Merge tag 'backlight-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[linux-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
fd593511 100#include <linux/user_events.h>
cd389115 101#include <linux/iommu.h>
1da177e4 102
1da177e4 103#include <asm/pgalloc.h>
7c0f6ba6 104#include <linux/uaccess.h>
1da177e4
LT
105#include <asm/mmu_context.h>
106#include <asm/cacheflush.h>
107#include <asm/tlbflush.h>
108
ad8d75ff
SR
109#include <trace/events/sched.h>
110
43d2b113
KH
111#define CREATE_TRACE_POINTS
112#include <trace/events/task.h>
113
ac1b398d
HS
114/*
115 * Minimum number of threads to boot the kernel
116 */
117#define MIN_THREADS 20
118
119/*
120 * Maximum number of threads
121 */
122#define MAX_THREADS FUTEX_TID_MASK
123
1da177e4
LT
124/*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 128int nr_threads; /* The idle threads do not count.. */
1da177e4 129
8856ae4d 130static int max_threads; /* tunable limit on nr_threads */
1da177e4 131
8495f7e6
SPP
132#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139};
140
1da177e4
LT
141DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
c59923a1 143__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
144
145#ifdef CONFIG_PROVE_RCU
146int lockdep_tasklist_lock_is_held(void)
147{
148 return lockdep_is_held(&tasklist_lock);
149}
150EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
152
153int nr_processes(void)
154{
155 int cpu;
156 int total = 0;
157
1d510750 158 for_each_possible_cpu(cpu)
1da177e4
LT
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162}
163
f19b9f74
AM
164void __weak arch_release_task_struct(struct task_struct *tsk)
165{
166}
167
f5e10287 168#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 169static struct kmem_cache *task_struct_cachep;
41101809
TG
170
171static inline struct task_struct *alloc_task_struct_node(int node)
172{
173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174}
175
41101809
TG
176static inline void free_task_struct(struct task_struct *tsk)
177{
41101809
TG
178 kmem_cache_free(task_struct_cachep, tsk);
179}
1da177e4
LT
180#endif
181
b235beea 182#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 183
0d15d74a
TG
184/*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
ba14a194 188# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 189
be9a2277 190# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
191/*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush. Try to minimize the number of calls by caching stacks.
194 */
195#define NR_CACHED_STACKS 2
196static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 197
e540bf31
SAS
198struct vm_stack {
199 struct rcu_head rcu;
200 struct vm_struct *stack_vm_area;
201};
202
203static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204{
205 unsigned int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 continue;
210 return true;
211 }
212 return false;
213}
214
215static void thread_stack_free_rcu(struct rcu_head *rh)
216{
217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 return;
221
222 vfree(vm_stack);
223}
224
225static void thread_stack_delayed_free(struct task_struct *tsk)
226{
227 struct vm_stack *vm_stack = tsk->stack;
228
229 vm_stack->stack_vm_area = tsk->stack_vm_area;
230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231}
232
19659c59
HR
233static int free_vm_stack_cache(unsigned int cpu)
234{
235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 int i;
237
238 for (i = 0; i < NR_CACHED_STACKS; i++) {
239 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241 if (!vm_stack)
242 continue;
243
244 vfree(vm_stack->addr);
245 cached_vm_stacks[i] = NULL;
246 }
247
248 return 0;
249}
ac496bf4 250
1a03d3f1 251static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 252{
f1c1a9ee
SAS
253 int i;
254 int ret;
255
256 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 if (ret)
262 goto err;
263 }
264 return 0;
265err:
266 /*
267 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
268 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
269 * ignore this page.
270 */
271 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
272 memcg_kmem_uncharge_page(vm->pages[i], 0);
273 return ret;
274}
275
7865aba3 276static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 277{
1a03d3f1 278 struct vm_struct *vm;
ac496bf4
AL
279 void *stack;
280 int i;
281
ac496bf4 282 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
283 struct vm_struct *s;
284
285 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
286
287 if (!s)
288 continue;
ac496bf4 289
51fb34de 290 /* Reset stack metadata. */
cebd0eb2 291 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 292
51fb34de
AK
293 stack = kasan_reset_tag(s->addr);
294
ca182551 295 /* Clear stale pointers from reused stack. */
51fb34de 296 memset(stack, 0, THREAD_SIZE);
e01e8063 297
1a03d3f1 298 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
299 vfree(s->addr);
300 return -ENOMEM;
301 }
302
ac496bf4 303 tsk->stack_vm_area = s;
51fb34de 304 tsk->stack = stack;
7865aba3 305 return 0;
ac496bf4 306 }
ac496bf4 307
9b6f7e16
RG
308 /*
309 * Allocated stacks are cached and later reused by new threads,
310 * so memcg accounting is performed manually on assigning/releasing
311 * stacks to tasks. Drop __GFP_ACCOUNT.
