zram: use __bio_add_page for adding single page to bio
[linux-block.git] / lib / crc32.c
CommitLineData
1da177e4 1/*
78dff418
BP
2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
5 *
1da177e4
LT
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
8 * Code was from the public domain, copyright abandoned. Code was
9 * subsequently included in the kernel, thus was re-licensed under the
10 * GNU GPL v2.
11 *
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0. The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end. Then individual
18 * users can do whatever they need.
19 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 * fs/jffs2 uses seed 0, doesn't xor with ~0.
21 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
22 *
23 * This source code is licensed under the GNU General Public License,
24 * Version 2. See the file COPYING for more details.
25 */
26
8e2a46a4 27/* see: Documentation/staging/crc32.rst for a description of algorithms */
fbedceb1 28
1da177e4 29#include <linux/crc32.h>
1fb2e3f2 30#include <linux/crc32poly.h>
1da177e4 31#include <linux/module.h>
1da177e4 32#include <linux/types.h>
cc0ac199 33#include <linux/sched.h>
1da177e4 34#include "crc32defs.h"
60e58d5c 35
9a1dbf6a 36#if CRC_LE_BITS > 8
38b4fe5f 37# define tole(x) ((__force u32) cpu_to_le32(x))
1da177e4 38#else
4f2a9463
JT
39# define tole(x) (x)
40#endif
41
9a1dbf6a 42#if CRC_BE_BITS > 8
38b4fe5f 43# define tobe(x) ((__force u32) cpu_to_be32(x))
4f2a9463
JT
44#else
45# define tobe(x) (x)
1da177e4 46#endif
60e58d5c 47
1da177e4
LT
48#include "crc32table.h"
49
50MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
46c5801e 51MODULE_DESCRIPTION("Various CRC32 calculations");
1da177e4
LT
52MODULE_LICENSE("GPL");
53
9a1dbf6a 54#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
ddcaccbc 55
324eb0f1 56/* implements slicing-by-4 or slicing-by-8 algorithm */
d8f1c477 57static inline u32 __pure
836e2af9 58crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
ddcaccbc 59{
0d2daf5c 60# ifdef __LITTLE_ENDIAN
5742332d 61# define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
324eb0f1
BP
62# define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
63 t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
64# define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
65 t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
ddcaccbc 66# else
5742332d 67# define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
324eb0f1
BP
68# define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
69 t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
70# define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
71 t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
ddcaccbc 72# endif
4f2a9463 73 const u32 *b;
ddcaccbc 74 size_t rem_len;
0292c497
BP
75# ifdef CONFIG_X86
76 size_t i;
77# endif
5742332d 78 const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
49ac572b 79# if CRC_LE_BITS != 32
324eb0f1 80 const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
49ac572b 81# endif
324eb0f1 82 u32 q;
ddcaccbc
JT
83
84 /* Align it */
4f2a9463 85 if (unlikely((long)buf & 3 && len)) {
ddcaccbc 86 do {
4f2a9463
JT
87 DO_CRC(*buf++);
88 } while ((--len) && ((long)buf)&3);
ddcaccbc 89 }
324eb0f1
BP
90
91# if CRC_LE_BITS == 32
ddcaccbc 92 rem_len = len & 3;
ddcaccbc 93 len = len >> 2;
324eb0f1
BP
94# else
95 rem_len = len & 7;
96 len = len >> 3;
97# endif
98
4f2a9463 99 b = (const u32 *)buf;
0292c497
BP
100# ifdef CONFIG_X86
101 --b;
102 for (i = 0; i < len; i++) {
103# else
ddcaccbc 104 for (--b; len; --len) {
0292c497 105# endif
324eb0f1
BP
106 q = crc ^ *++b; /* use pre increment for speed */
107# if CRC_LE_BITS == 32
108 crc = DO_CRC4;
109# else
110 crc = DO_CRC8;
111 q = *++b;
112 crc ^= DO_CRC4;
113# endif
ddcaccbc
JT
114 }
115 len = rem_len;
116 /* And the last few bytes */
117 if (len) {
118 u8 *p = (u8 *)(b + 1) - 1;
0292c497
BP
119# ifdef CONFIG_X86
120 for (i = 0; i < len; i++)
121 DO_CRC(*++p); /* use pre increment for speed */
122# else
ddcaccbc
JT
123 do {
124 DO_CRC(*++p); /* use pre increment for speed */
125 } while (--len);
0292c497 126# endif
ddcaccbc
JT
127 }
128 return crc;
4f2a9463 129#undef DO_CRC
836e2af9 130#undef DO_CRC4
324eb0f1 131#undef DO_CRC8
ddcaccbc
JT
132}
133#endif
60e58d5c 134
6e95fcaa 135
2f72100c 136/**
f2e1d2ac
GZ
137 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
138 * CRC32/CRC32C
139 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
140 * uses, or the previous crc32/crc32c value if computing incrementally.
