /* Stable tree is empty but not the unstable */
3236 root_unstable_tree[0] = one_unstable_tree[0];
3237 }
3238 }
3239 if (!err) {
90bd6fd3 3240 ksm_merge_across_nodes = knob;
ef53d16c
HD
3241 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3242 }
90bd6fd3
PH
3243 }
3244 mutex_unlock(&ksm_thread_mutex);
3245
3246 return err ? err : count;
3247}
3248KSM_ATTR(merge_across_nodes);
3249#endif
3250
e86c59b1 3251static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3252 struct kobj_attribute *attr, char *buf)
e86c59b1 3253{
ae7a927d 3254 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3255}
3256static ssize_t use_zero_pages_store(struct kobject *kobj,
3257 struct kobj_attribute *attr,
3258 const char *buf, size_t count)
3259{
3260 int err;
3261 bool value;
3262
3263 err = kstrtobool(buf, &value);
3264 if (err)
3265 return -EINVAL;
3266
3267 ksm_use_zero_pages = value;
3268
3269 return count;
3270}
3271KSM_ATTR(use_zero_pages);
3272
2c653d0e
AA
3273static ssize_t max_page_sharing_show(struct kobject *kobj,
3274 struct kobj_attribute *attr, char *buf)
3275{
ae7a927d 3276 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3277}
3278
3279static ssize_t max_page_sharing_store(struct kobject *kobj,
3280 struct kobj_attribute *attr,
3281 const char *buf, size_t count)
3282{
3283 int err;
3284 int knob;
3285
3286 err = kstrtoint(buf, 10, &knob);
3287 if (err)
3288 return err;
3289 /*
3290 * When a KSM page is created it is shared by 2 mappings. This
3291 * being a signed comparison, it implicitly verifies it's not
3292 * negative.
3293 */
3294 if (knob < 2)
3295 return -EINVAL;
3296
3297 if (READ_ONCE(ksm_max_page_sharing) == knob)
3298 return count;
3299
3300 mutex_lock(&ksm_thread_mutex);
3301 wait_while_offlining();
3302 if (ksm_max_page_sharing != knob) {
3303 if (ksm_pages_shared || remove_all_stable_nodes())
3304 err = -EBUSY;
3305 else
3306 ksm_max_page_sharing = knob;
3307 }
3308 mutex_unlock(&ksm_thread_mutex);
3309
3310 return err ? err : count;
3311}
3312KSM_ATTR(max_page_sharing);
3313
b4028260
HD
3314static ssize_t pages_shared_show(struct kobject *kobj,
3315 struct kobj_attribute *attr, char *buf)
3316{
ae7a927d 3317 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3318}
3319KSM_ATTR_RO(pages_shared);
3320
3321static ssize_t pages_sharing_show(struct kobject *kobj,
3322 struct kobj_attribute *attr, char *buf)
3323{
ae7a927d 3324 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3325}
3326KSM_ATTR_RO(pages_sharing);
3327
473b0ce4
HD
3328static ssize_t pages_unshared_show(struct kobject *kobj,
3329 struct kobj_attribute *attr, char *buf)
3330{
ae7a927d 3331 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3332}
3333KSM_ATTR_RO(pages_unshared);
3334
3335static ssize_t pages_volatile_show(struct kobject *kobj,
3336 struct kobj_attribute *attr, char *buf)
3337{
3338 long ksm_pages_volatile;
3339
3340 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3341 - ksm_pages_sharing - ksm_pages_unshared;
3342 /*
3343 * It was not worth any locking to calculate that statistic,
3344 * but it might therefore sometimes be negative: conceal that.