312 */
48ac3c18 313 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 314 VMALLOC_START, VMALLOC_END,
9b6f7e16 315 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
316 PAGE_KERNEL,
317 0, node, __builtin_return_address(0));
7865aba3
SAS
318 if (!stack)
319 return -ENOMEM;
ba14a194 320
1a03d3f1
SAS
321 vm = find_vm_area(stack);
322 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
323 vfree(stack);
324 return -ENOMEM;
325 }
ba14a194
AL
326 /*
327 * We can't call find_vm_area() in interrupt context, and
328 * free_thread_stack() can be called in interrupt context,
329 * so cache the vm_struct.
330 */
1a03d3f1 331 tsk->stack_vm_area = vm;
51fb34de 332 stack = kasan_reset_tag(stack);
7865aba3
SAS
333 tsk->stack = stack;
334 return 0;
b69c49b7
FT
335}
336
be9a2277 337static void free_thread_stack(struct task_struct *tsk)
b69c49b7 338{
e540bf31
SAS
339 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
340 thread_stack_delayed_free(tsk);
9b6f7e16 341
be9a2277
SAS
342 tsk->stack = NULL;
343 tsk->stack_vm_area = NULL;
344}
ac496bf4 345
be9a2277 346# else /* !CONFIG_VMAP_STACK */
ac496bf4 347
e540bf31
SAS
348static void thread_stack_free_rcu(struct rcu_head *rh)
349{
350 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
351}
352
353static void thread_stack_delayed_free(struct task_struct *tsk)
354{
355 struct rcu_head *rh = tsk->stack;
356
357 call_rcu(rh, thread_stack_free_rcu);
358}
359
7865aba3 360static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 361{
4949148a
VD
362 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
363 THREAD_SIZE_ORDER);
b6a84016 364
1bf4580e 365 if (likely(page)) {
8dcc1d34 366 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 367 return 0;
1bf4580e 368 }
7865aba3 369 return -ENOMEM;
b69c49b7
FT
370}
371
be9a2277 372static void free_thread_stack(struct task_struct *tsk)
b69c49b7 373{
e540bf31 374 thread_stack_delayed_free(tsk);
be9a2277 375 tsk->stack = NULL;
b69c49b7 376}
ac496bf4 377
be9a2277
SAS
378# endif /* CONFIG_VMAP_STACK */
379# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 380
b235beea 381static struct kmem_cache *thread_stack_cache;
ac496bf4 382
e540bf31
SAS
383static void thread_stack_free_rcu(struct rcu_head *rh)
384{
385 kmem_cache_free(thread_stack_cache, rh);
386}
ac496bf4 387
e540bf31
SAS
388static void thread_stack_delayed_free(struct task_struct *tsk)
389{
390 struct rcu_head *rh = tsk->stack;
ac496bf4 391
e540bf31 392 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 393}
0d15d74a 394
7865aba3 395static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 396{
5eed6f1d
RR
397 unsigned long *stack;
398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 399 stack = kasan_reset_tag(stack);
5eed6f1d 400 tsk->stack = stack;
7865aba3 401 return stack ? 0 : -ENOMEM;
0d15d74a
TG
402}
403
ba14a194 404static void free_thread_stack(struct task_struct *tsk)
0d15d74a 405{
e540bf31 406 thread_stack_delayed_free(tsk);
be9a2277 407 tsk->stack = NULL;
0d15d74a
TG
408}
409
b235beea 410void thread_stack_cache_init(void)
0d15d74a 411{
f9d29946
DW
412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
413 THREAD_SIZE, THREAD_SIZE, 0, 0,
414 THREAD_SIZE, NULL);
b235beea 415 BUG_ON(thread_stack_cache == NULL);
0d15d74a 416}
be9a2277
SAS
417
418# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
419#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
420
7865aba3 421static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
422{
423 unsigned long *stack;
424
425 stack = arch_alloc_thread_stack_node(tsk, node);
426 tsk->stack = stack;
7865aba3 427 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
428}
429
430static void free_thread_stack(struct task_struct *tsk)
431{
432 arch_free_thread_stack(tsk);
433 tsk->stack = NULL;
434}
435
be9a2277 436#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 437
1da177e4 438/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 439static struct kmem_cache *signal_cachep;
1da177e4
LT
440
441/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 442struct kmem_cache *sighand_cachep;
1da177e4
LT
443
444/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 445struct kmem_cache *files_cachep;
1da177e4
LT
446
447/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 448struct kmem_cache *fs_cachep;
1da177e4
LT
449
450/* SLAB cache for vm_area_struct structures */
3928d4f5 451static struct kmem_cache *vm_area_cachep;
1da177e4
LT
452
453/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 454static struct kmem_cache *mm_cachep;
1da177e4 455
c7f8f31c
SB
456#ifdef CONFIG_PER_VMA_LOCK
457
458/* SLAB cache for vm_area_struct.lock */
459static struct kmem_cache *vma_lock_cachep;
460
461static bool vma_lock_alloc(struct vm_area_struct *vma)
462{
463 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
464 if (!vma->vm_lock)
465 return false;
466
467 init_rwsem(&vma->vm_lock->lock);
468 vma->vm_lock_seq = -1;
469
470 return true;
471}
472
473static inline void vma_lock_free(struct vm_area_struct *vma)
474{
475 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
476}
477
478#else /* CONFIG_PER_VMA_LOCK */
479
480static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
481static inline void vma_lock_free(struct vm_area_struct *vma) {}
482
483#endif /* CONFIG_PER_VMA_LOCK */
484
490fc053 485struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 486{
a670468f 487 struct vm_area_struct *vma;
490fc053 488
a670468f 489 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
c7f8f31c
SB
490 if (!vma)
491 return NULL;
492
493 vma_init(vma, mm);
494 if (!vma_lock_alloc(vma)) {
495 kmem_cache_free(vm_area_cachep, vma);
496 return NULL;
497 }
498
490fc053 499 return vma;
3928d4f5
LT
500}
501
502struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
503{
95faf699
LT
504 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
505
c7f8f31c
SB
506 if (!new)
507 return NULL;
508
509 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
510 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
511 /*
512 * orig->shared.rb may be modified concurrently, but the clone
513 * will be reinitialized.
