kernel: pid_namespace: simplify sysctls with register_sysctl()
[linux-block.git] / kernel / pid_namespace.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
74bd59bb
PE
2/*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12#include <linux/pid.h>
13#include <linux/pid_namespace.h>
49f4d8b9 14#include <linux/user_namespace.h>
74bd59bb 15#include <linux/syscalls.h>
5b825c3a 16#include <linux/cred.h>
74bd59bb 17#include <linux/err.h>
0b6b030f 18#include <linux/acct.h>
5a0e3ad6 19#include <linux/slab.h>
0bb80f24 20#include <linux/proc_ns.h>
cf3f8921 21#include <linux/reboot.h>
523a6a94 22#include <linux/export.h>
29930025 23#include <linux/sched/task.h>
f361bf4a 24#include <linux/sched/signal.h>
95846ecf 25#include <linux/idr.h>
105ff533 26#include "pid_sysctl.h"
74bd59bb 27
74bd59bb
PE
28static DEFINE_MUTEX(pid_caches_mutex);
29static struct kmem_cache *pid_ns_cachep;
dd206bec
AD
30/* Write once array, filled from the beginning. */
31static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
74bd59bb
PE
32
33/*
34 * creates the kmem cache to allocate pids from.
dd206bec 35 * @level: pid namespace level
74bd59bb
PE
36 */
37
dd206bec 38static struct kmem_cache *create_pid_cachep(unsigned int level)
74bd59bb 39{
dd206bec
AD
40 /* Level 0 is init_pid_ns.pid_cachep */
41 struct kmem_cache **pkc = &pid_cache[level - 1];
42 struct kmem_cache *kc;
43 char name[4 + 10 + 1];
44 unsigned int len;
45
46 kc = READ_ONCE(*pkc);
47 if (kc)
48 return kc;
49
50 snprintf(name, sizeof(name), "pid_%u", level + 1);
51 len = sizeof(struct pid) + level * sizeof(struct upid);
74bd59bb 52 mutex_lock(&pid_caches_mutex);
dd206bec
AD
53 /* Name collision forces to do allocation under mutex. */
54 if (!*pkc)
fab827db 55 *pkc = kmem_cache_create(name, len, 0,
c06d7aaf 56 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
74bd59bb 57 mutex_unlock(&pid_caches_mutex);
dd206bec
AD
58 /* current can fail, but someone else can succeed. */
59 return READ_ONCE(*pkc);
74bd59bb
PE
60}
61
f333c700
EB
62static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
63{
64 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
65}
66
67static void dec_pid_namespaces(struct ucounts *ucounts)
68{
69 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
70}
71
49f4d8b9
EB
72static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
73 struct pid_namespace *parent_pid_ns)
74bd59bb
PE
74{
75 struct pid_namespace *ns;
ed469a63 76 unsigned int level = parent_pid_ns->level + 1;
f333c700 77 struct ucounts *ucounts;
f2302505
AV
78 int err;
79
a2b42626
EB
80 err = -EINVAL;
81 if (!in_userns(parent_pid_ns->user_ns, user_ns))
82 goto out;
83
df75e774 84 err = -ENOSPC;
f333c700
EB
85 if (level > MAX_PID_NS_LEVEL)
86 goto out;
87 ucounts = inc_pid_namespaces(user_ns);
88 if (!ucounts)
f2302505 89 goto out;
74bd59bb 90
f2302505 91 err = -ENOMEM;
84406c15 92 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
74bd59bb 93 if (ns == NULL)
f333c700 94 goto out_dec;
74bd59bb 95
95846ecf 96 idr_init(&ns->idr);
74bd59bb 97
dd206bec 98 ns->pid_cachep = create_pid_cachep(level);
74bd59bb 99 if (ns->pid_cachep == NULL)
95846ecf 100 goto out_free_idr;
74bd59bb 101
6344c433 102 err = ns_alloc_inum(&ns->ns);
98f842e6 103 if (err)
95846ecf 104 goto out_free_idr;
33c42940 105 ns->ns.ops = &pidns_operations;
98f842e6 106
8eb71d95 107 refcount_set(&ns->ns.count, 1);
74bd59bb 108 ns->level = level;
ed469a63 109 ns->parent = get_pid_ns(parent_pid_ns);
49f4d8b9 110 ns->user_ns = get_user_ns(user_ns);
f333c700 111 ns->ucounts = ucounts;
e8cfbc24 112 ns->pid_allocated = PIDNS_ADDING;
