dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
07073eb0
DH
45#include <linux/pipe_fs_i.h>
46#include <linux/splice.h>
f9ce0be7 47#include <asm/pgalloc.h>
de591a82 48#include <asm/tlbflush.h>
0f8053a5
NP
49#include "internal.h"
50
fe0bfaaf
RJ
51#define CREATE_TRACE_POINTS
52#include <trace/events/filemap.h>
53
1da177e4 54/*
1da177e4
LT
55 * FIXME: remove all knowledge of the buffer layer from the core VM
56 */
148f948b 57#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 58
1da177e4
LT
59#include <asm/mman.h>
60
61/*
62 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * though.
64 *
65 * Shared mappings now work. 15.8.1995 Bruno.
66 *
67 * finished 'unifying' the page and buffer cache and SMP-threaded the
68 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
69 *
70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71 */
72
73/*
74 * Lock ordering:
75 *
c8c06efa 76 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 77 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 78 * ->swap_lock (exclusive_swap_page, others)
b93b0163 79 * ->i_pages lock
1da177e4 80 *
9608703e 81 * ->i_rwsem
730633f0
JK
82 * ->invalidate_lock (acquired by fs in truncate path)
83 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 84 *
c1e8d7c6 85 * ->mmap_lock
c8c06efa 86 * ->i_mmap_rwsem
b8072f09 87 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 89 *
c1e8d7c6 90 * ->mmap_lock
730633f0
JK
91 * ->invalidate_lock (filemap_fault)
92 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 93 *
9608703e 94 * ->i_rwsem (generic_perform_write)
bb523b40 95 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 96 *
f758eeab 97 * bdi->wb.list_lock
a66979ab 98 * sb_lock (fs/fs-writeback.c)
b93b0163 99 * ->i_pages lock (__sync_single_inode)
1da177e4 100 *
c8c06efa 101 * ->i_mmap_rwsem
0503ea8f 102 * ->anon_vma.lock (vma_merge)
1da177e4
LT
103 *
104 * ->anon_vma.lock
b8072f09 105 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 106 *
b8072f09 107 * ->page_table_lock or pte_lock
5d337b91 108 * ->swap_lock (try_to_unmap_one)
1da177e4 109 * ->private_lock (try_to_unmap_one)
b93b0163 110 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
111 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 113 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 114 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 116 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 119 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 120 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 121 *
c8c06efa 122 * ->i_mmap_rwsem
9a3c531d 123 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
124 */
125
5c024e6a 126static void page_cache_delete(struct address_space *mapping,
a548b615 127 struct folio *folio, void *shadow)
91b0abe3 128{
a548b615
MWO
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
c70b647d 131
5c024e6a 132 mapping_set_update(&xas, mapping);
c70b647d 133
5c024e6a 134 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
5c024e6a 138 }
91b0abe3 139
a548b615 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
a548b615 145 folio->mapping = NULL;
2300638b 146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
621db488
MWO
150static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
1da177e4 152{
621db488 153 long nr;
1da177e4 154
621db488
MWO
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
85207ad8
HD
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
06b241f3
HD
176 }
177 }
178
621db488
MWO
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
5ecc4d85 181 return;
09612fa6 182
621db488 183 nr = folio_nr_pages(folio);
5ecc4d85 184
621db488
MWO
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 192 filemap_nr_thps_dec(mapping);
800d8c63 193 }
5ecc4d85
JK
194
195 /*
621db488
MWO
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
566d3362 198 * unwritten data - on ordinary filesystems.
5ecc4d85 199 *
566d3362
HD
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
207 * buddy allocator.
208 */
566d3362
HD
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
212}
213
214/*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 217 * is safe. The caller must hold the i_pages lock.
5ecc4d85 218 */
452e9e69 219void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 220{
452e9e69 221 struct address_space *mapping = folio->mapping;
5ecc4d85 222
a0580c6f 223 trace_mm_filemap_delete_from_page_cache(folio);
621db488 224 filemap_unaccount_folio(mapping, folio);
a548b615 225 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
226}
227
78f42660 228void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 229{
d2329aa0 230 void (*free_folio)(struct folio *);
3abb28e2 231 int refs = 1;
59c66c5f 232
d2329aa0
MWO
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
59c66c5f 236
3abb28e2
MWO
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
59c66c5f
JK
240}
241
702cfbf9 242/**
452e9e69
MWO
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
702cfbf9 245 *
452e9e69
MWO
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
702cfbf9 249 */
452e9e69 250void filemap_remove_folio(struct folio *folio)
1da177e4 251{
452e9e69 252 struct address_space *mapping = folio->mapping;
1da177e4 253
452e9e69 254 BUG_ON(!folio_test_locked(folio));
51b8c1fe 255 spin_lock(&mapping->host->i_lock);
30472509 256 xa_lock_irq(&mapping->i_pages);
452e9e69 257 __filemap_remove_folio(folio, NULL);
30472509 258 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
6072d13c 262
452e9e69 263 filemap_free_folio(mapping, folio);
97cecb5a 264}
97cecb5a 265
aa65c29c 266/*
51dcbdac
MWO
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
aa65c29c 270 *
51dcbdac
MWO
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
aa65c29c 276 *
b93b0163 277 * The function expects the i_pages lock to be held.
aa65c29c 278 */
ef8e5717 279static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 280 struct folio_batch *fbatch)
aa65c29c 281{
51dcbdac 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 283 long total_pages = 0;
4101196b 284 int i = 0;
1afd7ae5 285 struct folio *folio;
aa65c29c 286
ef8e5717 287 mapping_set_update(&xas, mapping);
1afd7ae5 288 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 289 if (i >= folio_batch_count(fbatch))
aa65c29c 290 break;
4101196b
MWO
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 293 if (xa_is_value(folio))
aa65c29c 294 continue;
4101196b
MWO
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
51dcbdac 302 if (folio != fbatch->folios[i]) {
1afd7ae5 303 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 304 fbatch->folios[i]->index, folio);
4101196b
MWO
305 continue;
306 }
307
1afd7ae5 308 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 309
6b24ca4a 310 folio->mapping = NULL;
51dcbdac 311 /* Leave folio->index set: truncation lookup relies on it */
4101196b 312
6b24ca4a 313 i++;
ef8e5717 314 xas_store(&xas, NULL);
6b24ca4a 315 total_pages += folio_nr_pages(folio);
aa65c29c
JK
316 }
317 mapping->nrpages -= total_pages;
318}
319
320void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 321 struct folio_batch *fbatch)
aa65c29c
JK
322{
323 int i;
aa65c29c 324
51dcbdac 325 if (!folio_batch_count(fbatch))
aa65c29c
JK
326 return;
327
51b8c1fe 328 spin_lock(&mapping->host->i_lock);
30472509 329 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
aa65c29c 332
a0580c6f
MWO
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
aa65c29c 335 }
51dcbdac 336 page_cache_delete_batch(mapping, fbatch);
30472509 337 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
aa65c29c 341
51dcbdac
MWO
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
344}
345
d72d9e2a 346int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
347{
348 int ret = 0;
349 /* Check for outstanding write errors */
7fcbbaf1
JA
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 352 ret = -ENOSPC;
7fcbbaf1
JA
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
355 ret = -EIO;
356 return ret;
357}
d72d9e2a 358EXPORT_SYMBOL(filemap_check_errors);
865ffef3 359
76341cab
JL
360static int filemap_check_and_keep_errors(struct address_space *mapping)
361{
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368}
369
5a798493
JB
370/**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
380int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382{
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393}
394EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
1da177e4 396/**
485bb99b 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
469eb4d0 400 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 401 * @sync_mode: enable synchronous operation
1da177e4 402 *
485bb99b
RD
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
1da177e4 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 407 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
a862f68a
MR
410 *
411 * Return: %0 on success, negative error code otherwise.
1da177e4 412 */
ebcf28e1
AM
413int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
1da177e4 415{
1da177e4
LT
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
05fe478d 418 .nr_to_write = LONG_MAX,
111ebb6e
OH
419 .range_start = start,
420 .range_end = end,
1da177e4
LT
421 };
422
5a798493 423 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
eff3b364 475 struct folio *folio;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
eff3b364
MWO
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
8fa8e538
MW
486 continue;
487 /* Shadow entries don't count */
eff3b364 488 if (xa_is_value(folio))
8fa8e538
MW
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
eff3b364 499 return folio != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
1da177e4 512
312e9d2f 513 while (index <= end) {
1da177e4
LT
514 unsigned i;
515
6817ef51
VMO
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
312e9d2f
JK
520 break;
521
6817ef51
VMO
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
1da177e4 524
6817ef51
VMO
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
1da177e4 527 }
6817ef51 528 folio_batch_release(&fbatch);
1da177e4
LT
529 cond_resched();
530 }
aa750fd7
JN
531}
532
533/**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
a862f68a
MR
546 *
547 * Return: error status of the address space.
aa750fd7
JN
548 */
549int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551{
5e8fcc1a
JL
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
1da177e4 554}
d3bccb6f
JK
555EXPORT_SYMBOL(filemap_fdatawait_range);
556
aa0bfcd9
RZ
557/**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573{
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576}
577EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
a823e458
JL
579/**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
a862f68a
MR
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
594 */
595int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596{
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601}
602EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 603
aa750fd7
JN
604/**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
a862f68a
MR
615 *
616 * Return: error status of the address space.
aa750fd7 617 */
76341cab 618int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 619{
ffb959bb 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 621 return filemap_check_and_keep_errors(mapping);
aa750fd7 622}
76341cab 623EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 624
875d91b1 625/* Returns true if writeback might be needed or already in progress. */
9326c9b2 626static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 627{
875d91b1 628 return mapping->nrpages;
1da177e4 629}
1da177e4 630
4bdcd1dd
JA
631bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
633{
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 636 struct folio *folio;
f8ee8909
JA
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
b05f41a1
VMO
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
f8ee8909 644 continue;
b05f41a1 645 if (xa_is_value(folio))
f8ee8909 646 continue;
b05f41a1
VMO
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
f8ee8909
JA
649 break;
650 }
651 rcu_read_unlock();
b05f41a1 652 return folio != NULL;
63135aa3 653}
4bdcd1dd 654EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 655
485bb99b
RD
656/**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
469eb4d0
AM
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
0e056eb5 664 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 665 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
666 *
667 * Return: error status of the address space.
469eb4d0 668 */
1da177e4
LT
669int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671{
ccac11da 672 int err = 0, err2;
1da177e4 673
feeb9b26
BF
674 if (lend < lstart)
675 return 0;
676
9326c9b2 677 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
ddf8f376
IW
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
ccac11da
ML
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 688 }
ccac11da
ML
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
28fd1298 692 return err;
1da177e4 693}
f6995585 694EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 695
5660e13d
JL
696void __filemap_set_wb_err(struct address_space *mapping, int err)
697{
3acdfd28 698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
699
700 trace_filemap_set_wb_err(mapping, eseq);
701}
702EXPORT_SYMBOL(__filemap_set_wb_err);
703
704/**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
a862f68a
MR
725 *
726 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
727 */
728int file_check_and_advance_wb_err(struct file *file)
729{
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
f4e222c5
JL
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
752 return err;
753}
754EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756/**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
769 *
770 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
771 */
772int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773{
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
feeb9b26
BF
777 if (lend < lstart)
778 return 0;
779
9326c9b2 780 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791}
792EXPORT_SYMBOL(file_write_and_wait_range);
793
ef6a3c63 794/**
3720dd6d
VMO
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
803 * caller must do that.
804 *
74d60958 805 * The remove + add is atomic. This function cannot fail.