514 */
515 data_race(memcpy(new, orig, sizeof(*new)));
516 if (!vma_lock_alloc(new)) {
517 kmem_cache_free(vm_area_cachep, new);
518 return NULL;
95faf699 519 }
c7f8f31c 520 INIT_LIST_HEAD(&new->anon_vma_chain);
ef6a22b7 521 vma_numab_state_init(new);
c7f8f31c
SB
522 dup_anon_vma_name(orig, new);
523
95faf699 524 return new;
3928d4f5
LT
525}
526
0d2ebf9c 527void __vm_area_free(struct vm_area_struct *vma)
3928d4f5 528{
ef6a22b7 529 vma_numab_state_free(vma);
5c26f6ac 530 free_anon_vma_name(vma);
c7f8f31c 531 vma_lock_free(vma);
3928d4f5
LT
532 kmem_cache_free(vm_area_cachep, vma);
533}
534
20cce633
ML
535#ifdef CONFIG_PER_VMA_LOCK
536static void vm_area_free_rcu_cb(struct rcu_head *head)
537{
538 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
539 vm_rcu);
f2e13784
SB
540
541 /* The vma should not be locked while being destroyed. */
c7f8f31c 542 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
20cce633
ML
543 __vm_area_free(vma);
544}
545#endif
546
547void vm_area_free(struct vm_area_struct *vma)
548{
549#ifdef CONFIG_PER_VMA_LOCK
550 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
551#else
552 __vm_area_free(vma);
553#endif
554}
555
ba14a194 556static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 557{
0ce055f8
SAS
558 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
559 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 560 int i;
ba14a194 561
27faca83
MS
562 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
563 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
564 account * (PAGE_SIZE / 1024));
565 } else {
0ce055f8
SAS
566 void *stack = task_stack_page(tsk);
567
27faca83 568 /* All stack pages are in the same node. */
da3ceeff 569 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 570 account * (THREAD_SIZE / 1024));
27faca83 571 }
c6a7f572
KM
572}
573
1a03d3f1 574void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 575{
1a03d3f1 576 account_kernel_stack(tsk, -1);
991e7673 577
1a03d3f1
SAS
578 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
579 struct vm_struct *vm;
9b6f7e16
RG
580 int i;
581
1a03d3f1
SAS
582 vm = task_stack_vm_area(tsk);
583 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
584 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 585 }
9b6f7e16
RG
586}
587
68f24b08 588static void release_task_stack(struct task_struct *tsk)
1da177e4 589{
2f064a59 590 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
591 return; /* Better to leak the stack than to free prematurely */
592
ba14a194 593 free_thread_stack(tsk);
68f24b08
AL
594}
595
596#ifdef CONFIG_THREAD_INFO_IN_TASK
597void put_task_stack(struct task_struct *tsk)
598{
f0b89d39 599 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
600 release_task_stack(tsk);
601}
602#endif
603
604void free_task(struct task_struct *tsk)
605{
a1140cb2
KI
606#ifdef CONFIG_SECCOMP
607 WARN_ON_ONCE(tsk->seccomp.filter);
608#endif
b90ca8ba 609 release_user_cpus_ptr(tsk);
d08b9f0c
ST
610 scs_release(tsk);
611
68f24b08
AL
612#ifndef CONFIG_THREAD_INFO_IN_TASK
613 /*
614 * The task is finally done with both the stack and thread_info,
615 * so free both.