3345 */
3346 if (ksm_pages_volatile < 0)
3347 ksm_pages_volatile = 0;
ae7a927d 3348 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3349}
3350KSM_ATTR_RO(pages_volatile);
3351
d21077fb
SR
3352static ssize_t general_profit_show(struct kobject *kobj,
3353 struct kobj_attribute *attr, char *buf)
3354{
3355 long general_profit;
3356
3357 general_profit = ksm_pages_sharing * PAGE_SIZE -
3358 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3359
3360 return sysfs_emit(buf, "%ld\n", general_profit);
3361}
3362KSM_ATTR_RO(general_profit);
3363
2c653d0e
AA
3364static ssize_t stable_node_dups_show(struct kobject *kobj,
3365 struct kobj_attribute *attr, char *buf)
3366{
ae7a927d 3367 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3368}
3369KSM_ATTR_RO(stable_node_dups);
3370
3371static ssize_t stable_node_chains_show(struct kobject *kobj,
3372 struct kobj_attribute *attr, char *buf)
3373{
ae7a927d 3374 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3375}
3376KSM_ATTR_RO(stable_node_chains);
3377
3378static ssize_t
3379stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3380 struct kobj_attribute *attr,
3381 char *buf)
3382{
ae7a927d 3383 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3384}
3385
3386static ssize_t
3387stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3388 struct kobj_attribute *attr,
3389 const char *buf, size_t count)
3390{
584ff0df 3391 unsigned int msecs;
2c653d0e
AA
3392 int err;
3393
584ff0df
ZB
3394 err = kstrtouint(buf, 10, &msecs);
3395 if (err)
2c653d0e
AA
3396 return -EINVAL;
3397
3398 ksm_stable_node_chains_prune_millisecs = msecs;
3399
3400 return count;
3401}
3402KSM_ATTR(stable_node_chains_prune_millisecs);
3403
473b0ce4
HD
3404static ssize_t full_scans_show(struct kobject *kobj,
3405 struct kobj_attribute *attr, char *buf)
3406{
ae7a927d 3407 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3408}
3409KSM_ATTR_RO(full_scans);
3410
31dbd01f
IE
3411static struct attribute *ksm_attrs[] = {
3412 &sleep_millisecs_attr.attr,
3413 &pages_to_scan_attr.attr,
3414 &run_attr.attr,
b4028260
HD
3415 &pages_shared_attr.attr,
3416 &pages_sharing_attr.attr,
473b0ce4
HD
3417 &pages_unshared_attr.attr,
3418 &pages_volatile_attr.attr,
3419 &full_scans_attr.attr,
90bd6fd3
PH
3420#ifdef CONFIG_NUMA
3421 &merge_across_nodes_attr.attr,
3422#endif
2c653d0e
AA
3423 &max_page_sharing_attr.attr,
3424 &stable_node_chains_attr.attr,
3425 &stable_node_dups_attr.attr,
3426 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3427 &use_zero_pages_attr.attr,
d21077fb 3428 &general_profit_attr.attr,
31dbd01f
IE
3429 NULL,
3430};
3431
f907c26a 3432static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3433 .attrs = ksm_attrs,
3434 .name = "ksm",
3435};
2ffd8679 3436#endif /* CONFIG_SYSFS */
31dbd01f
IE
3437
3438static int __init ksm_init(void)
3439{
3440 struct task_struct *ksm_thread;
3441 int err;
3442
e86c59b1
CI
3443 /* The correct value depends on page size and endianness */
3444 zero_checksum = calc_checksum(ZERO_PAGE(0));
3445 /* Default to false for backwards compatibility */
3446 ksm_use_zero_pages = false;
3447
31dbd01f
IE
3448 err = ksm_slab_init();
3449 if (err)
3450 goto out;
3451
31dbd01f
IE
3452 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3453 if (IS_ERR(ksm_thread)) {
25acde31 3454 pr_err("ksm: creating kthread failed\n");
31dbd01f 3455 err = PTR_ERR(ksm_thread);
d9f8984c 3456 goto out_free;
31dbd01f
IE
3457 }
3458
2ffd8679 3459#ifdef CONFIG_SYSFS
31dbd01f
IE
3460 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3461 if (err) {
25acde31 3462 pr_err("ksm: register sysfs failed\n");
2ffd8679 3463 kthread_stop(ksm_thread);
d9f8984c 3464 goto out_free;
31dbd01f 3465 }
c73602ad
HD
3466#else
3467 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3468
2ffd8679 3469#endif /* CONFIG_SYSFS */
31dbd01f 3470
62b61f61 3471#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3472 /* There is no significance to this priority 100 */
1eeaa4fd 3473 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3474#endif
31dbd01f
IE
3475 return 0;
3476
d9f8984c 3477out_free:
31dbd01f
IE
3478 ksm_slab_free();
3479out:
3480 return err;
f8af4da3 3481}
a64fb3cd 3482subsys_initcall(ksm_init);