141 * @p: pointer to buffer over which CRC32/CRC32C is run
2f72100c 142 * @len: length of buffer @p
f2e1d2ac
GZ
143 * @tab: little-endian Ethernet table
144 * @polynomial: CRC32/CRC32c LE polynomial
2f72100c 145 */
46c5801e
DW
146static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
147 size_t len, const u32 (*tab)[256],
148 u32 polynomial)
1da177e4 149{
60e58d5c 150#if CRC_LE_BITS == 1
1da177e4
LT
151 int i;
152 while (len--) {
153 crc ^= *p++;
154 for (i = 0; i < 8; i++)
46c5801e 155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
1da177e4 156 }
60e58d5c 157# elif CRC_LE_BITS == 2
1da177e4
LT
158 while (len--) {
159 crc ^= *p++;
46c5801e
DW
160 crc = (crc >> 2) ^ tab[0][crc & 3];
161 crc = (crc >> 2) ^ tab[0][crc & 3];
162 crc = (crc >> 2) ^ tab[0][crc & 3];
163 crc = (crc >> 2) ^ tab[0][crc & 3];
1da177e4 164 }
60e58d5c 165# elif CRC_LE_BITS == 4
1da177e4
LT
166 while (len--) {
167 crc ^= *p++;
46c5801e
DW
168 crc = (crc >> 4) ^ tab[0][crc & 15];
169 crc = (crc >> 4) ^ tab[0][crc & 15];
1da177e4 170 }
60e58d5c 171# elif CRC_LE_BITS == 8
9a1dbf6a
BP
172 /* aka Sarwate algorithm */
173 while (len--) {
174 crc ^= *p++;
46c5801e 175 crc = (crc >> 8) ^ tab[0][crc & 255];
9a1dbf6a
BP
176 }
177# else
ce4320dd 178 crc = (__force u32) __cpu_to_le32(crc);
60e58d5c 179 crc = crc32_body(crc, p, len, tab);
ce4320dd 180 crc = __le32_to_cpu((__force __le32)crc);
60e58d5c 181#endif
1da177e4 182 return crc;
1da177e4 183}
46c5801e
DW
184
185#if CRC_LE_BITS == 1
9784d82d 186u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
46c5801e 187{
e37f2f93 188 return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
46c5801e 189}
9784d82d 190u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
46c5801e
DW
191{
192 return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
193}
194#else
9784d82d 195u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
46c5801e 196{
163a4e7f 197 return crc32_le_generic(crc, p, len, crc32table_le, CRC32_POLY_LE);
46c5801e 198}
9784d82d 199u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
46c5801e 200{
163a4e7f 201 return crc32_le_generic(crc, p, len, crc32ctable_le, CRC32C_POLY_LE);
46c5801e
DW
202}
203#endif
6d514b4e
GS
204EXPORT_SYMBOL(crc32_le);
205EXPORT_SYMBOL(__crc32c_le);
206
ff98e20e
MO
207u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
208u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
5cb29be4 209u32 __pure crc32_be_base(u32, unsigned char const *, size_t) __alias(crc32_be);
9784d82d 210
6d514b4e
GS
211/*
212 * This multiplies the polynomials x and y modulo the given modulus.
213 * This follows the "little-endian" CRC convention that the lsbit
214 * represents the highest power of x, and the msbit represents x^0.
215 */
216static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
217{
218 u32 product = x & 1 ? y : 0;
219 int i;
220
221 for (i = 0; i < 31; i++) {
222 product = (product >> 1) ^ (product & 1 ? modulus : 0);
223 x >>= 1;
224 product ^= x & 1 ? y : 0;
225 }
226
227 return product;
228}
229
230/**
8a29896a 231 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
6d514b4e
GS
232 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
233 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
234 * @polynomial: The modulus used to reduce the result to 32 bits.