616 */
617 release_task_stack(tsk);
618#else
619 /*
620 * If the task had a separate stack allocation, it should be gone
621 * by now.
622 */
f0b89d39 623 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 624#endif
23f78d4a 625 rt_mutex_debug_task_free(tsk);
fb52607a 626 ftrace_graph_exit_task(tsk);
f19b9f74 627 arch_release_task_struct(tsk);
1da5c46f
ON
628 if (tsk->flags & PF_KTHREAD)
629 free_kthread_struct(tsk);
1da177e4
LT
630 free_task_struct(tsk);
631}
632EXPORT_SYMBOL(free_task);
633
fe69d560
DH
634static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
635{
636 struct file *exe_file;
637
638 exe_file = get_mm_exe_file(oldmm);
639 RCU_INIT_POINTER(mm->exe_file, exe_file);
640 /*
641 * We depend on the oldmm having properly denied write access to the
642 * exe_file already.
643 */
644 if (exe_file && deny_write_access(exe_file))
645 pr_warn_once("deny_write_access() failed in %s\n", __func__);
646}
647
d70f2a14
AM
648#ifdef CONFIG_MMU
649static __latent_entropy int dup_mmap(struct mm_struct *mm,
650 struct mm_struct *oldmm)
651{
763ecb03 652 struct vm_area_struct *mpnt, *tmp;
d70f2a14 653 int retval;
c9dbe82c 654 unsigned long charge = 0;
d70f2a14 655 LIST_HEAD(uf);
3b9dbd5e
LH
656 VMA_ITERATOR(old_vmi, oldmm, 0);
657 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
658
659 uprobe_start_dup_mmap();
d8ed45c5 660 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
661 retval = -EINTR;
662 goto fail_uprobe_end;
663 }
664 flush_cache_dup_mm(oldmm);
665 uprobe_dup_mmap(oldmm, mm);
666 /*
667 * Not linked in yet - no deadlock potential:
668 */
aaa2cc56 669 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
670
671 /* No ordering required: file already has been exposed. */
fe69d560 672 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
673
674 mm->total_vm = oldmm->total_vm;
675 mm->data_vm = oldmm->data_vm;
676 mm->exec_vm = oldmm->exec_vm;
677 mm->stack_vm = oldmm->stack_vm;
678
d70f2a14
AM
679 retval = ksm_fork(mm, oldmm);
680 if (retval)
681 goto out;
d2081b2b 682 khugepaged_fork(mm, oldmm);
d70f2a14 683
3b9dbd5e 684 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
c9dbe82c
LH
685 if (retval)
686 goto out;
687
3dd44325 688 mt_clear_in_rcu(vmi.mas.tree);
3b9dbd5e 689 for_each_vma(old_vmi, mpnt) {
d70f2a14
AM
690 struct file *file;
691
692 if (mpnt->vm_flags & VM_DONTCOPY) {
693 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
694 continue;
695 }
696 charge = 0;
655c79bb
TH
697 /*
698 * Don't duplicate many vmas if we've been oom-killed (for
699 * example)
700 */
701 if (fatal_signal_pending(current)) {
702 retval = -EINTR;
d4af56c5 703 goto loop_out;
655c79bb 704 }
d70f2a14
AM
705 if (mpnt->vm_flags & VM_ACCOUNT) {
706 unsigned long len = vma_pages(mpnt);
707
708 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
709 goto fail_nomem;
710 charge = len;
711 }
3928d4f5 712 tmp = vm_area_dup(mpnt);
d70f2a14
AM
713 if (!tmp)
714 goto fail_nomem;
d70f2a14
AM
715 retval = vma_dup_policy(mpnt, tmp);
716 if (retval)
717 goto fail_nomem_policy;
718 tmp->vm_mm = mm;
719 retval = dup_userfaultfd(tmp, &uf);
720 if (retval)
721 goto fail_nomem_anon_vma_fork;
722 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
723 /*
724 * VM_WIPEONFORK gets a clean slate in the child.
725 * Don't prepare anon_vma until fault since we don't
726 * copy page for current vma.
727 */
d70f2a14 728 tmp->anon_vma = NULL;
d70f2a14
AM
729 } else if (anon_vma_fork(tmp, mpnt))
730 goto fail_nomem_anon_vma_fork;
e430a95a 731 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
732 file = tmp->vm_file;
733 if (file) {
d70f2a14
AM
734 struct address_space *mapping = file->f_mapping;
735
736 get_file(file);
d70f2a14
AM
737 i_mmap_lock_write(mapping);
738 if (tmp->vm_flags & VM_SHARED)
cf508b58 739 mapping_allow_writable(mapping);
d70f2a14
AM
740 flush_dcache_mmap_lock(mapping);
741 /* insert tmp into the share list, just after mpnt */
742 vma_interval_tree_insert_after(tmp, mpnt,
743 &mapping->i_mmap);
744 flush_dcache_mmap_unlock(mapping);
745 i_mmap_unlock_write(mapping);
746 }
747
748 /*
8d9bfb26 749 * Copy/update hugetlb private vma information.