ef6a3c63 806 */
3720dd6d 807void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 808{
74d60958 809 struct address_space *mapping = old->mapping;
d2329aa0 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 813
3720dd6d
VMO
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 817
3720dd6d 818 folio_get(new);
74d60958
MW
819 new->mapping = mapping;
820 new->index = offset;
ef6a3c63 821
3720dd6d 822 mem_cgroup_migrate(old, new);
0d1c2072 823
30472509 824 xas_lock_irq(&xas);
74d60958 825 xas_store(&xas, new);
4165b9b4 826
74d60958
MW
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 837 xas_unlock_irq(&xas);
d2329aa0 838 if (free_folio)
3720dd6d
VMO
839 free_folio(old);
840 folio_put(old);
ef6a3c63 841}
3720dd6d 842EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 843
9dd3d069
MWO
844noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 846{
9dd3d069
MWO
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
da74240e 849 bool charged = false;
d68eccad 850 long nr = 1;
e286781d 851
9dd3d069
MWO
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 854 mapping_set_update(&xas, mapping);
e286781d 855
3fea5a49 856 if (!huge) {
d68eccad 857 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 859 if (error)
d68eccad 860 return error;
da74240e 861 charged = true;
d68eccad
MWO
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
3fea5a49
JW
864 }
865
198b62f8 866 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
198b62f8 870
74d60958 871 do {
198b62f8
MWO
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
9dd3d069 875 if (order > folio_order(folio))
198b62f8
MWO
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
74d60958 878 xas_lock_irq(&xas);
198b62f8
MWO
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 892 if (order > folio_order(folio)) {
d68eccad
MWO
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
9dd3d069 900 xas_store(&xas, folio);
74d60958
MW
901 if (xas_error(&xas))
902 goto unlock;
903
d68eccad 904 mapping->nrpages += nr;
74d60958
MW
905
906 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
74d60958
MW
913unlock:
914 xas_unlock_irq(&xas);
198b62f8 915 } while (xas_nomem(&xas, gfp));
74d60958 916
d68eccad 917 if (xas_error(&xas))
74d60958 918 goto error;
4165b9b4 919
a0580c6f 920 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 921 return 0;
74d60958 922error:
d68eccad
MWO
923 if (charged)
924 mem_cgroup_uncharge(folio);
9dd3d069 925 folio->mapping = NULL;
66a0c8ee 926 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
1da177e4 929}
9dd3d069 930ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 931
9dd3d069
MWO
932int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
1da177e4 934{
a528910e 935 void *shadow = NULL;
4f98a2fe
RR
936 int ret;
937
9dd3d069
MWO
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 940 if (unlikely(ret))
9dd3d069 941 __folio_clear_locked(folio);
a528910e
JW
942 else {
943 /*
9dd3d069 944 * The folio might have been evicted from cache only
a528910e 945 * recently, in which case it should be activated like
9dd3d069
MWO
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
f0281a00
RR
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
a528910e 950 */
9dd3d069
MWO
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
a528910e 955 }
1da177e4
LT
956 return ret;
957}
9dd3d069 958EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 959
44110fe3 960#ifdef CONFIG_NUMA
bb3c579e 961struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 962{
c0ff7453 963 int n;
bb3c579e 964 struct folio *folio;
c0ff7453 965
44110fe3 966 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
967 unsigned int cpuset_mems_cookie;
968 do {
d26914d1 969 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 970 n = cpuset_mem_spread_node();
bb3c579e
MWO
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 973
bb3c579e 974 return folio;
44110fe3 975 }
bb3c579e 976 return folio_alloc(gfp, order);
44110fe3 977}
bb3c579e 978EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
979#endif
980
7506ae6a
JK
981/*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
989void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991{
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998}
999EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001/*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
1009void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011{
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016}
1017EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1da177e4
LT
1019/*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
62906027
NP
1029#define PAGE_WAIT_TABLE_BITS 8
1030#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1031static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1032
df4d4f12 1033static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1034{
df4d4f12 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1036}
1da177e4 1037
62906027 1038void __init pagecache_init(void)
1da177e4 1039{
62906027 1040 int i;
1da177e4 1041
62906027 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1043 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1044
1045 page_writeback_init();
1da177e4 1046}
1da177e4 1047
5ef64cc8
LT
1048/*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1050 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
5868ec26 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
ac6424b9 1082static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1083{
5ef64cc8 1084 unsigned int flags;
62906027
NP
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
cdc8fcb4 1089 if (!wake_page_match(wait_page, key))
62906027 1090 return 0;
3510ca20 1091
9a1ea439 1092 /*
5ef64cc8
LT
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
9a1ea439 1095 */
5ef64cc8
LT
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1098 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1099 return -1;
5ef64cc8 1100 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
2a9127fc 1105 }
f62e00cc 1106
5ef64cc8
LT
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
101c0bf6 1114 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
5ef64cc8
LT
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1126 * might be de-allocated and the process might even have
1127 * exited.
2a9127fc 1128 */
c6fe44d9 1129 list_del_init_careful(&wait->entry);
5ef64cc8 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1131}
1132
6974d7c9 1133static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1134{
df4d4f12 1135 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1136 struct wait_page_key key;
1137 unsigned long flags;
11a19c7b 1138 wait_queue_entry_t bookmark;
cbbce822 1139
df4d4f12 1140 key.folio = folio;
62906027
NP
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
11a19c7b
TC
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
62906027 1149 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
62906027 1165 /*
bb43b14b
HD
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
62906027 1169 *
bb43b14b
HD
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
62906027 1173 */
bb43b14b 1174 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1175 folio_clear_waiters(folio);
bb43b14b 1176
62906027
NP
1177 spin_unlock_irqrestore(&q->lock, flags);
1178}
74d81bfa 1179
4268b480 1180static void folio_wake(struct folio *folio, int bit)
74d81bfa 1181{
4268b480 1182 if (!folio_test_waiters(folio))
74d81bfa 1183 return;
6974d7c9 1184 folio_wake_bit(folio, bit);
74d81bfa 1185}
62906027 1186
9a1ea439 1187/*
101c0bf6 1188 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1189 */
1190enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1192 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1195 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1198 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1199 */
1200};
1201
2a9127fc 1202/*
101c0bf6 1203 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1204 * if successful.
2a9127fc 1205 */
101c0bf6 1206static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1207 struct wait_queue_entry *wait)
1208{
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1210 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1211 return false;
101c0bf6 1212 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1213 return false;
1214
5ef64cc8 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1216 return true;
1217}
1218
5ef64cc8
LT
1219/* How many times do we accept lock stealing from under a waiter? */
1220int sysctl_page_lock_unfairness = 5;
1221
101c0bf6
MWO
1222static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
62906027 1224{
df4d4f12 1225 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1226 int unfairness = sysctl_page_lock_unfairness;
62906027 1227 struct wait_page_queue wait_page;
ac6424b9 1228 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1229 bool thrashing = false;
eb414681 1230 unsigned long pflags;
aa1cf99b 1231 bool in_thrashing;
62906027 1232
eb414681 1233 if (bit_nr == PG_locked &&
101c0bf6 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1235 delayacct_thrashing_start(&in_thrashing);
eb414681 1236 psi_memstall_enter(&pflags);
b1d29ba8
JW
1237 thrashing = true;
1238 }
1239
62906027
NP
1240 init_wait(wait);
1241 wait->func = wake_page_function;
df4d4f12 1242 wait_page.folio = folio;
62906027
NP
1243 wait_page.bit_nr = bit_nr;
1244
5ef64cc8
LT
1245repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
2a9127fc
LT
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
101c0bf6 1257 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
101c0bf6
MWO
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
62906027 1272
2a9127fc
LT
1273 /*
1274 * From now on, all the logic will be based on
5ef64cc8
LT
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
2a9127fc 1278 *
101c0bf6 1279 * We can drop our reference to the folio.
2a9127fc
LT
1280 */
1281 if (behavior == DROP)
101c0bf6 1282 folio_put(folio);
62906027 1283
5ef64cc8
LT
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
2a9127fc 1290 for (;;) {
5ef64cc8
LT
1291 unsigned int flags;
1292
62906027
NP
1293 set_current_state(state);
1294
5ef64cc8
LT
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
a8b169af 1307 break;
9a1ea439 1308
5ef64cc8
LT
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
9a1ea439 1311 break;
2a9127fc 1312
5ef64cc8
LT
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
101c0bf6 1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
62906027
NP
1324 }
1325
5ef64cc8
LT
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1328 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
62906027
NP
1332 finish_wait(q, wait);
1333
eb414681 1334 if (thrashing) {
aa1cf99b 1335 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1336 psi_memstall_leave(&pflags);
1337 }
b1d29ba8 1338
62906027 1339 /*
5ef64cc8
LT
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1351 */
5ef64cc8
LT
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1354
2a9127fc 1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1356}
1357
ffa65753
AP
1358#ifdef CONFIG_MIGRATION
1359/**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1363 * for pte entries, pass NULL for pmd entries.
1364 * @ptl: already locked ptl. This function will drop the lock.
1365 *
1366 * Wait for a migration entry referencing the given page to be removed. This is
1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1368 * this can be called without taking a reference on the page. Instead this
1369 * should be called while holding the ptl for the migration entry referencing
1370 * the page.
1371 *
1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1373 *
1374 * This follows the same logic as folio_wait_bit_common() so see the comments
1375 * there.
1376 */
1377void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 spinlock_t *ptl)
1379{
1380 struct wait_page_queue wait_page;
1381 wait_queue_entry_t *wait = &wait_page.wait;
1382 bool thrashing = false;
ffa65753 1383 unsigned long pflags;
aa1cf99b 1384 bool in_thrashing;
ffa65753
AP
1385 wait_queue_head_t *q;
1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1387
1388 q = folio_waitqueue(folio);
1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1390 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1391 psi_memstall_enter(&pflags);
1392 thrashing = true;
1393 }
1394
1395 init_wait(wait);
1396 wait->func = wake_page_function;
1397 wait_page.folio = folio;
1398 wait_page.bit_nr = PG_locked;
1399 wait->flags = 0;
1400
1401 spin_lock_irq(&q->lock);
1402 folio_set_waiters(folio);
1403 if (!folio_trylock_flag(folio, PG_locked, wait))
1404 __add_wait_queue_entry_tail(q, wait);
1405 spin_unlock_irq(&q->lock);
1406
1407 /*
1408 * If a migration entry exists for the page the migration path must hold
1409 * a valid reference to the page, and it must take the ptl to remove the
1410 * migration entry. So the page is valid until the ptl is dropped.
1411 */
1412 if (ptep)
1413 pte_unmap_unlock(ptep, ptl);
1414 else
1415 spin_unlock(ptl);
1416
1417 for (;;) {
1418 unsigned int flags;
1419
1420 set_current_state(TASK_UNINTERRUPTIBLE);
1421
1422 /* Loop until we've been woken or interrupted */
1423 flags = smp_load_acquire(&wait->flags);
1424 if (!(flags & WQ_FLAG_WOKEN)) {
1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 break;
1427
1428 io_schedule();
1429 continue;
1430 }
1431 break;
1432 }
1433
1434 finish_wait(q, wait);
1435
1436 if (thrashing) {
aa1cf99b 1437 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1438 psi_memstall_leave(&pflags);
1439 }
1440}
1441#endif
1442
101c0bf6 1443void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1444{
101c0bf6 1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1446}
101c0bf6 1447EXPORT_SYMBOL(folio_wait_bit);
62906027 1448
101c0bf6 1449int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1450{
101c0bf6 1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1452}
101c0bf6 1453EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1454
9a1ea439 1455/**
9f2b04a2
MWO
1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457 * @folio: The folio to wait for.
48054625 1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1459 *
9f2b04a2 1460 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1461 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1462 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1463 * come unlocked. After this function returns, the caller should not
9f2b04a2 1464 * dereference @folio.
48054625 1465 *
9f2b04a2 1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1467 */
c195c321 1468static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1469{
9f2b04a2 1470 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1471}
1472
385e1ca5 1473/**
df4d4f12
MWO
1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475 * @folio: Folio defining the wait queue of interest
697f619f 1476 * @waiter: Waiter to add to the queue
385e1ca5 1477 *
df4d4f12 1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1479 */
df4d4f12 1480void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1481{
df4d4f12 1482 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1486 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1487 folio_set_waiters(folio);
385e1ca5
DH
1488 spin_unlock_irqrestore(&q->lock, flags);
1489}
df4d4f12 1490EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1491
b91e1302
LT
1492#ifndef clear_bit_unlock_is_negative_byte
1493
1494/*
1495 * PG_waiters is the high bit in the same byte as PG_lock.
1496 *
1497 * On x86 (and on many other architectures), we can clear PG_lock and
1498 * test the sign bit at the same time. But if the architecture does
1499 * not support that special operation, we just do this all by hand
1500 * instead.
1501 *
1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1503 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1504 * in the same byte as PG_locked.
1505 */
1506static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1507{
1508 clear_bit_unlock(nr, mem);
1509 /* smp_mb__after_atomic(); */
98473f9f 1510 return test_bit(PG_waiters, mem);
b91e1302
LT
1511}
1512
1513#endif
1514
1da177e4 1515/**
4e136428
MWO
1516 * folio_unlock - Unlock a locked folio.
1517 * @folio: The folio.
1518 *
1519 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1520 *
1521 * Context: May be called from interrupt or process context. May not be
1522 * called from NMI context.
1da177e4 1523 */
4e136428 1524void folio_unlock(struct folio *folio)
1da177e4 1525{
4e136428 1526 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1527 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1528 BUILD_BUG_ON(PG_locked > 7);
1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1531 folio_wake_bit(folio, PG_locked);
1da177e4 1532}
4e136428 1533EXPORT_SYMBOL(folio_unlock);
1da177e4 1534
73e10ded 1535/**
b47393f8
MWO
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
73e10ded 1538 *
b47393f8
MWO
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1541 *
b47393f8
MWO
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1544 * serialised.
1545 */
b47393f8 1546void folio_end_private_2(struct folio *folio)
73e10ded 1547{
6974d7c9
MWO
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 folio_wake_bit(folio, PG_private_2);
1551 folio_put(folio);
73e10ded 1552}
b47393f8 1553EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1554
1555/**
b47393f8
MWO
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
73e10ded 1558 *
b47393f8 1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1560 */
b47393f8 1561void folio_wait_private_2(struct folio *folio)
73e10ded 1562{
101c0bf6
MWO
1563 while (folio_test_private_2(folio))
1564 folio_wait_bit(folio, PG_private_2);
73e10ded 1565}
b47393f8 1566EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1567
1568/**
b47393f8
MWO
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
73e10ded 1571 *
b47393f8 1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1573 * fatal signal is received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
b47393f8 1579int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1580{
1581 int ret = 0;
1582
101c0bf6
MWO
1583 while (folio_test_private_2(folio)) {
1584 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1585 if (ret < 0)
1586 break;
1587 }
1588
1589 return ret;
1590}
b47393f8 1591EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1592
485bb99b 1593/**
4268b480
MWO
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1da177e4 1596 */
4268b480 1597void folio_end_writeback(struct folio *folio)
1da177e4 1598{
888cf2db 1599 /*
4268b480
MWO
1600 * folio_test_clear_reclaim() could be used here but it is an
1601 * atomic operation and overkill in this particular case. Failing
1602 * to shuffle a folio marked for immediate reclaim is too mild
1603 * a gain to justify taking an atomic operation penalty at the
1604 * end of every folio writeback.
888cf2db 1605 */
4268b480
MWO
1606 if (folio_test_reclaim(folio)) {
1607 folio_clear_reclaim(folio);
575ced1c 1608 folio_rotate_reclaimable(folio);
888cf2db 1609 }
ac6aadb2 1610
073861ed 1611 /*
4268b480 1612 * Writeback does not hold a folio reference of its own, relying
073861ed 1613 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1614 * But here we must make sure that the folio is not freed and
1615 * reused before the folio_wake().