74bd59bb 113
105ff533
JX
114 initialize_memfd_noexec_scope(ns);
115
74bd59bb
PE
116 return ns;
117
95846ecf
GS
118out_free_idr:
119 idr_destroy(&ns->idr);
74bd59bb 120 kmem_cache_free(pid_ns_cachep, ns);
f333c700
EB
121out_dec:
122 dec_pid_namespaces(ucounts);
74bd59bb 123out:
4308eebb 124 return ERR_PTR(err);
74bd59bb
PE
125}
126
1adfcb03
AV
127static void delayed_free_pidns(struct rcu_head *p)
128{
add7c65c
AV
129 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
130
131 dec_pid_namespaces(ns->ucounts);
132 put_user_ns(ns->user_ns);
133
134 kmem_cache_free(pid_ns_cachep, ns);
1adfcb03
AV
135}
136
74bd59bb
PE
137static void destroy_pid_namespace(struct pid_namespace *ns)
138{
6344c433 139 ns_free_inum(&ns->ns);
95846ecf
GS
140
141 idr_destroy(&ns->idr);
1adfcb03 142 call_rcu(&ns->rcu, delayed_free_pidns);
74bd59bb
PE
143}
144
49f4d8b9
EB
145struct pid_namespace *copy_pid_ns(unsigned long flags,
146 struct user_namespace *user_ns, struct pid_namespace *old_ns)
74bd59bb 147{
74bd59bb 148 if (!(flags & CLONE_NEWPID))
dca4a979 149 return get_pid_ns(old_ns);
225778d6
EB
150 if (task_active_pid_ns(current) != old_ns)
151 return ERR_PTR(-EINVAL);
49f4d8b9 152 return create_pid_namespace(user_ns, old_ns);
74bd59bb
PE
153}
154
bbc2e3ef
CG
155void put_pid_ns(struct pid_namespace *ns)
156{
157 struct pid_namespace *parent;
158
159 while (ns != &init_pid_ns) {
160 parent = ns->parent;
8eb71d95 161 if (!refcount_dec_and_test(&ns->ns.count))
bbc2e3ef 162 break;
8eb71d95 163 destroy_pid_namespace(ns);
bbc2e3ef
CG
164 ns = parent;
165 }
74bd59bb 166}
bbc2e3ef 167EXPORT_SYMBOL_GPL(put_pid_ns);
74bd59bb
PE
168
169void zap_pid_ns_processes(struct pid_namespace *pid_ns)
170{
171 int nr;
172 int rc;
00c10bc1 173 struct task_struct *task, *me = current;
751c644b 174 int init_pids = thread_group_leader(me) ? 1 : 2;
95846ecf 175 struct pid *pid;
00c10bc1 176
c876ad76
EB
177 /* Don't allow any more processes into the pid namespace */
178 disable_pid_allocation(pid_ns);
179
a53b8315
ON
180 /*
181 * Ignore SIGCHLD causing any terminated children to autoreap.
182 * This speeds up the namespace shutdown, plus see the comment
183 * below.
184 */
00c10bc1
EB
185 spin_lock_irq(&me->sighand->siglock);
186 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
187 spin_unlock_irq(&me->sighand->siglock);
74bd59bb
PE
188
189 /*
190 * The last thread in the cgroup-init thread group is terminating.
191 * Find remaining pid_ts in the namespace, signal and wait for them
192 * to exit.
193 *
194 * Note: This signals each threads in the namespace - even those that
195 * belong to the same thread group, To avoid this, we would have
196 * to walk the entire tasklist looking a processes in this
197 * namespace, but that could be unnecessarily expensive if the
198 * pid namespace has just a few processes. Or we need to
199 * maintain a tasklist for each pid namespace.
200 *
201 */
95846ecf 202 rcu_read_lock();
74bd59bb 203 read_lock(&tasklist_lock);
95846ecf
GS
204 nr = 2;
205 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
206 task = pid_task(pid, PIDTYPE_PID);
a02d6fd6 207 if (task && !__fatal_signal_pending(task))
82058d66 208 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
74bd59bb
PE
209 }
210 read_unlock(&tasklist_lock);
95846ecf 211 rcu_read_unlock();
74bd59bb 212
a53b8315
ON
213 /*
214 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
d300b610 215 * kernel_wait4() will also block until our children traced from the
a53b8315
ON
216 * parent namespace are detached and become EXIT_DEAD.