d70f2a14
AM
750 */
751 if (is_vm_hugetlb_page(tmp))
8d9bfb26 752 hugetlb_dup_vma_private(tmp);
d70f2a14 753
d4af56c5 754 /* Link the vma into the MT */
3b9dbd5e
LH
755 if (vma_iter_bulk_store(&vmi, tmp))
756 goto fail_nomem_vmi_store;
d70f2a14
AM
757
758 mm->map_count++;
759 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 760 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
761
762 if (tmp->vm_ops && tmp->vm_ops->open)
763 tmp->vm_ops->open(tmp);
764
765 if (retval)
d4af56c5 766 goto loop_out;
d70f2a14
AM
767 }
768 /* a new mm has just been created */
1ed0cc5a 769 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 770loop_out:
3b9dbd5e 771 vma_iter_free(&vmi);
3dd44325
LH
772 if (!retval)
773 mt_set_in_rcu(vmi.mas.tree);
d70f2a14 774out:
d8ed45c5 775 mmap_write_unlock(mm);
d70f2a14 776 flush_tlb_mm(oldmm);
d8ed45c5 777 mmap_write_unlock(oldmm);
d70f2a14
AM
778 dup_userfaultfd_complete(&uf);
779fail_uprobe_end:
780 uprobe_end_dup_mmap();
781 return retval;
c9dbe82c 782
3b9dbd5e 783fail_nomem_vmi_store:
c9dbe82c 784 unlink_anon_vmas(tmp);
d70f2a14
AM
785fail_nomem_anon_vma_fork:
786 mpol_put(vma_policy(tmp));
787fail_nomem_policy:
3928d4f5 788 vm_area_free(tmp);
d70f2a14
AM
789fail_nomem:
790 retval = -ENOMEM;
791 vm_unacct_memory(charge);
d4af56c5 792 goto loop_out;
d70f2a14
AM
793}
794
795static inline int mm_alloc_pgd(struct mm_struct *mm)
796{
797 mm->pgd = pgd_alloc(mm);
798 if (unlikely(!mm->pgd))
799 return -ENOMEM;
800 return 0;
801}
802
803static inline void mm_free_pgd(struct mm_struct *mm)
804{
805 pgd_free(mm, mm->pgd);
806}
807#else
808static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
809{
d8ed45c5 810 mmap_write_lock(oldmm);
fe69d560 811 dup_mm_exe_file(mm, oldmm);
d8ed45c5 812 mmap_write_unlock(oldmm);
d70f2a14
AM
813 return 0;
814}
815#define mm_alloc_pgd(mm) (0)
816#define mm_free_pgd(mm)
817#endif /* CONFIG_MMU */
818
819static void check_mm(struct mm_struct *mm)
820{
821 int i;
822
8495f7e6
SPP
823 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
824 "Please make sure 'struct resident_page_types[]' is updated as well");
825
d70f2a14 826 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 827 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
828
829 if (unlikely(x))
8495f7e6
SPP
830 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
831 mm, resident_page_types[i], x);
d70f2a14
AM
832 }
833
834 if (mm_pgtables_bytes(mm))
835 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
836 mm_pgtables_bytes(mm));
837
838#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
839 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
840#endif
841}
842
843#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
844#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
845
2655421a
NP
846static void do_check_lazy_tlb(void *arg)
847{
848 struct mm_struct *mm = arg;
849
850 WARN_ON_ONCE(current->active_mm == mm);
851}
852
853static void do_shoot_lazy_tlb(void *arg)
854{
855 struct mm_struct *mm = arg;
856
857 if (current->active_mm == mm) {
858 WARN_ON_ONCE(current->mm);
859 current->active_mm = &init_mm;
860 switch_mm(mm, &init_mm, current);
861 }
862}
863
864static void cleanup_lazy_tlbs(struct mm_struct *mm)
865{
866 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
867 /*
868 * In this case, lazy tlb mms are refounted and would not reach
869 * __mmdrop until all CPUs have switched away and mmdrop()ed.
870 */
871 return;
872 }
873
874 /*
875 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
876 * requires lazy mm users to switch to another mm when the refcount
877 * drops to zero, before the mm is freed. This requires IPIs here to
878 * switch kernel threads to init_mm.
879 *
880 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
881 * switch with the final userspace teardown TLB flush which leaves the
882 * mm lazy on this CPU but no others, reducing the need for additional
883 * IPIs here. There are cases where a final IPI is still required here,
884 * such as the final mmdrop being performed on a different CPU than the
885 * one exiting, or kernel threads using the mm when userspace exits.