073861ed 1616 */
4268b480 1617 folio_get(folio);
269ccca3 1618 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1619 BUG();
1620
4e857c58 1621 smp_mb__after_atomic();
4268b480 1622 folio_wake(folio, PG_writeback);
512b7931 1623 acct_reclaim_writeback(folio);
4268b480 1624 folio_put(folio);
1da177e4 1625}
4268b480 1626EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1627
57d99845
MW
1628/*
1629 * After completing I/O on a page, call this routine to update the page
1630 * flags appropriately
1631 */
c11f0c0b 1632void page_endio(struct page *page, bool is_write, int err)
57d99845 1633{
223ce491
SH
1634 struct folio *folio = page_folio(page);
1635
c11f0c0b 1636 if (!is_write) {
57d99845 1637 if (!err) {
223ce491 1638 folio_mark_uptodate(folio);
57d99845 1639 } else {
223ce491
SH
1640 folio_clear_uptodate(folio);
1641 folio_set_error(folio);
57d99845 1642 }
223ce491 1643 folio_unlock(folio);
abf54548 1644 } else {
57d99845 1645 if (err) {
dd8416c4
MK
1646 struct address_space *mapping;
1647
223ce491
SH
1648 folio_set_error(folio);
1649 mapping = folio_mapping(folio);
dd8416c4
MK
1650 if (mapping)
1651 mapping_set_error(mapping, err);
57d99845 1652 }
223ce491 1653 folio_end_writeback(folio);
57d99845
MW
1654 }
1655}
1656EXPORT_SYMBOL_GPL(page_endio);
1657
485bb99b 1658/**
7c23c782
MWO
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1da177e4 1661 */
7c23c782 1662void __folio_lock(struct folio *folio)
1da177e4 1663{
101c0bf6 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1665 EXCLUSIVE);
1da177e4 1666}
7c23c782 1667EXPORT_SYMBOL(__folio_lock);
1da177e4 1668
af7f29d9 1669int __folio_lock_killable(struct folio *folio)
2687a356 1670{
101c0bf6 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1672 EXCLUSIVE);
2687a356 1673}
af7f29d9 1674EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1675
ffdc8dab 1676static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1677{
df4d4f12 1678 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1679 int ret = 0;
1680
df4d4f12 1681 wait->folio = folio;
f32b5dd7
MWO
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
f32b5dd7
MWO
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
dd3e6d50
JA
1700}
1701
9a95f3cf
PC
1702/*
1703 * Return values:
9138e47e
MWO
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
3e4e28c5 1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1708 * which case mmap_lock is still held.
9a95f3cf 1709 *
9138e47e
MWO
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1712 */
9138e47e 1713bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1714 unsigned int flags)
1715{
4064b982 1716 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1717 /*
c1e8d7c6 1718 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1719 * even though return 0.
1720 */
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1722 return false;
37b23e05 1723
d8ed45c5 1724 mmap_read_unlock(mm);
37b23e05 1725 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1726 folio_wait_locked_killable(folio);
37b23e05 1727 else
6baa8d60 1728 folio_wait_locked(folio);
9138e47e 1729 return false;
800bca7c
HL
1730 }
1731 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1732 bool ret;
37b23e05 1733
af7f29d9 1734 ret = __folio_lock_killable(folio);
800bca7c
HL
1735 if (ret) {
1736 mmap_read_unlock(mm);
9138e47e 1737 return false;
800bca7c
HL
1738 }
1739 } else {
af7f29d9 1740 __folio_lock(folio);
d065bd81 1741 }
800bca7c 1742
9138e47e 1743 return true;
d065bd81
ML
1744}
1745
e7b563bb 1746/**
0d3f9296
MW
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1749 * @index: Index.
1750 * @max_scan: Maximum range to search.
e7b563bb 1751 *
0d3f9296
MW
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
e7b563bb 1754 *
0d3f9296
MW
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
e7b563bb 1760 *
0d3f9296
MW
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1764 */
0d3f9296 1765pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1766 pgoff_t index, unsigned long max_scan)
1767{
0d3f9296 1768 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1769
0d3f9296
MW
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
e7b563bb 1773 break;
0d3f9296 1774 if (xas.xa_index == 0)
e7b563bb
JW
1775 break;
1776 }
1777
0d3f9296 1778 return xas.xa_index;
e7b563bb 1779}
0d3f9296 1780EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1781
1782/**
2346a560 1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
e7b563bb 1787 *
0d3f9296
MW
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
e7b563bb 1790 *
0d3f9296
MW
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
e7b563bb 1796 *
0d3f9296
MW
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1800 */
0d3f9296 1801pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1802 pgoff_t index, unsigned long max_scan)
1803{
0d3f9296 1804 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1805
0d3f9296
MW
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
e7b563bb 1809 break;
0d3f9296 1810 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1811 break;
1812 }
1813
0d3f9296 1814 return xas.xa_index;
e7b563bb 1815}
0d3f9296 1816EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1817
020853b6
MWO
1818/*
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824 *
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1829 *
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1835 * folio_put().
1836 */
1837
44835d20 1838/*
263e721e 1839 * filemap_get_entry - Get a page cache entry.
485bb99b 1840 * @mapping: the address_space to search
a6de4b48 1841 * @index: The page cache index.
0cd6144a 1842 *
bca65eea
MWO
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
485bb99b 1847 *
bca65eea 1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1849 */
263e721e 1850void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1851{
a6de4b48 1852 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1853 struct folio *folio;
1da177e4 1854
a60637c8
NP
1855 rcu_read_lock();
1856repeat:
4c7472c0 1857 xas_reset(&xas);
bca65eea
MWO
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
4c7472c0
MW
1860 goto repeat;
1861 /*
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1864 */
bca65eea 1865 if (!folio || xa_is_value(folio))
4c7472c0 1866 goto out;
83929372 1867
bca65eea 1868 if (!folio_try_get_rcu(folio))
4c7472c0 1869 goto repeat;
83929372 1870
bca65eea
MWO
1871 if (unlikely(folio != xas_reload(&xas))) {
1872 folio_put(folio);
4c7472c0 1873 goto repeat;
a60637c8 1874 }
27d20fdd 1875out:
a60637c8
NP
1876 rcu_read_unlock();
1877
bca65eea 1878 return folio;
1da177e4 1879}
1da177e4 1880
0cd6144a 1881/**
3f0c6a07 1882 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
3f0c6a07
MWO
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1887 *
2294b32e 1888 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1889 *
2294b32e 1890 * @fgp_flags can be zero or more of these flags:
0e056eb5 1891 *
3f0c6a07
MWO
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
2294b32e 1894 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1895 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1896 * The page is returned locked and with an increased refcount.
1897 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898 * page is already in cache. If the page was allocated, unlock it before
1899 * returning so the caller can do the same dance.
3f0c6a07
MWO
1900 * * %FGP_WRITE - The page will be written to by the caller.
1901 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1903 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1904 *
2294b32e
MWO
1905 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1907 *
2457aec6 1908 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1909 *
66dabbb6 1910 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1911 */
3f0c6a07
MWO
1912struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 int fgp_flags, gfp_t gfp)
1da177e4 1914{
3f0c6a07 1915 struct folio *folio;
2457aec6 1916
1da177e4 1917repeat:
263e721e 1918 folio = filemap_get_entry(mapping, index);
48c9d113 1919 if (xa_is_value(folio))
3f0c6a07 1920 folio = NULL;
3f0c6a07 1921 if (!folio)
2457aec6
MG
1922 goto no_page;
1923
1924 if (fgp_flags & FGP_LOCK) {
1925 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1926 if (!folio_trylock(folio)) {
1927 folio_put(folio);
66dabbb6 1928 return ERR_PTR(-EAGAIN);
2457aec6
MG
1929 }
1930 } else {
3f0c6a07 1931 folio_lock(folio);
2457aec6
MG
1932 }
1933
1934 /* Has the page been truncated? */
3f0c6a07
MWO
1935 if (unlikely(folio->mapping != mapping)) {
1936 folio_unlock(folio);
1937 folio_put(folio);
2457aec6
MG
1938 goto repeat;
1939 }
3f0c6a07 1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1941 }
1942
c16eb000 1943 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1944 folio_mark_accessed(folio);
b9306a79
YS
1945 else if (fgp_flags & FGP_WRITE) {
1946 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1947 if (folio_test_idle(folio))
1948 folio_clear_idle(folio);
b9306a79 1949 }
2457aec6 1950
b27652d9
MWO
1951 if (fgp_flags & FGP_STABLE)
1952 folio_wait_stable(folio);
2457aec6 1953no_page:
3f0c6a07 1954 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1955 int err;
f56753ac 1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1957 gfp |= __GFP_WRITE;
45f87de5 1958 if (fgp_flags & FGP_NOFS)
3f0c6a07 1959 gfp &= ~__GFP_FS;
0dd316ba
JA
1960 if (fgp_flags & FGP_NOWAIT) {
1961 gfp &= ~GFP_KERNEL;
1962 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1963 }
2457aec6 1964
3f0c6a07
MWO
1965 folio = filemap_alloc_folio(gfp, 0);
1966 if (!folio)
66dabbb6 1967 return ERR_PTR(-ENOMEM);
2457aec6 1968
a75d4c33 1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1970 fgp_flags |= FGP_LOCK;
1971
eb39d618 1972 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1973 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1974 __folio_set_referenced(folio);
2457aec6 1975
3f0c6a07 1976 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1977 if (unlikely(err)) {
3f0c6a07
MWO
1978 folio_put(folio);
1979 folio = NULL;
eb2be189
NP
1980 if (err == -EEXIST)
1981 goto repeat;
1da177e4 1982 }
a75d4c33
JB
1983
1984 /*
3f0c6a07
MWO
1985 * filemap_add_folio locks the page, and for mmap
1986 * we expect an unlocked page.
a75d4c33 1987 */
3f0c6a07
MWO
1988 if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 folio_unlock(folio);
1da177e4 1990 }
2457aec6 1991
66dabbb6
CH
1992 if (!folio)
1993 return ERR_PTR(-ENOENT);
3f0c6a07 1994 return folio;
1da177e4 1995}
3f0c6a07 1996EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1997
f5e6429a 1998static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1999 xa_mark_t mark)
2000{
f5e6429a 2001 struct folio *folio;
c7bad633
MWO
2002
2003retry:
2004 if (mark == XA_PRESENT)
f5e6429a 2005 folio = xas_find(xas, max);
c7bad633 2006 else
f5e6429a 2007 folio = xas_find_marked(xas, max, mark);
c7bad633 2008
f5e6429a 2009 if (xas_retry(xas, folio))
c7bad633
MWO
2010 goto retry;
2011 /*
2012 * A shadow entry of a recently evicted page, a swap
2013 * entry from shmem/tmpfs or a DAX entry. Return it
2014 * without attempting to raise page count.
2015 */
f5e6429a
MWO
2016 if (!folio || xa_is_value(folio))
2017 return folio;
c7bad633 2018
f5e6429a 2019 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2020 goto reset;
2021
f5e6429a
MWO
2022 if (unlikely(folio != xas_reload(xas))) {
2023 folio_put(folio);
c7bad633
MWO
2024 goto reset;
2025 }
2026
f5e6429a 2027 return folio;
c7bad633
MWO
2028reset:
2029 xas_reset(xas);
2030 goto retry;
2031}
2032
0cd6144a
JW
2033/**
2034 * find_get_entries - gang pagecache lookup
2035 * @mapping: The address_space to search
2036 * @start: The starting page cache index
ca122fe4 2037 * @end: The final page index (inclusive).
0e499ed3 2038 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2039 * @indices: The cache indices corresponding to the entries in @entries
2040 *
cf2039af 2041 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2042 * the mapping. The entries are placed in @fbatch. find_get_entries()
2043 * takes a reference on any actual folios it returns.
0cd6144a 2044 *
0e499ed3
MWO
2045 * The entries have ascending indexes. The indices may not be consecutive
2046 * due to not-present entries or large folios.
0cd6144a 2047 *
0e499ed3 2048 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2049 * shmem/tmpfs, are included in the returned array.
0cd6144a 2050 *
0e499ed3 2051 * Return: The number of entries which were found.
0cd6144a 2052 */
9fb6beea 2053unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2054 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2055{
9fb6beea 2056 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2057 struct folio *folio;
0cd6144a
JW
2058
2059 rcu_read_lock();
f5e6429a 2060 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2061 indices[fbatch->nr] = xas.xa_index;
2062 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2063 break;
2064 }
2065 rcu_read_unlock();
cf2039af 2066
9fb6beea
VMO
2067 if (folio_batch_count(fbatch)) {
2068 unsigned long nr = 1;
2069 int idx = folio_batch_count(fbatch) - 1;
2070
2071 folio = fbatch->folios[idx];
2072 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2073 nr = folio_nr_pages(folio);
2074 *start = indices[idx] + nr;
2075 }
0e499ed3 2076 return folio_batch_count(fbatch);
0cd6144a
JW
2077}
2078
5c211ba2
MWO
2079/**
2080 * find_lock_entries - Find a batch of pagecache entries.
2081 * @mapping: The address_space to search.
2082 * @start: The starting page cache index.
2083 * @end: The final page index (inclusive).
51dcbdac
MWO
2084 * @fbatch: Where the resulting entries are placed.
2085 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2086 *
2087 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2088 * Swap, shadow and DAX entries are included. Folios are returned
2089 * locked and with an incremented refcount. Folios which are locked
2090 * by somebody else or under writeback are skipped. Folios which are
2091 * partially outside the range are not returned.
5c211ba2
MWO
2092 *
2093 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2094 * due to not-present entries, large folios, folios which could not be
2095 * locked or folios under writeback.
5c211ba2
MWO
2096 *
2097 * Return: The number of entries which were found.