217 */
74bd59bb
PE
218 do {
219 clear_thread_flag(TIF_SIGPENDING);
d300b610 220 rc = kernel_wait4(-1, NULL, __WALL, NULL);
74bd59bb
PE
221 } while (rc != -ECHILD);
222
6347e900 223 /*
af9fe6d6
EB
224 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
225 * process whose parents processes are outside of the pid
226 * namespace. Such processes are created with setns()+fork().
a53b8315 227 *
af9fe6d6
EB
228 * If those EXIT_ZOMBIE processes are not reaped by their
229 * parents before their parents exit, they will be reparented
230 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
231 * stay valid until they all go away.
a53b8315 232 *
7b7b8a2c 233 * The code relies on the pid_ns->child_reaper ignoring
af9fe6d6
EB
234 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
235 * autoreaped if reparented.
236 *
237 * Semantically it is also desirable to wait for EXIT_ZOMBIE
238 * processes before allowing the child_reaper to be reaped, as
239 * that gives the invariant that when the init process of a
240 * pid namespace is reaped all of the processes in the pid
241 * namespace are gone.
242 *
243 * Once all of the other tasks are gone from the pid_namespace
244 * free_pid() will awaken this task.
6347e900
EB
245 */
246 for (;;) {
b9a985db 247 set_current_state(TASK_INTERRUPTIBLE);
e8cfbc24 248 if (pid_ns->pid_allocated == init_pids)
6347e900 249 break;
28319d6d
FW
250 /*
251 * Release tasks_rcu_exit_srcu to avoid following deadlock:
252 *
253 * 1) TASK A unshare(CLONE_NEWPID)
254 * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
255 * and TASK C
256 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
257 * 4) TASK A calls synchronize_rcu_tasks()
258 * -> synchronize_srcu(tasks_rcu_exit_srcu)
259 * 5) *DEADLOCK*
260 *
261 * It is considered safe to release tasks_rcu_exit_srcu here
262 * because we assume the current task can not be concurrently
263 * reaped at this point.
264 */
265 exit_tasks_rcu_stop();
6347e900 266 schedule();
28319d6d 267 exit_tasks_rcu_start();
6347e900 268 }
af4b8a83 269 __set_current_state(TASK_RUNNING);
6347e900 270
cf3f8921
DL
271 if (pid_ns->reboot)
272 current->signal->group_exit_code = pid_ns->reboot;
273
0b6b030f 274 acct_exit_ns(pid_ns);
74bd59bb
PE
275 return;
276}
277
98ed57ee 278#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0 279static int pid_ns_ctl_handler(struct ctl_table *table, int write,
32927393 280 void *buffer, size_t *lenp, loff_t *ppos)
b8f566b0 281{
49f4d8b9 282 struct pid_namespace *pid_ns = task_active_pid_ns(current);
b8f566b0 283 struct ctl_table tmp = *table;
95846ecf 284 int ret, next;
b8f566b0 285
b9a3db92 286 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
b8f566b0
PE
287 return -EPERM;
288
289 /*
290 * Writing directly to ns' last_pid field is OK, since this field
291 * is volatile in a living namespace anyway and a code writing to
292 * it should synchronize its usage with external means.
293 */
294
95846ecf
GS
295 next = idr_get_cursor(&pid_ns->idr) - 1;
296
297 tmp.data = &next;
298 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
299 if (!ret && write)
300 idr_set_cursor(&pid_ns->idr, next + 1);
301
302 return ret;
b8f566b0
PE
303}
304
579035dc 305extern int pid_max;
b8f566b0
PE
306static struct ctl_table pid_ns_ctl_table[] = {
307 {
308 .procname = "ns_last_pid",
309 .maxlen = sizeof(int),
310 .mode = 0666, /* permissions are checked in the handler */
311 .proc_handler = pid_ns_ctl_handler,
eec4844f 312 .extra1 = SYSCTL_ZERO,
579035dc 313 .extra2 = &pid_max,
b8f566b0
PE
314 },
315 { }
316};
98ed57ee 317#endif /* CONFIG_CHECKPOINT_RESTORE */
b8f566b0 318
cf3f8921
DL
319int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
320{
321 if (pid_ns == &init_pid_ns)
322 return 0;
323
324 switch (cmd) {
325 case LINUX_REBOOT_CMD_RESTART2:
326 case LINUX_REBOOT_CMD_RESTART:
327 pid_ns->reboot = SIGHUP;
328 break;
329
330 case LINUX_REBOOT_CMD_POWER_OFF:
331 case LINUX_REBOOT_CMD_HALT:
332 pid_ns->reboot = SIGINT;
333 break;
334 default:
335 return -EINVAL;