886 *
887 * IPI overheads have not found to be expensive, but they could be
888 * reduced in a number of possible ways, for example (roughly
889 * increasing order of complexity):
890 * - The last lazy reference created by exit_mm() could instead switch
891 * to init_mm, however it's probable this will run on the same CPU
892 * immediately afterwards, so this may not reduce IPIs much.
893 * - A batch of mms requiring IPIs could be gathered and freed at once.
894 * - CPUs store active_mm where it can be remotely checked without a
895 * lock, to filter out false-positives in the cpumask.
896 * - After mm_users or mm_count reaches zero, switching away from the
897 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
898 * with some batching or delaying of the final IPIs.
899 * - A delayed freeing and RCU-like quiescing sequence based on mm
900 * switching to avoid IPIs completely.
901 */
902 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
903 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
904 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
905}
906
d70f2a14
AM
907/*
908 * Called when the last reference to the mm
909 * is dropped: either by a lazy thread or by
910 * mmput. Free the page directory and the mm.
911 */
d34bc48f 912void __mmdrop(struct mm_struct *mm)
d70f2a14 913{
f1a79412
SB
914 int i;
915
d70f2a14 916 BUG_ON(mm == &init_mm);
3eda69c9 917 WARN_ON_ONCE(mm == current->mm);
2655421a
NP
918
919 /* Ensure no CPUs are using this as their lazy tlb mm */
920 cleanup_lazy_tlbs(mm);
921
3eda69c9 922 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
923 mm_free_pgd(mm);
924 destroy_context(mm);
984cfe4e 925 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
926 check_mm(mm);
927 put_user_ns(mm->user_ns);
2667ed10 928 mm_pasid_drop(mm);
223baf9d 929 mm_destroy_cid(mm);
f1a79412
SB
930
931 for (i = 0; i < NR_MM_COUNTERS; i++)
932 percpu_counter_destroy(&mm->rss_stat[i]);
d70f2a14
AM
933 free_mm(mm);
934}
d34bc48f 935EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
936
937static void mmdrop_async_fn(struct work_struct *work)
938{
939 struct mm_struct *mm;
940
941 mm = container_of(work, struct mm_struct, async_put_work);
942 __mmdrop(mm);
943}
944
945static void mmdrop_async(struct mm_struct *mm)
946{
947 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
948 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
949 schedule_work(&mm->async_put_work);
950 }
951}
952
ea6d290c
ON
953static inline void free_signal_struct(struct signal_struct *sig)
954{
97101eb4 955 taskstats_tgid_free(sig);
1c5354de 956 sched_autogroup_exit(sig);
7283094e
MH
957 /*
958 * __mmdrop is not safe to call from softirq context on x86 due to
959 * pgd_dtor so postpone it to the async context
960 */
26db62f1 961 if (sig->oom_mm)
7283094e 962 mmdrop_async(sig->oom_mm);
ea6d290c
ON
963 kmem_cache_free(signal_cachep, sig);
964}
965
966static inline void put_signal_struct(struct signal_struct *sig)
967{
60d4de3f 968 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
969 free_signal_struct(sig);
970}
971
158d9ebd 972void __put_task_struct(struct task_struct *tsk)
1da177e4 973{
270f722d 974 WARN_ON(!tsk->exit_state);
ec1d2819 975 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
976 WARN_ON(tsk == current);
977
0f212204 978 io_uring_free(tsk);
2e91fa7f 979 cgroup_free(tsk);
16d51a59 980 task_numa_free(tsk, true);
1a2a4d06 981 security_task_free(tsk);
a10787e6 982 bpf_task_storage_free(tsk);
e0e81739 983 exit_creds(tsk);
35df17c5 984 delayacct_tsk_free(tsk);
ea6d290c 985 put_signal_struct(tsk->signal);
6e33cad0 986 sched_core_free(tsk);
2873cd31 987 free_task(tsk);
1da177e4 988}
77c100c8 989EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 990
6c0a9fa6 991void __init __weak arch_task_cache_init(void) { }
61c4628b 992
ff691f6e
HS
993/*
994 * set_max_threads
995 */
16db3d3f 996static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 997{
ac1b398d 998 u64 threads;
ca79b0c2 999 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
1000
1001 /*
ac1b398d
HS
1002 * The number of threads shall be limited such that the thread
1003 * structures may only consume a small part of the available memory.
ff691f6e 1004 */
3d6357de 1005 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
1006 threads = MAX_THREADS;
1007 else
3d6357de 1008 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
1009 (u64) THREAD_SIZE * 8UL);
1010
16db3d3f
HS
1011 if (threads > max_threads_suggested)
1012 threads = max_threads_suggested;
1013
ac1b398d 1014 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
1015}
1016
5aaeb5c0
IM
1017#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1018/* Initialized by the architecture: */
1019int arch_task_struct_size __read_mostly;
1020#endif
0c8c0f03 1021
4189ff23 1022#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
1023static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1024{
1025 /* Fetch thread_struct whitelist for the architecture. */
1026 arch_thread_struct_whitelist(offset, size);
1027
1028 /*
1029 * Handle zero-sized whitelist or empty thread_struct, otherwise
1030 * adjust offset to position of thread_struct in task_struct.