2098 */
3392ca12 2099unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2100 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2101{
3392ca12 2102 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2103 struct folio *folio;
5c211ba2
MWO
2104
2105 rcu_read_lock();
f5e6429a
MWO
2106 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2107 if (!xa_is_value(folio)) {
3392ca12 2108 if (folio->index < *start)
5c211ba2 2109 goto put;
f5e6429a 2110 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2111 goto put;
f5e6429a 2112 if (!folio_trylock(folio))
5c211ba2 2113 goto put;
f5e6429a
MWO
2114 if (folio->mapping != mapping ||
2115 folio_test_writeback(folio))
5c211ba2 2116 goto unlock;
f5e6429a
MWO
2117 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2118 folio);
5c211ba2 2119 }
51dcbdac
MWO
2120 indices[fbatch->nr] = xas.xa_index;
2121 if (!folio_batch_add(fbatch, folio))
5c211ba2 2122 break;
6b24ca4a 2123 continue;
5c211ba2 2124unlock:
f5e6429a 2125 folio_unlock(folio);
5c211ba2 2126put:
f5e6429a 2127 folio_put(folio);
5c211ba2
MWO
2128 }
2129 rcu_read_unlock();
2130
3392ca12
VMO
2131 if (folio_batch_count(fbatch)) {
2132 unsigned long nr = 1;
2133 int idx = folio_batch_count(fbatch) - 1;
2134
2135 folio = fbatch->folios[idx];
2136 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2137 nr = folio_nr_pages(folio);
2138 *start = indices[idx] + nr;
2139 }
51dcbdac 2140 return folio_batch_count(fbatch);
5c211ba2
MWO
2141}
2142
1da177e4 2143/**
be0ced5e 2144 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2145 * @mapping: The address_space to search
2146 * @start: The starting page index
b947cee4 2147 * @end: The final page index (inclusive)
be0ced5e 2148 * @fbatch: The batch to fill.
1da177e4 2149 *
be0ced5e
MWO
2150 * Search for and return a batch of folios in the mapping starting at
2151 * index @start and up to index @end (inclusive). The folios are returned
2152 * in @fbatch with an elevated reference count.
1da177e4 2153 *
be0ced5e
MWO
2154 * The first folio may start before @start; if it does, it will contain
2155 * @start. The final folio may extend beyond @end; if it does, it will
2156 * contain @end. The folios have ascending indices. There may be gaps
2157 * between the folios if there are indices which have no folio in the
2158 * page cache. If folios are added to or removed from the page cache
2159 * while this is running, they may or may not be found by this call.
1da177e4 2160 *
be0ced5e
MWO
2161 * Return: The number of folios which were found.
2162 * We also update @start to index the next folio for the traversal.
1da177e4 2163 */
be0ced5e
MWO
2164unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2165 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2166{
fd1b3cee 2167 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2168 struct folio *folio;
a60637c8
NP
2169
2170 rcu_read_lock();
be0ced5e 2171 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2172 /* Skip over shadow, swap and DAX entries */
f5e6429a 2173 if (xa_is_value(folio))
8079b1c8 2174 continue;
be0ced5e
MWO
2175 if (!folio_batch_add(fbatch, folio)) {
2176 unsigned long nr = folio_nr_pages(folio);
a60637c8 2177
be0ced5e
MWO
2178 if (folio_test_hugetlb(folio))
2179 nr = 1;
2180 *start = folio->index + nr;
b947cee4
JK
2181 goto out;
2182 }
a60637c8 2183 }
5b280c0c 2184
b947cee4
JK
2185 /*
2186 * We come here when there is no page beyond @end. We take care to not
2187 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2188 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2189 * already broken anyway.
2190 */
2191 if (end == (pgoff_t)-1)
2192 *start = (pgoff_t)-1;
2193 else
2194 *start = end + 1;
2195out:
a60637c8 2196 rcu_read_unlock();
d72dc8a2 2197
be0ced5e
MWO
2198 return folio_batch_count(fbatch);
2199}
2200EXPORT_SYMBOL(filemap_get_folios);
2201
6b24ca4a
MWO
2202static inline
2203bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2204{
2205 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2206 return false;
2207 if (index >= max)
2208 return false;
2209 return index < folio->index + folio_nr_pages(folio) - 1;
1da177e4
LT
2210}
2211
ebf43500 2212/**
35b47146 2213 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2214 * @mapping: The address_space to search
35b47146
VMO
2215 * @start: The starting page index
2216 * @end: The final page index (inclusive)
2217 * @fbatch: The batch to fill
ebf43500 2218 *
35b47146
VMO
2219 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2220 * except the returned folios are guaranteed to be contiguous. This may
2221 * not return all contiguous folios if the batch gets filled up.
ebf43500 2222 *
35b47146
VMO
2223 * Return: The number of folios found.
2224 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2225 */
35b47146
VMO
2226
2227unsigned filemap_get_folios_contig(struct address_space *mapping,
2228 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2229{
35b47146
VMO
2230 XA_STATE(xas, &mapping->i_pages, *start);
2231 unsigned long nr;
e1c37722 2232 struct folio *folio;
a60637c8
NP
2233
2234 rcu_read_lock();
35b47146
VMO
2235
2236 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2237 folio = xas_next(&xas)) {
e1c37722 2238 if (xas_retry(&xas, folio))
3ece58a2
MW
2239 continue;
2240 /*
2241 * If the entry has been swapped out, we can stop looking.
2242 * No current caller is looking for DAX entries.
2243 */
e1c37722 2244 if (xa_is_value(folio))
35b47146 2245 goto update_start;
ebf43500 2246
e1c37722 2247 if (!folio_try_get_rcu(folio))
3ece58a2 2248 goto retry;
83929372 2249
e1c37722 2250 if (unlikely(folio != xas_reload(&xas)))
35b47146 2251 goto put_folio;
a60637c8 2252
35b47146
VMO
2253 if (!folio_batch_add(fbatch, folio)) {
2254 nr = folio_nr_pages(folio);
2255
2256 if (folio_test_hugetlb(folio))
2257 nr = 1;
2258 *start = folio->index + nr;
2259 goto out;
6b24ca4a 2260 }
3ece58a2 2261 continue;
35b47146 2262put_folio:
e1c37722 2263 folio_put(folio);
35b47146 2264
3ece58a2
MW
2265retry:
2266 xas_reset(&xas);
ebf43500 2267 }
35b47146
VMO
2268
2269update_start:
2270 nr = folio_batch_count(fbatch);
2271
2272 if (nr) {
2273 folio = fbatch->folios[nr - 1];
2274 if (folio_test_hugetlb(folio))
2275 *start = folio->index + 1;
2276 else
2277 *start = folio->index + folio_nr_pages(folio);
2278 }
2279out:
a60637c8 2280 rcu_read_unlock();
35b47146 2281 return folio_batch_count(fbatch);
ebf43500 2282}
35b47146 2283EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2284
485bb99b 2285/**
247f9e1f
VMO
2286 * filemap_get_folios_tag - Get a batch of folios matching @tag
2287 * @mapping: The address_space to search
2288 * @start: The starting page index
2289 * @end: The final page index (inclusive)
2290 * @tag: The tag index
2291 * @fbatch: The batch to fill
485bb99b 2292 *
247f9e1f 2293 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
a862f68a 2294 *
247f9e1f
VMO
2295 * Return: The number of folios found.
2296 * Also update @start to index the next folio for traversal.
1da177e4 2297 */
247f9e1f
VMO
2298unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2299 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2300{
247f9e1f 2301 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2302 struct folio *folio;
a60637c8
NP
2303
2304 rcu_read_lock();
247f9e1f 2305 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2306 /*
2307 * Shadow entries should never be tagged, but this iteration
2308 * is lockless so there is a window for page reclaim to evict
247f9e1f 2309 * a page we saw tagged. Skip over it.
a6906972 2310 */
f5e6429a 2311 if (xa_is_value(folio))
139b6a6f 2312 continue;
247f9e1f
VMO
2313 if (!folio_batch_add(fbatch, folio)) {
2314 unsigned long nr = folio_nr_pages(folio);
a60637c8 2315
247f9e1f
VMO
2316 if (folio_test_hugetlb(folio))
2317 nr = 1;
2318 *start = folio->index + nr;
72b045ae
JK
2319 goto out;
2320 }
a60637c8 2321 }
72b045ae 2322 /*
247f9e1f
VMO
2323 * We come here when there is no page beyond @end. We take care to not
2324 * overflow the index @start as it confuses some of the callers. This
2325 * breaks the iteration when there is a page at index -1 but that is
2326 * already broke anyway.
72b045ae
JK
2327 */
2328 if (end == (pgoff_t)-1)
247f9e1f 2329 *start = (pgoff_t)-1;
72b045ae 2330 else
247f9e1f 2331 *start = end + 1;
72b045ae 2332out:
a60637c8 2333 rcu_read_unlock();
1da177e4 2334
247f9e1f 2335 return folio_batch_count(fbatch);
1da177e4 2336}
247f9e1f 2337EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2338
76d42bd9
WF
2339/*
2340 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2341 * a _large_ part of the i/o request. Imagine the worst scenario:
2342 *
2343 * ---R__________________________________________B__________
2344 * ^ reading here ^ bad block(assume 4k)
2345 *
2346 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2347 * => failing the whole request => read(R) => read(R+1) =>
2348 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2349 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2350 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2351 *
2352 * It is going insane. Fix it by quickly scaling down the readahead size.
2353 */
0f8e2db4 2354static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2355{
76d42bd9 2356 ra->ra_pages /= 4;
76d42bd9
WF
2357}
2358
cbd59c48 2359/*
25d6a23e 2360 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2361 *
25d6a23e
MWO
2362 * Get a batch of folios which represent a contiguous range of bytes in
2363 * the file. No exceptional entries will be returned. If @index is in
2364 * the middle of a folio, the entire folio will be returned. The last
2365 * folio in the batch may have the readahead flag set or the uptodate flag
2366 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2367 */
2368static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2369 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2370{
2371 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2372 struct folio *folio;
cbd59c48
MWO
2373
2374 rcu_read_lock();
bdb72932
MWO
2375 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2376 if (xas_retry(&xas, folio))
cbd59c48 2377 continue;
bdb72932 2378 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2379 break;
cb995f4e
MWO
2380 if (xa_is_sibling(folio))
2381 break;
bdb72932 2382 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2383 goto retry;
2384
bdb72932 2385 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2386 goto put_folio;
cbd59c48 2387
25d6a23e 2388 if (!folio_batch_add(fbatch, folio))
cbd59c48 2389 break;
bdb72932 2390 if (!folio_test_uptodate(folio))
cbd59c48 2391 break;
bdb72932 2392 if (folio_test_readahead(folio))
cbd59c48 2393 break;
6b24ca4a 2394 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2395 continue;
25d6a23e 2396put_folio:
bdb72932 2397 folio_put(folio);
cbd59c48
MWO
2398retry:
2399 xas_reset(&xas);
2400 }
2401 rcu_read_unlock();
2402}
2403
290e1a32 2404static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2405 struct folio *folio)
723ef24b 2406{
17604240
CH
2407 bool workingset = folio_test_workingset(folio);
2408 unsigned long pflags;
723ef24b
KO
2409 int error;
2410
723ef24b 2411 /*
68430303 2412 * A previous I/O error may have been due to temporary failures,
7e0a1265 2413 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2414 * fails.
723ef24b 2415 */
9d427b4e 2416 folio_clear_error(folio);
17604240 2417
723ef24b 2418 /* Start the actual read. The read will unlock the page. */
17604240
CH
2419 if (unlikely(workingset))
2420 psi_memstall_enter(&pflags);
290e1a32 2421 error = filler(file, folio);
17604240
CH
2422 if (unlikely(workingset))
2423 psi_memstall_leave(&pflags);
68430303
MWO
2424 if (error)
2425 return error;
723ef24b 2426
9d427b4e 2427 error = folio_wait_locked_killable(folio);
68430303
MWO
2428 if (error)
2429 return error;
9d427b4e 2430 if (folio_test_uptodate(folio))
aa1ec2f6 2431 return 0;
290e1a32
MWO
2432 if (file)
2433 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2434 return -EIO;
723ef24b
KO
2435}
2436
fce70da3 2437static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2438 loff_t pos, size_t count, struct folio *folio,
2439 bool need_uptodate)
fce70da3 2440{
2fa4eeb8 2441 if (folio_test_uptodate(folio))
fce70da3
MWO
2442 return true;
2443 /* pipes can't handle partially uptodate pages */
dd5b9d00 2444 if (need_uptodate)
fce70da3
MWO
2445 return false;
2446 if (!mapping->a_ops->is_partially_uptodate)
2447 return false;
2fa4eeb8 2448 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2449 return false;
2450
2fa4eeb8
MWO
2451 if (folio_pos(folio) > pos) {
2452 count -= folio_pos(folio) - pos;
fce70da3
MWO
2453 pos = 0;
2454 } else {
2fa4eeb8 2455 pos -= folio_pos(folio);
fce70da3
MWO
2456 }
2457
2e7e80f7 2458 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2459}
2460
4612aeef 2461static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2462 struct address_space *mapping, size_t count,
2463 struct folio *folio, bool need_uptodate)
723ef24b 2464{
723ef24b
KO
2465 int error;
2466
730633f0
JK
2467 if (iocb->ki_flags & IOCB_NOWAIT) {
2468 if (!filemap_invalidate_trylock_shared(mapping))
2469 return -EAGAIN;
2470 } else {
2471 filemap_invalidate_lock_shared(mapping);
2472 }
2473
ffdc8dab 2474 if (!folio_trylock(folio)) {
730633f0 2475 error = -EAGAIN;
87d1d7b6 2476 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2477 goto unlock_mapping;
87d1d7b6 2478 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2479 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2480 /*
2481 * This is where we usually end up waiting for a
2482 * previously submitted readahead to finish.