336 }
337
338 read_lock(&tasklist_lock);
f9070dc9 339 send_sig(SIGKILL, pid_ns->child_reaper, 1);
cf3f8921
DL
340 read_unlock(&tasklist_lock);
341
342 do_exit(0);
343
344 /* Not reached */
345 return 0;
346}
347
3c041184
AV
348static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
349{
350 return container_of(ns, struct pid_namespace, ns);
351}
352
64964528 353static struct ns_common *pidns_get(struct task_struct *task)
57e8391d
EB
354{
355 struct pid_namespace *ns;
356
357 rcu_read_lock();
d2308225
ON
358 ns = task_active_pid_ns(task);
359 if (ns)
360 get_pid_ns(ns);
57e8391d
EB
361 rcu_read_unlock();
362
3c041184 363 return ns ? &ns->ns : NULL;
57e8391d
EB
364}
365
eaa0d190
KT
366static struct ns_common *pidns_for_children_get(struct task_struct *task)
367{
368 struct pid_namespace *ns = NULL;
369
370 task_lock(task);
371 if (task->nsproxy) {
372 ns = task->nsproxy->pid_ns_for_children;
373 get_pid_ns(ns);
374 }
375 task_unlock(task);
376
377 if (ns) {
378 read_lock(&tasklist_lock);
379 if (!ns->child_reaper) {
380 put_pid_ns(ns);
381 ns = NULL;
382 }
383 read_unlock(&tasklist_lock);
384 }
385
386 return ns ? &ns->ns : NULL;
387}
388
64964528 389static void pidns_put(struct ns_common *ns)
57e8391d 390{
3c041184 391 put_pid_ns(to_pid_ns(ns));
57e8391d
EB
392}
393
f2a8d52e 394static int pidns_install(struct nsset *nsset, struct ns_common *ns)
57e8391d 395{
f2a8d52e 396 struct nsproxy *nsproxy = nsset->nsproxy;
57e8391d 397 struct pid_namespace *active = task_active_pid_ns(current);
3c041184 398 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
57e8391d 399
5e4a0847 400 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
f2a8d52e 401 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
57e8391d
EB
402 return -EPERM;
403
404 /*
405 * Only allow entering the current active pid namespace
406 * or a child of the current active pid namespace.
407 *
408 * This is required for fork to return a usable pid value and
409 * this maintains the property that processes and their
410 * children can not escape their current pid namespace.
411 */
412 if (new->level < active->level)
413 return -EINVAL;
414
415 ancestor = new;
416 while (ancestor->level > active->level)
417 ancestor = ancestor->parent;
418 if (ancestor != active)
419 return -EINVAL;
420
c2b1df2e
AL
421 put_pid_ns(nsproxy->pid_ns_for_children);
422 nsproxy->pid_ns_for_children = get_pid_ns(new);
57e8391d
EB
423 return 0;
424}
425
a7306ed8
AV
426static struct ns_common *pidns_get_parent(struct ns_common *ns)
427{
428 struct pid_namespace *active = task_active_pid_ns(current);
429 struct pid_namespace *pid_ns, *p;
430
431 /* See if the parent is in the current namespace */
432 pid_ns = p = to_pid_ns(ns)->parent;
433 for (;;) {
434 if (!p)
435 return ERR_PTR(-EPERM);
436 if (p == active)
437 break;
438 p = p->parent;
439 }
440
441 return &get_pid_ns(pid_ns)->ns;
442}
443
bcac25a5
AV
444static struct user_namespace *pidns_owner(struct ns_common *ns)
445{
446 return to_pid_ns(ns)->user_ns;
447}
448
57e8391d
EB
449const struct proc_ns_operations pidns_operations = {
450 .name = "pid",
451 .type = CLONE_NEWPID,
452 .get = pidns_get,
453 .put = pidns_put,
454 .install = pidns_install,
bcac25a5 455 .owner = pidns_owner,
a7306ed8 456 .get_parent = pidns_get_parent,
57e8391d
EB
457};
458
eaa0d190
KT
459const struct proc_ns_operations pidns_for_children_operations = {
460 .name = "pid_for_children",
461 .real_ns_name = "pid",
462 .type = CLONE_NEWPID,
463 .get = pidns_for_children_get,
464 .put = pidns_put,
465 .install = pidns_install,
466 .owner = pidns_owner,
467 .get_parent = pidns_get_parent,
468};
469
74bd59bb
PE
470static __init int pid_namespaces_init(void)
471{
30acd0bd 472 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
98ed57ee
CG
473
474#ifdef CONFIG_CHECKPOINT_RESTORE
9e7c73c0 475 register_sysctl_init("kernel", pid_ns_ctl_table);
98ed57ee 476#endif
105ff533
JX
477
478 register_pid_ns_sysctl_table_vm();
74bd59bb
PE
479 return 0;
480}
481
482__initcall(pid_namespaces_init);