1031 */
1032 if (unlikely(*size == 0))
1033 *offset = 0;
1034 else
1035 *offset += offsetof(struct task_struct, thread);
1036}
4189ff23 1037#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 1038
ff691f6e 1039void __init fork_init(void)
1da177e4 1040{
25f9c081 1041 int i;
f5e10287 1042#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 1043#ifndef ARCH_MIN_TASKALIGN
e274795e 1044#define ARCH_MIN_TASKALIGN 0
1da177e4 1045#endif
95cb64c1 1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 1047 unsigned long useroffset, usersize;
e274795e 1048
1da177e4 1049 /* create a slab on which task_structs can be allocated */
5905429a
KC
1050 task_struct_whitelist(&useroffset, &usersize);
1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 1052 arch_task_struct_size, align,
5905429a
KC
1053 SLAB_PANIC|SLAB_ACCOUNT,
1054 useroffset, usersize, NULL);
1da177e4
LT
1055#endif
1056
61c4628b
SS
1057 /* do the arch specific task caches init */
1058 arch_task_cache_init();
1059
16db3d3f 1060 set_max_threads(MAX_THREADS);
1da177e4
LT
1061
1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 1066
de399236 1067 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 1068 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 1069
de399236
AG
1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 1074
19659c59
HR
1075#ifdef CONFIG_VMAP_STACK
1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077 NULL, free_vm_stack_cache);
1078#endif
b09be676 1079
d08b9f0c
ST
1080 scs_init();
1081
b09be676 1082 lockdep_init_task(&init_task);
aad42dd4 1083 uprobes_init();
1da177e4
LT
1084}
1085
52f5684c 1086int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
1087 struct task_struct *src)
1088{
1089 *dst = *src;
1090 return 0;
1091}
1092
d4311ff1
AT
1093void set_task_stack_end_magic(struct task_struct *tsk)
1094{
1095 unsigned long *stackend;
1096
1097 stackend = end_of_stack(tsk);
1098 *stackend = STACK_END_MAGIC; /* for overflow detection */
1099}
1100
725fc629 1101static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
1102{
1103 struct task_struct *tsk;
3e26c149 1104 int err;
1da177e4 1105
725fc629
AK
1106 if (node == NUMA_NO_NODE)
1107 node = tsk_fork_get_node(orig);
504f52b5 1108 tsk = alloc_task_struct_node(node);
1da177e4
LT
1109 if (!tsk)
1110 return NULL;
1111
546c42b2
SAS
1112 err = arch_dup_task_struct(tsk, orig);
1113 if (err)
f19b9f74 1114 goto free_tsk;
1da177e4 1115
7865aba3
SAS
1116 err = alloc_thread_stack_node(tsk, node);
1117 if (err)
f19b9f74 1118 goto free_tsk;
ba14a194 1119
68f24b08 1120#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 1121 refcount_set(&tsk->stack_refcount, 1);
68f24b08 1122#endif
1a03d3f1 1123 account_kernel_stack(tsk, 1);
164c33c6 1124
d08b9f0c
ST
1125 err = scs_prepare(tsk, node);
1126 if (err)
1127 goto free_stack;
1128
dbd95212
KC
1129#ifdef CONFIG_SECCOMP
1130 /*
1131 * We must handle setting up seccomp filters once we're under
1132 * the sighand lock in case orig has changed between now and
1133 * then. Until then, filter must be NULL to avoid messing up
1134 * the usage counts on the error path calling free_task.
1135 */
1136 tsk->seccomp.filter = NULL;
1137#endif
87bec58a
AM
1138
1139 setup_thread_stack(tsk, orig);
8e7cac79 1140 clear_user_return_notifier(tsk);
f26f9aff 1141 clear_tsk_need_resched(tsk);
d4311ff1 1142 set_task_stack_end_magic(tsk);
1446e1df 1143 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1144
050e9baa 1145#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1146 tsk->stack_canary = get_random_canary();
0a425405 1147#endif
3bd37062
SAS
1148 if (orig->cpus_ptr == &orig->cpus_mask)
1149 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1150 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1151
fb0a685c 1152 /*
0ff7b2cf
EB
1153 * One for the user space visible state that goes away when reaped.