2483 */
2484 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2485 return AOP_TRUNCATED_PAGE;
bd8a1f36 2486 }
ffdc8dab 2487 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2488 if (error)
730633f0 2489 goto unlock_mapping;
723ef24b 2490 }
723ef24b 2491
730633f0 2492 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2493 if (!folio->mapping)
730633f0 2494 goto unlock;
723ef24b 2495
fce70da3 2496 error = 0;
dd5b9d00
DH
2497 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2498 need_uptodate))
fce70da3
MWO
2499 goto unlock;
2500
2501 error = -EAGAIN;
2502 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2503 goto unlock;
2504
290e1a32
MWO
2505 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2506 folio);
730633f0 2507 goto unlock_mapping;
fce70da3 2508unlock:
ffdc8dab 2509 folio_unlock(folio);
730633f0
JK
2510unlock_mapping:
2511 filemap_invalidate_unlock_shared(mapping);
2512 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2513 folio_put(folio);
fce70da3 2514 return error;
723ef24b
KO
2515}
2516
a5d4ad09 2517static int filemap_create_folio(struct file *file,
f253e185 2518 struct address_space *mapping, pgoff_t index,
25d6a23e 2519 struct folio_batch *fbatch)
723ef24b 2520{
a5d4ad09 2521 struct folio *folio;
723ef24b
KO
2522 int error;
2523
a5d4ad09
MWO
2524 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2525 if (!folio)
f253e185 2526 return -ENOMEM;
723ef24b 2527
730633f0 2528 /*
a5d4ad09
MWO
2529 * Protect against truncate / hole punch. Grabbing invalidate_lock
2530 * here assures we cannot instantiate and bring uptodate new
2531 * pagecache folios after evicting page cache during truncate
2532 * and before actually freeing blocks. Note that we could
2533 * release invalidate_lock after inserting the folio into
2534 * the page cache as the locked folio would then be enough to
2535 * synchronize with hole punching. But there are code paths
2536 * such as filemap_update_page() filling in partially uptodate
704528d8 2537 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2538 * while mapping blocks for IO so let's hold the lock here as
2539 * well to keep locking rules simple.
730633f0
JK
2540 */
2541 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2542 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2543 mapping_gfp_constraint(mapping, GFP_KERNEL));
2544 if (error == -EEXIST)
2545 error = AOP_TRUNCATED_PAGE;
2546 if (error)
2547 goto error;
2548
290e1a32 2549 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2550 if (error)
2551 goto error;
2552
730633f0 2553 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2554 folio_batch_add(fbatch, folio);
f253e185
MWO
2555 return 0;
2556error:
730633f0 2557 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2558 folio_put(folio);
f253e185 2559 return error;
723ef24b
KO
2560}
2561
5963fe03 2562static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2563 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2564 pgoff_t last_index)
2565{
65bca53b
MWO
2566 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567
5963fe03
MWO
2568 if (iocb->ki_flags & IOCB_NOIO)
2569 return -EAGAIN;
65bca53b 2570 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2571 return 0;
2572}
2573
dd5b9d00
DH
2574static int filemap_get_pages(struct kiocb *iocb, size_t count,
2575 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2576{
2577 struct file *filp = iocb->ki_filp;
2578 struct address_space *mapping = filp->f_mapping;
2579 struct file_ra_state *ra = &filp->f_ra;
2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2581 pgoff_t last_index;
65bca53b 2582 struct folio *folio;
cbd59c48 2583 int err = 0;
06c04442 2584
5956592c 2585 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2586 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2587retry:
06c04442
KO
2588 if (fatal_signal_pending(current))
2589 return -EINTR;
2590
5956592c 2591 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2592 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2593 if (iocb->ki_flags & IOCB_NOIO)
2594 return -EAGAIN;
2595 page_cache_sync_readahead(mapping, ra, filp, index,
2596 last_index - index);
5956592c 2597 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2598 }
25d6a23e 2599 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2600 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2601 return -EAGAIN;
a5d4ad09 2602 err = filemap_create_folio(filp, mapping,
25d6a23e 2603 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2604 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2605 goto retry;
f253e185
MWO
2606 return err;
2607 }
06c04442 2608
25d6a23e 2609 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2610 if (folio_test_readahead(folio)) {
2611 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2612 if (err)
2613 goto err;
2614 }
65bca53b 2615 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2616 if ((iocb->ki_flags & IOCB_WAITQ) &&
2617 folio_batch_count(fbatch) > 1)
2642fca6 2618 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2619 err = filemap_update_page(iocb, mapping, count, folio,
2620 need_uptodate);
2642fca6
MWO
2621 if (err)
2622 goto err;
06c04442
KO
2623 }
2624
2642fca6 2625 return 0;
cbd59c48 2626err:
2642fca6 2627 if (err < 0)
65bca53b 2628 folio_put(folio);
25d6a23e 2629 if (likely(--fbatch->nr))
ff993ba1 2630 return 0;
4612aeef 2631 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2632 goto retry;
2633 return err;
06c04442
KO
2634}
2635
5ccc944d
MWO
2636static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2637{
2638 unsigned int shift = folio_shift(folio);
2639
2640 return (pos1 >> shift == pos2 >> shift);
2641}
2642
485bb99b 2643/**
87fa0f3e
CH
2644 * filemap_read - Read data from the page cache.
2645 * @iocb: The iocb to read.
2646 * @iter: Destination for the data.
2647 * @already_read: Number of bytes already read by the caller.
485bb99b 2648 *
87fa0f3e 2649 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2650 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2651 *
87fa0f3e
CH
2652 * Return: Total number of bytes copied, including those already read by
2653 * the caller. If an error happens before any bytes are copied, returns
2654 * a negative error number.
1da177e4 2655 */
87fa0f3e
CH
2656ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2657 ssize_t already_read)
1da177e4 2658{
47c27bc4 2659 struct file *filp = iocb->ki_filp;
06c04442 2660 struct file_ra_state *ra = &filp->f_ra;
36e78914 2661 struct address_space *mapping = filp->f_mapping;
1da177e4 2662 struct inode *inode = mapping->host;
25d6a23e 2663 struct folio_batch fbatch;
ff993ba1 2664 int i, error = 0;
06c04442
KO
2665 bool writably_mapped;
2666 loff_t isize, end_offset;
1da177e4 2667
723ef24b 2668 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2669 return 0;
3644e2d2
KO
2670 if (unlikely(!iov_iter_count(iter)))
2671 return 0;
2672
c2a9737f 2673 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2674 folio_batch_init(&fbatch);
c2a9737f 2675
06c04442 2676 do {
1da177e4 2677 cond_resched();
5abf186a 2678
723ef24b 2679 /*
06c04442
KO
2680 * If we've already successfully copied some data, then we
2681 * can no longer safely return -EIOCBQUEUED. Hence mark
2682 * an async read NOWAIT at that point.
723ef24b 2683 */
87fa0f3e 2684 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2685 iocb->ki_flags |= IOCB_NOWAIT;
2686
8c8387ee
DH
2687 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2688 break;
2689
3fc40265 2690 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
ff993ba1 2691 if (error < 0)
06c04442 2692 break;
1da177e4 2693
06c04442
KO
2694 /*
2695 * i_size must be checked after we know the pages are Uptodate.
2696 *
2697 * Checking i_size after the check allows us to calculate
2698 * the correct value for "nr", which means the zero-filled
2699 * part of the page is not copied back to userspace (unless
2700 * another truncate extends the file - this is desired though).
2701 */
2702 isize = i_size_read(inode);
2703 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2704 goto put_folios;
06c04442
KO
2705 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2706
06c04442
KO
2707 /*
2708 * Once we start copying data, we don't want to be touching any
2709 * cachelines that might be contended:
2710 */
2711 writably_mapped = mapping_writably_mapped(mapping);
2712
2713 /*
5ccc944d 2714 * When a read accesses the same folio several times, only
06c04442
KO
2715 * mark it as accessed the first time.
2716 */
5ccc944d
MWO
2717 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2718 fbatch.folios[0]))
25d6a23e 2719 folio_mark_accessed(fbatch.folios[0]);
06c04442 2720
25d6a23e
MWO
2721 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2722 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2723 size_t fsize = folio_size(folio);
2724 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2725 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2726 fsize - offset);
cbd59c48 2727 size_t copied;
06c04442 2728
d996fc7f 2729 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2730 break;
2731 if (i > 0)
d996fc7f 2732 folio_mark_accessed(folio);
06c04442 2733 /*
d996fc7f
MWO
2734 * If users can be writing to this folio using arbitrary
2735 * virtual addresses, take care of potential aliasing
2736 * before reading the folio on the kernel side.
06c04442 2737 */
d996fc7f
MWO
2738 if (writably_mapped)
2739 flush_dcache_folio(folio);
06c04442 2740
d996fc7f 2741 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2742
87fa0f3e 2743 already_read += copied;
06c04442
KO
2744 iocb->ki_pos += copied;
2745 ra->prev_pos = iocb->ki_pos;
2746
2747 if (copied < bytes) {
2748 error = -EFAULT;
2749 break;
2750 }
1da177e4 2751 }
25d6a23e
MWO
2752put_folios:
2753 for (i = 0; i < folio_batch_count(&fbatch); i++)
2754 folio_put(fbatch.folios[i]);
2755 folio_batch_init(&fbatch);
06c04442 2756 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2757
0c6aa263 2758 file_accessed(filp);
06c04442 2759
87fa0f3e 2760 return already_read ? already_read : error;
1da177e4 2761}
87fa0f3e 2762EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2763
485bb99b 2764/**
6abd2322 2765 * generic_file_read_iter - generic filesystem read routine
485bb99b 2766 * @iocb: kernel I/O control block
6abd2322 2767 * @iter: destination for the data read
485bb99b 2768 *
6abd2322 2769 * This is the "read_iter()" routine for all filesystems
1da177e4 2770 * that can use the page cache directly.
41da51bc
AG
2771 *
2772 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2773 * be returned when no data can be read without waiting for I/O requests
2774 * to complete; it doesn't prevent readahead.
2775 *
2776 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2777 * requests shall be made for the read or for readahead. When no data
2778 * can be read, -EAGAIN shall be returned. When readahead would be
2779 * triggered, a partial, possibly empty read shall be returned.
2780 *
a862f68a
MR
2781 * Return:
2782 * * number of bytes copied, even for partial reads
41da51bc 2783 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2784 */
2785ssize_t
ed978a81 2786generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2787{
e7080a43 2788 size_t count = iov_iter_count(iter);
47c27bc4 2789 ssize_t retval = 0;
e7080a43
NS
2790
2791 if (!count)
826ea860 2792 return 0; /* skip atime */
1da177e4 2793
2ba48ce5 2794 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2795 struct file *file = iocb->ki_filp;
ed978a81
AV
2796 struct address_space *mapping = file->f_mapping;
2797 struct inode *inode = mapping->host;
1da177e4 2798
6be96d3a 2799 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2800 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2801 iocb->ki_pos + count - 1))
6be96d3a
GR
2802 return -EAGAIN;
2803 } else {
2804 retval = filemap_write_and_wait_range(mapping,
2805 iocb->ki_pos,
2806 iocb->ki_pos + count - 1);
2807 if (retval < 0)
826ea860 2808 return retval;
6be96d3a 2809 }
d8d3d94b 2810
0d5b0cf2
CH
2811 file_accessed(file);
2812
5ecda137 2813 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2814 if (retval >= 0) {
c64fb5c7 2815 iocb->ki_pos += retval;
5ecda137 2816 count -= retval;
9fe55eea 2817 }
ab2125df
PB
2818 if (retval != -EIOCBQUEUED)
2819 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2820
9fe55eea
SW
2821 /*
2822 * Btrfs can have a short DIO read if we encounter
2823 * compressed extents, so if there was an error, or if
2824 * we've already read everything we wanted to, or if
2825 * there was a short read because we hit EOF, go ahead
2826 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2827 * the rest of the read. Buffered reads will not work for
2828 * DAX files, so don't bother trying.
9fe55eea 2829 */
61d0017e
JA
2830 if (retval < 0 || !count || IS_DAX(inode))
2831 return retval;
2832 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2833 return retval;
1da177e4
LT
2834 }
2835
826ea860 2836 return filemap_read(iocb, iter, retval);
1da177e4 2837}
ed978a81 2838EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2839
07073eb0
DH
2840/*
2841 * Splice subpages from a folio into a pipe.
2842 */
2843size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2844 struct folio *folio, loff_t fpos, size_t size)
2845{
2846 struct page *page;
2847 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2848
2849 page = folio_page(folio, offset / PAGE_SIZE);
2850 size = min(size, folio_size(folio) - offset);
2851 offset %= PAGE_SIZE;
2852
2853 while (spliced < size &&
2854 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2855 struct pipe_buffer *buf = pipe_head_buf(pipe);
2856 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2857
2858 *buf = (struct pipe_buffer) {
2859 .ops = &page_cache_pipe_buf_ops,
2860 .page = page,
2861 .offset = offset,
2862 .len = part,
2863 };
2864 folio_get(folio);
2865 pipe->head++;
2866 page++;
2867 spliced += part;
2868 offset = 0;
2869 }
2870
2871 return spliced;
2872}
2873
9eee8bd8
DH
2874/**
2875 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2876 * @in: The file to read from
2877 * @ppos: Pointer to the file position to read from
2878 * @pipe: The pipe to splice into
2879 * @len: The amount to splice
2880 * @flags: The SPLICE_F_* flags
2881 *
2882 * This function gets folios from a file's pagecache and splices them into the
2883 * pipe. Readahead will be called as necessary to fill more folios. This may
2884 * be used for blockdevs also.
2885 *
2886 * Return: On success, the number of bytes read will be returned and *@ppos
2887 * will be updated if appropriate; 0 will be returned if there is no more data
2888 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2889 * other negative error code will be returned on error. A short read may occur
2890 * if the pipe has insufficient space, we reach the end of the data or we hit a
2891 * hole.