235 *
236 * It's possible to parallelize CRC computations by computing a CRC
237 * over separate ranges of a buffer, then summing them.
238 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
239 * as appending len bytes of zero to the data), in time proportional
240 * to log(len).
241 */
242static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
243 u32 polynomial)
244{
245 u32 power = polynomial; /* CRC of x^32 */
246 int i;
247
248 /* Shift up to 32 bits in the simple linear way */
249 for (i = 0; i < 8 * (int)(len & 3); i++)
250 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
251
252 len >>= 2;
253 if (!len)
254 return crc;
255
256 for (;;) {
257 /* "power" is x^(2^i), modulo the polynomial */
258 if (len & 1)
259 crc = gf2_multiply(crc, power, polynomial);
260
261 len >>= 1;
262 if (!len)
263 break;
264
265 /* Square power, advancing to x^(2^(i+1)) */
266 power = gf2_multiply(power, power, polynomial);
267 }
268
269 return crc;
270}
271
272u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
6e95fcaa 273{
e37f2f93 274 return crc32_generic_shift(crc, len, CRC32_POLY_LE);
6e95fcaa
DB
275}
276
6d514b4e 277u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
6e95fcaa 278{
6d514b4e 279 return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
6e95fcaa 280}
6d514b4e
GS
281EXPORT_SYMBOL(crc32_le_shift);
282EXPORT_SYMBOL(__crc32c_le_shift);
1da177e4 283
2f72100c 284/**
f2e1d2ac 285 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
2f72100c
RD
286 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
287 * other uses, or the previous crc32 value if computing incrementally.
f2e1d2ac 288 * @p: pointer to buffer over which CRC32 is run
2f72100c 289 * @len: length of buffer @p
f2e1d2ac
GZ
290 * @tab: big-endian Ethernet table
291 * @polynomial: CRC32 BE polynomial
2f72100c 292 */
46c5801e
DW
293static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
294 size_t len, const u32 (*tab)[256],
295 u32 polynomial)
1da177e4 296{
60e58d5c 297#if CRC_BE_BITS == 1
1da177e4
LT
298 int i;
299 while (len--) {
300 crc ^= *p++ << 24;
301 for (i = 0; i < 8; i++)
302 crc =
46c5801e 303 (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
1da177e4
LT
304 0);
305 }
60e58d5c 306# elif CRC_BE_BITS == 2
1da177e4
LT
307 while (len--) {
308 crc ^= *p++ << 24;
46c5801e
DW
309 crc = (crc << 2) ^ tab[0][crc >> 30];
310 crc = (crc << 2) ^ tab[0][crc >> 30];
311 crc = (crc << 2) ^ tab[0][crc >> 30];
312 crc = (crc << 2) ^ tab[0][crc >> 30];
1da177e4 313 }
60e58d5c 314# elif CRC_BE_BITS == 4
1da177e4
LT
315 while (len--) {
316 crc ^= *p++ << 24;
46c5801e
DW
317 crc = (crc << 4) ^ tab[0][crc >> 28];
318 crc = (crc << 4) ^ tab[0][crc >> 28];
1da177e4 319 }
60e58d5c 320# elif CRC_BE_BITS == 8
9a1dbf6a
BP
321 while (len--) {
322 crc ^= *p++ << 24;
46c5801e 323 crc = (crc << 8) ^ tab[0][crc >> 24];
9a1dbf6a
BP
324 }
325# else
ce4320dd 326 crc = (__force u32) __cpu_to_be32(crc);
60e58d5c 327 crc = crc32_body(crc, p, len, tab);
ce4320dd 328 crc = __be32_to_cpu((__force __be32)crc);
1da177e4 329# endif
60e58d5c 330 return crc;
1da177e4 331}
46c5801e 332
904542dc 333#if CRC_BE_BITS == 1
5cb29be4 334u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
46c5801e 335{
e37f2f93 336 return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
46c5801e
DW
337}
338#else
5cb29be4 339u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
46c5801e 340{
163a4e7f 341 return crc32_be_generic(crc, p, len, crc32table_be, CRC32_POLY_BE);
46c5801e
DW
342}
343#endif
1da177e4 344EXPORT_SYMBOL(crc32_be);