07073eb0
DH
2892 */
2893ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2894 struct pipe_inode_info *pipe,
2895 size_t len, unsigned int flags)
2896{
2897 struct folio_batch fbatch;
2898 struct kiocb iocb;
2899 size_t total_spliced = 0, used, npages;
2900 loff_t isize, end_offset;
2901 bool writably_mapped;
2902 int i, error = 0;
2903
83aeff88
DH
2904 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2905 return 0;
2906
07073eb0
DH
2907 init_sync_kiocb(&iocb, in);
2908 iocb.ki_pos = *ppos;
2909
2910 /* Work out how much data we can actually add into the pipe */
2911 used = pipe_occupancy(pipe->head, pipe->tail);
2912 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2913 len = min_t(size_t, len, npages * PAGE_SIZE);
2914
2915 folio_batch_init(&fbatch);
2916
2917 do {
2918 cond_resched();
2919
c3722208 2920 if (*ppos >= i_size_read(in->f_mapping->host))
07073eb0
DH
2921 break;
2922
2923 iocb.ki_pos = *ppos;
2924 error = filemap_get_pages(&iocb, len, &fbatch, true);
2925 if (error < 0)
2926 break;
2927
2928 /*
2929 * i_size must be checked after we know the pages are Uptodate.
2930 *
2931 * Checking i_size after the check allows us to calculate
2932 * the correct value for "nr", which means the zero-filled
2933 * part of the page is not copied back to userspace (unless
2934 * another truncate extends the file - this is desired though).
2935 */
c3722208 2936 isize = i_size_read(in->f_mapping->host);
07073eb0
DH
2937 if (unlikely(*ppos >= isize))
2938 break;
2939 end_offset = min_t(loff_t, isize, *ppos + len);
2940
2941 /*
2942 * Once we start copying data, we don't want to be touching any
2943 * cachelines that might be contended:
2944 */
2945 writably_mapped = mapping_writably_mapped(in->f_mapping);
2946
2947 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2948 struct folio *folio = fbatch.folios[i];
2949 size_t n;
2950
2951 if (folio_pos(folio) >= end_offset)
2952 goto out;
2953 folio_mark_accessed(folio);
2954
2955 /*
2956 * If users can be writing to this folio using arbitrary
2957 * virtual addresses, take care of potential aliasing
2958 * before reading the folio on the kernel side.
2959 */
2960 if (writably_mapped)
2961 flush_dcache_folio(folio);
2962
2963 n = min_t(loff_t, len, isize - *ppos);
2964 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2965 if (!n)
2966 goto out;
2967 len -= n;
2968 total_spliced += n;
2969 *ppos += n;
2970 in->f_ra.prev_pos = *ppos;
2971 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2972 goto out;
2973 }
2974
2975 folio_batch_release(&fbatch);
2976 } while (len);
2977
2978out:
2979 folio_batch_release(&fbatch);
2980 file_accessed(in);
2981
2982 return total_spliced ? total_spliced : error;
2983}
7c8e01eb 2984EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2985
f5e6429a
MWO
2986static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2987 struct address_space *mapping, struct folio *folio,
54fa39ac 2988 loff_t start, loff_t end, bool seek_data)
41139aa4 2989{
54fa39ac
MWO
2990 const struct address_space_operations *ops = mapping->a_ops;
2991 size_t offset, bsz = i_blocksize(mapping->host);
2992
f5e6429a 2993 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2994 return seek_data ? start : end;
2995 if (!ops->is_partially_uptodate)
2996 return seek_data ? end : start;
2997
2998 xas_pause(xas);
2999 rcu_read_unlock();
f5e6429a
MWO
3000 folio_lock(folio);
3001 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
3002 goto unlock;
3003
f5e6429a 3004 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
3005
3006 do {
2e7e80f7 3007 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 3008 seek_data)
54fa39ac
MWO
3009 break;
3010 start = (start + bsz) & ~(bsz - 1);
3011 offset += bsz;
f5e6429a 3012 } while (offset < folio_size(folio));
54fa39ac 3013unlock:
f5e6429a 3014 folio_unlock(folio);
54fa39ac
MWO
3015 rcu_read_lock();
3016 return start;
41139aa4
MWO
3017}
3018
f5e6429a 3019static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 3020{
f5e6429a 3021 if (xa_is_value(folio))
41139aa4 3022 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 3023 return folio_size(folio);
41139aa4
MWO
3024}
3025
3026/**
3027 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3028 * @mapping: Address space to search.
3029 * @start: First byte to consider.
3030 * @end: Limit of search (exclusive).
3031 * @whence: Either SEEK_HOLE or SEEK_DATA.
3032 *
3033 * If the page cache knows which blocks contain holes and which blocks
3034 * contain data, your filesystem can use this function to implement
3035 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3036 * entirely memory-based such as tmpfs, and filesystems which support
3037 * unwritten extents.
3038 *
f0953a1b 3039 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
3040 * SEEK_DATA and there is no data after @start. There is an implicit hole
3041 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3042 * and @end contain data.
3043 */
3044loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3045 loff_t end, int whence)
3046{
3047 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 3048 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 3049 bool seek_data = (whence == SEEK_DATA);
f5e6429a 3050 struct folio *folio;
41139aa4
MWO
3051
3052 if (end <= start)
3053 return -ENXIO;
3054
3055 rcu_read_lock();
f5e6429a 3056 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3057 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3058 size_t seek_size;
41139aa4
MWO
3059
3060 if (start < pos) {
3061 if (!seek_data)
3062 goto unlock;
3063 start = pos;
3064 }
3065
f5e6429a
MWO
3066 seek_size = seek_folio_size(&xas, folio);
3067 pos = round_up((u64)pos + 1, seek_size);
3068 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3069 seek_data);
3070 if (start < pos)
41139aa4 3071 goto unlock;
ed98b015
HD
3072 if (start >= end)
3073 break;
3074 if (seek_size > PAGE_SIZE)
3075 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3076 if (!xa_is_value(folio))
3077 folio_put(folio);
41139aa4 3078 }
41139aa4 3079 if (seek_data)
ed98b015 3080 start = -ENXIO;
41139aa4
MWO
3081unlock:
3082 rcu_read_unlock();
f5e6429a
MWO
3083 if (folio && !xa_is_value(folio))
3084 folio_put(folio);
41139aa4
MWO
3085 if (start > end)
3086 return end;
3087 return start;
3088}
3089
1da177e4 3090#ifdef CONFIG_MMU
1da177e4 3091#define MMAP_LOTSAMISS (100)
6b4c9f44 3092/*
e292e6d6 3093 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3094 * @vmf - the vm_fault for this fault.
e292e6d6 3095 * @folio - the folio to lock.
6b4c9f44
JB
3096 * @fpin - the pointer to the file we may pin (or is already pinned).
3097 *
e292e6d6
MWO
3098 * This works similar to lock_folio_or_retry in that it can drop the
3099 * mmap_lock. It differs in that it actually returns the folio locked
3100 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3101 * to drop the mmap_lock then fpin will point to the pinned file and
3102 * needs to be fput()'ed at a later point.
6b4c9f44 3103 */
e292e6d6 3104static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3105 struct file **fpin)
3106{
7c23c782 3107 if (folio_trylock(folio))
6b4c9f44
JB
3108 return 1;
3109
8b0f9fa2
LT
3110 /*
3111 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 3112 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3113 * is supposed to work. We have way too many special cases..
3114 */
6b4c9f44
JB
3115 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3116 return 0;
3117
3118 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3119 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3120 if (__folio_lock_killable(folio)) {
6b4c9f44 3121 /*
c1e8d7c6 3122 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
3123 * but all fault_handlers only check for fatal signals
3124 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 3125 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
3126 */
3127 if (*fpin == NULL)
d8ed45c5 3128 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
3129 return 0;
3130 }
3131 } else
7c23c782
MWO
3132 __folio_lock(folio);
3133
6b4c9f44
JB
3134 return 1;
3135}
3136
ef00e08e 3137/*
6b4c9f44
JB
3138 * Synchronous readahead happens when we don't even find a page in the page
3139 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3140 * to drop the mmap sem we return the file that was pinned in order for us to do
3141 * that. If we didn't pin a file then we return NULL. The file that is
3142 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3143 */
6b4c9f44 3144static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3145{
2a1180f1
JB
3146 struct file *file = vmf->vma->vm_file;
3147 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3148 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3149 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3150 struct file *fpin = NULL;
dcfa24ba 3151 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3152 unsigned int mmap_miss;
ef00e08e 3153
4687fdbb
MWO
3154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3155 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3156 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3157 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3158 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3159 ra->size = HPAGE_PMD_NR;
3160 /*
3161 * Fetch two PMD folios, so we get the chance to actually
3162 * readahead, unless we've been told not to.
3163 */
dcfa24ba 3164 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3165 ra->size *= 2;
3166 ra->async_size = HPAGE_PMD_NR;
3167 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3168 return fpin;
3169 }
3170#endif
3171
ef00e08e 3172 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3173 if (vm_flags & VM_RAND_READ)
6b4c9f44 3174 return fpin;
275b12bf 3175 if (!ra->ra_pages)
6b4c9f44 3176 return fpin;
ef00e08e 3177
dcfa24ba 3178 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3179 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3180 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3181 return fpin;
ef00e08e
LT
3182 }
3183
207d04ba 3184 /* Avoid banging the cache line if not needed */
e630bfac
KS
3185 mmap_miss = READ_ONCE(ra->mmap_miss);
3186 if (mmap_miss < MMAP_LOTSAMISS * 10)
3187 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3188
3189 /*
3190 * Do we miss much more than hit in this file? If so,
3191 * stop bothering with read-ahead. It will only hurt.
3192 */
e630bfac 3193 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3194 return fpin;
ef00e08e 3195
d30a1100
WF
3196 /*
3197 * mmap read-around
3198 */
6b4c9f44 3199 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3200 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3201 ra->size = ra->ra_pages;
3202 ra->async_size = ra->ra_pages / 4;
db660d46 3203 ractl._index = ra->start;
56a4d67c 3204 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3205 return fpin;
ef00e08e
LT
3206}
3207
3208/*
3209 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3210 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3211 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3212 */
6b4c9f44 3213static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3214 struct folio *folio)
ef00e08e 3215{
2a1180f1
JB
3216 struct file *file = vmf->vma->vm_file;
3217 struct file_ra_state *ra = &file->f_ra;
79598ced 3218 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3219 struct file *fpin = NULL;
e630bfac 3220 unsigned int mmap_miss;
ef00e08e
LT
3221
3222 /* If we don't want any read-ahead, don't bother */
5c72feee 3223 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3224 return fpin;
79598ced 3225
e630bfac
KS
3226 mmap_miss = READ_ONCE(ra->mmap_miss);
3227 if (mmap_miss)
3228 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3229
3230 if (folio_test_readahead(folio)) {
6b4c9f44 3231 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3232 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3233 }
3234 return fpin;
ef00e08e
LT
3235}
3236
485bb99b 3237/**
54cb8821 3238 * filemap_fault - read in file data for page fault handling
d0217ac0 3239 * @vmf: struct vm_fault containing details of the fault
485bb99b 3240 *
54cb8821 3241 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3242 * mapped memory region to read in file data during a page fault.
3243 *
3244 * The goto's are kind of ugly, but this streamlines the normal case of having
3245 * it in the page cache, and handles the special cases reasonably without
3246 * having a lot of duplicated code.
9a95f3cf 3247 *
c1e8d7c6 3248 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3249 *
c1e8d7c6 3250 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3251 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3252 *
c1e8d7c6 3253 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3254 * has not been released.
3255 *
3256 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3257 *
3258 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3259 */
2bcd6454 3260vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3261{
3262 int error;
11bac800 3263 struct file *file = vmf->vma->vm_file;
6b4c9f44 3264 struct file *fpin = NULL;
1da177e4 3265 struct address_space *mapping = file->f_mapping;
1da177e4 3266 struct inode *inode = mapping->host;
e292e6d6
MWO
3267 pgoff_t max_idx, index = vmf->pgoff;
3268 struct folio *folio;
2bcd6454 3269 vm_fault_t ret = 0;
730633f0 3270 bool mapping_locked = false;
1da177e4 3271
e292e6d6
MWO
3272 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3273 if (unlikely(index >= max_idx))
5307cc1a 3274 return VM_FAULT_SIGBUS;
1da177e4 3275
1da177e4 3276 /*
49426420 3277 * Do we have something in the page cache already?
1da177e4 3278 */
e292e6d6 3279 folio = filemap_get_folio(mapping, index);
66dabbb6 3280 if (likely(!IS_ERR(folio))) {
1da177e4 3281 /*
730633f0
JK
3282 * We found the page, so try async readahead before waiting for
3283 * the lock.
1da177e4 3284 */
730633f0 3285 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3286 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3287 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3288 filemap_invalidate_lock_shared(mapping);
3289 mapping_locked = true;
3290 }
3291 } else {
ef00e08e 3292 /* No page in the page cache at all */
ef00e08e 3293 count_vm_event(PGMAJFAULT);
2262185c 3294 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3295 ret = VM_FAULT_MAJOR;
6b4c9f44 3296 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3297retry_find:
730633f0 3298 /*
e292e6d6 3299 * See comment in filemap_create_folio() why we need
730633f0
JK
3300 * invalidate_lock
3301 */
3302 if (!mapping_locked) {
3303 filemap_invalidate_lock_shared(mapping);
3304 mapping_locked = true;
3305 }
e292e6d6 3306 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3307 FGP_CREAT|FGP_FOR_MMAP,
3308 vmf->gfp_mask);
66dabbb6 3309 if (IS_ERR(folio)) {
6b4c9f44
JB
3310 if (fpin)
3311 goto out_retry;
730633f0 3312 filemap_invalidate_unlock_shared(mapping);
e520e932 3313 return VM_FAULT_OOM;
6b4c9f44 3314 }
1da177e4
LT
3315 }
3316
e292e6d6 3317 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3318 goto out_retry;
b522c94d
ML
3319
3320 /* Did it get truncated? */
e292e6d6
MWO
3321 if (unlikely(folio->mapping != mapping)) {
3322 folio_unlock(folio);
3323 folio_put(folio);
b522c94d
ML
3324 goto retry_find;
3325 }
e292e6d6 3326 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3327
1da177e4 3328 /*
d00806b1
NP
3329 * We have a locked page in the page cache, now we need to check
3330 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3331 */
e292e6d6 3332 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3333 /*
3334 * The page was in cache and uptodate and now it is not.
3335 * Strange but possible since we didn't hold the page lock all
3336 * the time. Let's drop everything get the invalidate lock and
3337 * try again.
3338 */
3339 if (!mapping_locked) {
e292e6d6
MWO
3340 folio_unlock(folio);
3341 folio_put(folio);
730633f0
JK
3342 goto retry_find;
3343 }
1da177e4 3344 goto page_not_uptodate;
730633f0 3345 }
1da177e4 3346
6b4c9f44 3347 /*
c1e8d7c6 3348 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3349 * time to return to the upper layer and have it re-find the vma and
3350 * redo the fault.
3351 */
3352 if (fpin) {
e292e6d6 3353 folio_unlock(folio);
6b4c9f44
JB
3354 goto out_retry;
3355 }
730633f0
JK
3356 if (mapping_locked)
3357 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3358
ef00e08e
LT
3359 /*
3360 * Found the page and have a reference on it.
3361 * We must recheck i_size under page lock.
3362 */
e292e6d6
MWO
3363 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364 if (unlikely(index >= max_idx)) {
3365 folio_unlock(folio);
3366 folio_put(folio);
5307cc1a 3367 return VM_FAULT_SIGBUS;
d00806b1
NP
3368 }
3369
e292e6d6 3370 vmf->page = folio_file_page(folio, index);
83c54070 3371 return ret | VM_FAULT_LOCKED;
1da177e4 3372
1da177e4 3373page_not_uptodate:
1da177e4
LT
3374 /*
3375 * Umm, take care of errors if the page isn't up-to-date.
3376 * Try to re-read it _once_. We do this synchronously,
3377 * because there really aren't any performance issues here
3378 * and we need to check for errors.
3379 */
6b4c9f44 3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3381 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3382 if (fpin)
3383 goto out_retry;
e292e6d6 3384 folio_put(folio);
d00806b1
NP
3385
3386 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3387 goto retry_find;
730633f0 3388 filemap_invalidate_unlock_shared(mapping);
1da177e4 3389
d0217ac0 3390 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3391
3392out_retry:
3393 /*
c1e8d7c6 3394 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3395 * re-find the vma and come back and find our hopefully still populated
3396 * page.
3397 */
38a55db9 3398 if (!IS_ERR(folio))
e292e6d6 3399 folio_put(folio);
730633f0
JK
3400 if (mapping_locked)
3401 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3402 if (fpin)
3403 fput(fpin);
3404 return ret | VM_FAULT_RETRY;
54cb8821
NP
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
8808ecab
MWO
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409 pgoff_t start)
f1820361 3410{
f9ce0be7
KS
3411 struct mm_struct *mm = vmf->vma->vm_mm;
3412
3413 /* Huge page is mapped? No need to proceed. */
3414 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3415 folio_unlock(folio);
3416 folio_put(folio);
f9ce0be7
KS
3417 return true;
3418 }
3419
8808ecab
MWO
3420 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3422 vm_fault_t ret = do_set_pmd(vmf, page);
3423 if (!ret) {
3424 /* The page is mapped successfully, reference consumed. */
8808ecab 3425 folio_unlock(folio);
e0f43fa5 3426 return true;
f9ce0be7 3427 }
f9ce0be7
KS
3428 }
3429
03c4f204
QZ
3430 if (pmd_none(*vmf->pmd))
3431 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3432
3433 /* See comment in handle_pte_fault() */
3434 if (pmd_devmap_trans_unstable(vmf->pmd)) {
8808ecab
MWO
3435 folio_unlock(folio);
3436 folio_put(folio);
f9ce0be7
KS
3437 return true;
3438 }
3439
3440 return false;
3441}
3442
820b05e9 3443static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3444 struct address_space *mapping,
3445 struct xa_state *xas, pgoff_t end_pgoff)
3446{
3447 unsigned long max_idx;
3448
3449 do {
9184a307 3450 if (!folio)
f9ce0be7 3451 return NULL;
9184a307 3452 if (xas_retry(xas, folio))
f9ce0be7 3453 continue;
9184a307 3454 if (xa_is_value(folio))
f9ce0be7 3455 continue;
9184a307 3456 if (folio_test_locked(folio))
f9ce0be7 3457 continue;
9184a307 3458 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3459 continue;
3460 /* Has the page moved or been split? */
9184a307 3461 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3462 goto skip;
9184a307 3463 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3464 goto skip;
9184a307 3465 if (!folio_trylock(folio))
f9ce0be7 3466 goto skip;
9184a307 3467 if (folio->mapping != mapping)
f9ce0be7 3468 goto unlock;
9184a307 3469 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3470 goto unlock;
3471 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3472 if (xas->xa_index >= max_idx)
3473 goto unlock;
820b05e9 3474 return folio;
f9ce0be7 3475unlock:
9184a307 3476 folio_unlock(folio);
f9ce0be7 3477skip:
9184a307
MWO
3478 folio_put(folio);
3479 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3480
3481 return NULL;
3482}
3483
820b05e9 3484static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3485 struct xa_state *xas,
3486 pgoff_t end_pgoff)
3487{
3488 return next_uptodate_page(xas_find(xas, end_pgoff),
3489 mapping, xas, end_pgoff);
3490}
3491
820b05e9 3492static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3493 struct xa_state *xas,
3494 pgoff_t end_pgoff)
3495{
3496 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3497 mapping, xas, end_pgoff);
3498}
3499
3500vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3501 pgoff_t start_pgoff, pgoff_t end_pgoff)
3502{
3503 struct vm_area_struct *vma = vmf->vma;
3504 struct file *file = vma->vm_file;
f1820361 3505 struct address_space *mapping = file->f_mapping;
bae473a4 3506 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3507 unsigned long addr;
070e807c 3508 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3509 struct folio *folio;
3510 struct page *page;
e630bfac 3511 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3512 vm_fault_t ret = 0;
f1820361
KS
3513
3514 rcu_read_lock();
820b05e9
MWO
3515 folio = first_map_page(mapping, &xas, end_pgoff);
3516 if (!folio)
f9ce0be7 3517 goto out;
f1820361 3518
8808ecab 3519 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3520 ret = VM_FAULT_NOPAGE;
3521 goto out;
3522 }
f1820361 3523
9d3af4b4
WD
3524 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3525 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3526 do {
6b24ca4a 3527again:
820b05e9 3528 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3529 if (PageHWPoison(page))
f1820361
KS
3530 goto unlock;
3531
e630bfac
KS
3532 if (mmap_miss > 0)
3533 mmap_miss--;
7267ec00 3534
9d3af4b4 3535 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3536 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3537 last_pgoff = xas.xa_index;
f9ce0be7 3538
5c041f5d
PX
3539 /*
3540 * NOTE: If there're PTE markers, we'll leave them to be
3541 * handled in the specific fault path, and it'll prohibit the
3542 * fault-around logic.
3543 */
f9ce0be7 3544 if (!pte_none(*vmf->pte))
7267ec00 3545 goto unlock;
f9ce0be7 3546
46bdb427 3547 /* We're about to handle the fault */
9d3af4b4 3548 if (vmf->address == addr)
46bdb427 3549 ret = VM_FAULT_NOPAGE;
46bdb427 3550
9d3af4b4 3551 do_set_pte(vmf, page, addr);
f9ce0be7 3552 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3553 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3554 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3555 xas.xa_index++;
3556 folio_ref_inc(folio);
3557 goto again;
3558 }
820b05e9 3559 folio_unlock(folio);
f9ce0be7 3560 continue;
f1820361 3561unlock:
6b24ca4a
MWO
3562 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3563 xas.xa_index++;
3564 goto again;
3565 }
820b05e9
MWO
3566 folio_unlock(folio);
3567 folio_put(folio);
3568 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3569 pte_unmap_unlock(vmf->pte, vmf->ptl);
3570out:
f1820361 3571 rcu_read_unlock();
e630bfac 3572 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3573 return ret;
f1820361
KS
3574}
3575EXPORT_SYMBOL(filemap_map_pages);
3576
2bcd6454 3577vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3578{
5df1a672 3579 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3580 struct folio *folio = page_folio(vmf->page);
2bcd6454 3581 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3582
5df1a672 3583 sb_start_pagefault(mapping->host->i_sb);
11bac800 3584 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3585 folio_lock(folio);
3586 if (folio->mapping != mapping) {
3587 folio_unlock(folio);
4fcf1c62
JK
3588 ret = VM_FAULT_NOPAGE;
3589 goto out;
3590 }
14da9200 3591 /*
960ea971 3592 * We mark the folio dirty already here so that when freeze is in
14da9200 3593 * progress, we are guaranteed that writeback during freezing will
960ea971 3594 * see the dirty folio and writeprotect it again.
14da9200 3595 */
960ea971
MWO
3596 folio_mark_dirty(folio);
3597 folio_wait_stable(folio);
4fcf1c62 3598out:
5df1a672 3599 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3600 return ret;
3601}
4fcf1c62 3602
f0f37e2f 3603const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3604 .fault = filemap_fault,
f1820361 3605 .map_pages = filemap_map_pages,
4fcf1c62 3606 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3607};
3608
3609/* This is used for a general mmap of a disk file */
3610
68d68ff6 3611int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3612{
3613 struct address_space *mapping = file->f_mapping;
3614
7e0a1265 3615 if (!mapping->a_ops->read_folio)
1da177e4
LT
3616 return -ENOEXEC;
3617 file_accessed(file);
3618 vma->vm_ops = &generic_file_vm_ops;
3619 return 0;
3620}
1da177e4
LT
3621
3622/*
3623 * This is for filesystems which do not implement ->writepage.
3624 */
3625int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3626{
3627 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3628 return -EINVAL;
3629 return generic_file_mmap(file, vma);
3630}
3631#else
4b96a37d 3632vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3633{
4b96a37d 3634 return VM_FAULT_SIGBUS;
45397228 3635}
68d68ff6 3636int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3637{
3638 return -ENOSYS;
3639}
68d68ff6 3640int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3641{
3642 return -ENOSYS;
3643}
3644#endif /* CONFIG_MMU */
3645
45397228 3646EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3647EXPORT_SYMBOL(generic_file_mmap);
3648EXPORT_SYMBOL(generic_file_readonly_mmap);
3649
539a3322 3650static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3651 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3652{
539a3322 3653 struct folio *folio;
1da177e4 3654 int err;
07950008
MWO
3655
3656 if (!filler)
3657 filler = mapping->a_ops->read_folio;
1da177e4 3658repeat:
539a3322 3659 folio = filemap_get_folio(mapping, index);
66dabbb6 3660 if (IS_ERR(folio)) {
539a3322
MWO
3661 folio = filemap_alloc_folio(gfp, 0);
3662 if (!folio)
eb2be189 3663 return ERR_PTR(-ENOMEM);
539a3322 3664 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3665 if (unlikely(err)) {
539a3322 3666 folio_put(folio);
eb2be189
NP
3667 if (err == -EEXIST)
3668 goto repeat;
22ecdb4f 3669 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3670 return ERR_PTR(err);
3671 }
32b63529 3672
9bc3e869 3673 goto filler;
32b63529 3674 }
539a3322 3675 if (folio_test_uptodate(folio))
1da177e4
LT
3676 goto out;
3677
81f4c03b
MWO
3678 if (!folio_trylock(folio)) {
3679 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3680 goto repeat;
3681 }
ebded027 3682
81f4c03b 3683 /* Folio was truncated from mapping */
539a3322
MWO
3684 if (!folio->mapping) {
3685 folio_unlock(folio);
3686 folio_put(folio);
32b63529 3687 goto repeat;
1da177e4 3688 }
ebded027
MG
3689
3690 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3691 if (folio_test_uptodate(folio)) {
3692 folio_unlock(folio);
1da177e4
LT
3693 goto out;
3694 }
faffdfa0 3695
9bc3e869 3696filler:
290e1a32 3697 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3698 if (err) {
9bc3e869 3699 folio_put(folio);
1dfa24a4
MWO
3700 if (err == AOP_TRUNCATED_PAGE)
3701 goto repeat;
9bc3e869
MWO
3702 return ERR_PTR(err);
3703 }
32b63529 3704
c855ff37 3705out:
539a3322
MWO
3706 folio_mark_accessed(folio);
3707 return folio;
6fe6900e 3708}
0531b2aa
LT
3709
3710/**
e9b5b23e
MWO
3711 * read_cache_folio - Read into page cache, fill it if needed.
3712 * @mapping: The address_space to read from.
3713 * @index: The index to read.
3714 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3715 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3716 *
e9b5b23e
MWO
3717 * Read one page into the page cache. If it succeeds, the folio returned
3718 * will contain @index, but it may not be the first page of the folio.
a862f68a 3719 *
e9b5b23e
MWO
3720 * If the filler function returns an error, it will be returned to the
3721 * caller.
730633f0 3722 *
e9b5b23e
MWO
3723 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3724 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3725 */
539a3322 3726struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3727 filler_t filler, struct file *file)
539a3322 3728{
e9b5b23e 3729 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3730 mapping_gfp_mask(mapping));
3731}
3732EXPORT_SYMBOL(read_cache_folio);
3733
3e629597
MWO
3734/**
3735 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3736 * @mapping: The address_space for the folio.
3737 * @index: The index that the allocated folio will contain.
3738 * @gfp: The page allocator flags to use if allocating.
3739 *
3740 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3741 * any new memory allocations done using the specified allocation flags.
3742 *
3743 * The most likely error from this function is EIO, but ENOMEM is
3744 * possible and so is EINTR. If ->read_folio returns another error,
3745 * that will be returned to the caller.
3746 *
3747 * The function expects mapping->invalidate_lock to be already held.
3748 *
3749 * Return: Uptodate folio on success, ERR_PTR() on failure.
3750 */
3751struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3752 pgoff_t index, gfp_t gfp)
3753{
3754 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3755}
3756EXPORT_SYMBOL(mapping_read_folio_gfp);
3757
539a3322 3758static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3759 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3760{
3761 struct folio *folio;
3762
e9b5b23e 3763 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3764 if (IS_ERR(folio))
3765 return &folio->page;
3766 return folio_file_page(folio, index);
3767}
3768
67f9fd91 3769struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3770 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3771{
e9b5b23e 3772 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3773 mapping_gfp_mask(mapping));
0531b2aa 3774}
67f9fd91 3775EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3776
3777/**
3778 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3779 * @mapping: the page's address_space
3780 * @index: the page index
3781 * @gfp: the page allocator flags to use if allocating
3782 *
3783 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3784 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3785 *
3786 * If the page does not get brought uptodate, return -EIO.
a862f68a 3787 *
730633f0
JK
3788 * The function expects mapping->invalidate_lock to be already held.
3789 *
a862f68a 3790 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3791 */
3792struct page *read_cache_page_gfp(struct address_space *mapping,
3793 pgoff_t index,
3794 gfp_t gfp)
3795{
6c45b454 3796 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3797}
3798EXPORT_SYMBOL(read_cache_page_gfp);
3799
a92853b6
KK
3800/*
3801 * Warn about a page cache invalidation failure during a direct I/O write.
3802 */
3803void dio_warn_stale_pagecache(struct file *filp)
3804{
3805 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3806 char pathname[128];
a92853b6
KK
3807 char *path;
3808
5df1a672 3809 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3810 if (__ratelimit(&_rs)) {
3811 path = file_path(filp, pathname, sizeof(pathname));
3812 if (IS_ERR(path))
3813 path = "(unknown)";
3814 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3815 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3816 current->comm);
3817 }
3818}
3819
1da177e4 3820ssize_t
1af5bb49 3821generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3822{
3823 struct file *file = iocb->ki_filp;
3824 struct address_space *mapping = file->f_mapping;
3825 struct inode *inode = mapping->host;
1af5bb49 3826 loff_t pos = iocb->ki_pos;
1da177e4 3827 ssize_t written;
a969e903
CH
3828 size_t write_len;
3829 pgoff_t end;
1da177e4 3830
0c949334 3831 write_len = iov_iter_count(from);
09cbfeaf 3832 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3833
6be96d3a
GR
3834 if (iocb->ki_flags & IOCB_NOWAIT) {
3835 /* If there are pages to writeback, return */
5df1a672 3836 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3837 pos + write_len - 1))
6be96d3a
GR
3838 return -EAGAIN;
3839 } else {
3840 written = filemap_write_and_wait_range(mapping, pos,
3841 pos + write_len - 1);
3842 if (written)
3843 goto out;
3844 }
a969e903
CH
3845
3846 /*
3847 * After a write we want buffered reads to be sure to go to disk to get
3848 * the new data. We invalidate clean cached page from the region we're
3849 * about to write. We do this *before* the write so that we can return
6ccfa806 3850 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3851 */
55635ba7 3852 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3853 pos >> PAGE_SHIFT, end);
55635ba7
AR
3854 /*
3855 * If a page can not be invalidated, return 0 to fall back
3856 * to buffered write.
3857 */
3858 if (written) {
3859 if (written == -EBUSY)
3860 return 0;
3861 goto out;
a969e903
CH
3862 }
3863
639a93a5 3864 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3865
3866 /*
3867 * Finally, try again to invalidate clean pages which might have been
3868 * cached by non-direct readahead, or faulted in by get_user_pages()
3869 * if the source of the write was an mmap'ed region of the file
3870 * we're writing. Either one is a pretty crazy thing to do,
3871 * so we don't support it 100%. If this invalidation
3872 * fails, tough, the write still worked...
332391a9
LC
3873 *
3874 * Most of the time we do not need this since dio_complete() will do
3875 * the invalidation for us. However there are some file systems that
3876 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3877 * them by removing it completely.
3878 *
9266a140
KK
3879 * Noticeable example is a blkdev_direct_IO().
3880 *
80c1fe90 3881 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3882 */
9266a140
KK
3883 if (written > 0 && mapping->nrpages &&
3884 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3885 dio_warn_stale_pagecache(file);
a969e903 3886
1da177e4 3887 if (written > 0) {
0116651c 3888 pos += written;
639a93a5 3889 write_len -= written;
0116651c
NK
3890 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3891 i_size_write(inode, pos);
1da177e4
LT
3892 mark_inode_dirty(inode);
3893 }
5cb6c6c7 3894 iocb->ki_pos = pos;
1da177e4 3895 }
ab2125df
PB
3896 if (written != -EIOCBQUEUED)
3897 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3898out:
1da177e4
LT
3899 return written;
3900}
3901EXPORT_SYMBOL(generic_file_direct_write);
3902
800ba295 3903ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3904{
800ba295
MWO
3905 struct file *file = iocb->ki_filp;
3906 loff_t pos = iocb->ki_pos;
afddba49
NP
3907 struct address_space *mapping = file->f_mapping;
3908 const struct address_space_operations *a_ops = mapping->a_ops;
3909 long status = 0;
3910 ssize_t written = 0;
674b892e 3911
afddba49
NP
3912 do {
3913 struct page *page;
afddba49
NP
3914 unsigned long offset; /* Offset into pagecache page */
3915 unsigned long bytes; /* Bytes to write to page */
3916 size_t copied; /* Bytes copied from user */
1468c6f4 3917 void *fsdata = NULL;
afddba49 3918
09cbfeaf
KS
3919 offset = (pos & (PAGE_SIZE - 1));
3920 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3921 iov_iter_count(i));
3922
3923again:
00a3d660
LT
3924 /*
3925 * Bring in the user page that we will copy from _first_.
3926 * Otherwise there's a nasty deadlock on copying from the
3927 * same page as we're writing to, without it being marked
3928 * up-to-date.
00a3d660 3929 */
631f871f 3930 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3931 status = -EFAULT;
3932 break;
3933 }
3934
296291cd
JK
3935 if (fatal_signal_pending(current)) {
3936 status = -EINTR;
3937 break;
3938 }
3939
9d6b0cd7 3940 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3941 &page, &fsdata);
2457aec6 3942 if (unlikely(status < 0))
afddba49
NP
3943 break;
3944
931e80e4 3945 if (mapping_writably_mapped(mapping))
3946 flush_dcache_page(page);
00a3d660 3947
f0b65f39 3948 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3949 flush_dcache_page(page);
3950
3951 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3952 page, fsdata);
f0b65f39
AV
3953 if (unlikely(status != copied)) {
3954 iov_iter_revert(i, copied - max(status, 0L));
3955 if (unlikely(status < 0))
3956 break;
3957 }
afddba49
NP
3958 cond_resched();
3959
bc1bb416 3960 if (unlikely(status == 0)) {
afddba49 3961 /*
bc1bb416
AV
3962 * A short copy made ->write_end() reject the
3963 * thing entirely. Might be memory poisoning
3964 * halfway through, might be a race with munmap,
3965 * might be severe memory pressure.
afddba49 3966 */
bc1bb416
AV
3967 if (copied)
3968 bytes = copied;
afddba49
NP
3969 goto again;
3970 }
f0b65f39
AV
3971 pos += status;
3972 written += status;
afddba49
NP
3973
3974 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3975 } while (iov_iter_count(i));
3976
3977 return written ? written : status;
3978}
3b93f911 3979EXPORT_SYMBOL(generic_perform_write);
1da177e4 3980
e4dd9de3 3981/**
8174202b 3982 * __generic_file_write_iter - write data to a file
e4dd9de3 3983 * @iocb: IO state structure (file, offset, etc.)
8174202b 3984 * @from: iov_iter with data to write
e4dd9de3
JK
3985 *
3986 * This function does all the work needed for actually writing data to a
3987 * file. It does all basic checks, removes SUID from the file, updates
3988 * modification times and calls proper subroutines depending on whether we
3989 * do direct IO or a standard buffered write.
3990 *
9608703e 3991 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3992 * object which does not need locking at all.
3993 *
3994 * This function does *not* take care of syncing data in case of O_SYNC write.
3995 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3996 * avoid syncing under i_rwsem.
a862f68a
MR
3997 *
3998 * Return:
3999 * * number of bytes written, even for truncated writes
4000 * * negative error code if no data has been written at all
e4dd9de3 4001 */
8174202b 4002ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4003{
4004 struct file *file = iocb->ki_filp;
68d68ff6 4005 struct address_space *mapping = file->f_mapping;
1da177e4 4006 struct inode *inode = mapping->host;
3b93f911 4007 ssize_t written = 0;
1da177e4 4008 ssize_t err;
3b93f911 4009 ssize_t status;
1da177e4 4010
1da177e4 4011 /* We can write back this queue in page reclaim */
de1414a6 4012 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 4013 err = file_remove_privs(file);
1da177e4
LT
4014 if (err)
4015 goto out;
4016
c3b2da31
JB
4017 err = file_update_time(file);
4018 if (err)
4019 goto out;
1da177e4 4020
2ba48ce5 4021 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 4022 loff_t pos, endbyte;
fb5527e6 4023
1af5bb49 4024 written = generic_file_direct_write(iocb, from);
1da177e4 4025 /*
fbbbad4b
MW
4026 * If the write stopped short of completing, fall back to
4027 * buffered writes. Some filesystems do this for writes to
4028 * holes, for example. For DAX files, a buffered write will
4029 * not succeed (even if it did, DAX does not handle dirty
4030 * page-cache pages correctly).
1da177e4 4031 */
0b8def9d 4032 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
4033 goto out;
4034
800ba295
MWO
4035 pos = iocb->ki_pos;
4036 status = generic_perform_write(iocb, from);
fb5527e6 4037 /*
3b93f911 4038 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
4039 * then we want to return the number of bytes which were
4040 * direct-written, or the error code if that was zero. Note
4041 * that this differs from normal direct-io semantics, which
4042 * will return -EFOO even if some bytes were written.
4043 */
60bb4529 4044 if (unlikely(status < 0)) {
3b93f911 4045 err = status;
fb5527e6
JM
4046 goto out;
4047 }
fb5527e6
JM
4048 /*
4049 * We need to ensure that the page cache pages are written to
4050 * disk and invalidated to preserve the expected O_DIRECT
4051 * semantics.
4052 */
3b93f911 4053 endbyte = pos + status - 1;
0b8def9d 4054 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 4055 if (err == 0) {
0b8def9d 4056 iocb->ki_pos = endbyte + 1;
3b93f911 4057 written += status;
fb5527e6 4058 invalidate_mapping_pages(mapping,
09cbfeaf
KS
4059 pos >> PAGE_SHIFT,
4060 endbyte >> PAGE_SHIFT);
fb5527e6
JM
4061 } else {
4062 /*
4063 * We don't know how much we wrote, so just return
4064 * the number of bytes which were direct-written
4065 */
4066 }
4067 } else {
800ba295 4068 written = generic_perform_write(iocb, from);
0b8def9d
AV
4069 if (likely(written > 0))
4070 iocb->ki_pos += written;
fb5527e6 4071 }
1da177e4
LT
4072out:
4073 current->backing_dev_info = NULL;
4074 return written ? written : err;
4075}
8174202b 4076EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4077
e4dd9de3 4078/**
8174202b 4079 * generic_file_write_iter - write data to a file
e4dd9de3 4080 * @iocb: IO state structure
8174202b 4081 * @from: iov_iter with data to write
e4dd9de3 4082 *
8174202b 4083 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4084 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4085 * and acquires i_rwsem as needed.
a862f68a
MR
4086 * Return:
4087 * * negative error code if no data has been written at all of
4088 * vfs_fsync_range() failed for a synchronous write
4089 * * number of bytes written, even for truncated writes
e4dd9de3 4090 */
8174202b 4091ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4092{
4093 struct file *file = iocb->ki_filp;
148f948b 4094 struct inode *inode = file->f_mapping->host;
1da177e4 4095 ssize_t ret;
1da177e4 4096
5955102c 4097 inode_lock(inode);
3309dd04
AV
4098 ret = generic_write_checks(iocb, from);
4099 if (ret > 0)
5f380c7f 4100 ret = __generic_file_write_iter(iocb, from);
5955102c 4101 inode_unlock(inode);
1da177e4 4102
e2592217
CH
4103 if (ret > 0)
4104 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4105 return ret;
4106}
8174202b 4107EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4108
cf9a2ae8 4109/**
82c50f8b
MWO
4110 * filemap_release_folio() - Release fs-specific metadata on a folio.
4111 * @folio: The folio which the kernel is trying to free.
4112 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4113 *
82c50f8b
MWO
4114 * The address_space is trying to release any data attached to a folio
4115 * (presumably at folio->private).
cf9a2ae8 4116 *
82c50f8b
MWO
4117 * This will also be called if the private_2 flag is set on a page,
4118 * indicating that the folio has other metadata associated with it.
266cf658 4119 *
82c50f8b
MWO
4120 * The @gfp argument specifies whether I/O may be performed to release
4121 * this page (__GFP_IO), and whether the call may block
4122 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4123 *
82c50f8b 4124 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4125 */
82c50f8b 4126bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4127{
82c50f8b 4128 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4129
82c50f8b
MWO
4130 BUG_ON(!folio_test_locked(folio));
4131 if (folio_test_writeback(folio))
4132 return false;
cf9a2ae8 4133
fa29000b
MWO
4134 if (mapping && mapping->a_ops->release_folio)
4135 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4136 return try_to_free_buffers(folio);
cf9a2ae8 4137}
82c50f8b 4138EXPORT_SYMBOL(filemap_release_folio);