1154 * One for the scheduler.
fb0a685c 1155 */
0ff7b2cf
EB
1156 refcount_set(&tsk->rcu_users, 2);
1157 /* One for the rcu users */
1158 refcount_set(&tsk->usage, 1);
6c5c9341 1159#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1160 tsk->btrace_seq = 0;
6c5c9341 1161#endif
a0aa7f68 1162 tsk->splice_pipe = NULL;
5640f768 1163 tsk->task_frag.page = NULL;
093e5840 1164 tsk->wake_q.next = NULL;
e32cf5df 1165 tsk->worker_private = NULL;
c6a7f572 1166
5c9a8750 1167 kcov_task_init(tsk);
50b5e49c 1168 kmsan_task_create(tsk);
5fbda3ec 1169 kmap_local_fork(tsk);
5c9a8750 1170
e41d5818
DV
1171#ifdef CONFIG_FAULT_INJECTION
1172 tsk->fail_nth = 0;
1173#endif
1174
2c323017 1175#ifdef CONFIG_BLK_CGROUP
f05837ed 1176 tsk->throttle_disk = NULL;
2c323017
JB
1177 tsk->use_memdelay = 0;
1178#endif
1179
a3d29e82
PZ
1180#ifdef CONFIG_IOMMU_SVA
1181 tsk->pasid_activated = 0;
1182#endif
1183
d46eb14b
SB
1184#ifdef CONFIG_MEMCG
1185 tsk->active_memcg = NULL;
1186#endif
b041b525
TL
1187
1188#ifdef CONFIG_CPU_SUP_INTEL
1189 tsk->reported_split_lock = 0;
1190#endif
1191
af7f588d
MD
1192#ifdef CONFIG_SCHED_MM_CID
1193 tsk->mm_cid = -1;
223baf9d 1194 tsk->last_mm_cid = -1;
af7f588d 1195 tsk->mm_cid_active = 0;
223baf9d 1196 tsk->migrate_from_cpu = -1;
af7f588d 1197#endif
1da177e4 1198 return tsk;
61c4628b 1199
b235beea 1200free_stack:
1a03d3f1 1201 exit_task_stack_account(tsk);
ba14a194 1202 free_thread_stack(tsk);
f19b9f74 1203free_tsk:
61c4628b
SS
1204 free_task_struct(tsk);
1205 return NULL;
1da177e4
LT
1206}
1207
23ff4440 1208__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1209
4cb0e11b
HK
1210static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211
1212static int __init coredump_filter_setup(char *s)
1213{
1214 default_dump_filter =
1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216 MMF_DUMP_FILTER_MASK;
1217 return 1;
1218}
1219
1220__setup("coredump_filter=", coredump_filter_setup);
1221
1da177e4
LT
1222#include <linux/init_task.h>
1223
858f0993
AD
1224static void mm_init_aio(struct mm_struct *mm)
1225{
1226#ifdef CONFIG_AIO
1227 spin_lock_init(&mm->ioctx_lock);
db446a08 1228 mm->ioctx_table = NULL;
858f0993
AD
1229#endif
1230}
1231
c3f3ce04
AA
1232static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233 struct task_struct *p)
1234{
1235#ifdef CONFIG_MEMCG
1236 if (mm->owner == p)
1237 WRITE_ONCE(mm->owner, NULL);
1238#endif
1239}
1240
33144e84
VD
1241static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242{
1243#ifdef CONFIG_MEMCG
1244 mm->owner = p;
1245#endif
1246}
1247
355627f5
EB
1248static void mm_init_uprobes_state(struct mm_struct *mm)
1249{
1250#ifdef CONFIG_UPROBES
1251 mm->uprobes_state.xol_area = NULL;
1252#endif
1253}
1254
bfedb589
EB
1255static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256 struct user_namespace *user_ns)
1da177e4 1257{
f1a79412
SB
1258 int i;
1259
d4af56c5
LH
1260 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1261 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1262 atomic_set(&mm->mm_users, 1);
1263 atomic_set(&mm->mm_count, 1);
57efa1fe 1264 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1265 mmap_init_lock(mm);
1da177e4 1266 INIT_LIST_HEAD(&mm->mmlist);
5e31275c
SB
1267#ifdef CONFIG_PER_VMA_LOCK
1268 mm->mm_lock_seq = 0;
1269#endif
af5b0f6a 1270 mm_pgtables_bytes_init(mm);
41f727fd
VD
1271 mm->map_count = 0;
1272 mm->locked_vm = 0;
70f8a3ca 1273 atomic64_set(&mm->pinned_vm, 0);
d559db08 1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1275 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1276 spin_lock_init(&mm->arg_lock);
41f727fd 1277 mm_init_cpumask(mm);
858f0993 1278 mm_init_aio(mm);
cf475ad2 1279 mm_init_owner(mm, p);
a6cbd440 1280 mm_pasid_init(mm);
2b7e8665 1281 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1282 mmu_notifier_subscriptions_init(mm);
16af97dc 1283 init_tlb_flush_pending(mm);
41f727fd
VD
1284#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1285 mm->pmd_huge_pte = NULL;
1286#endif
355627f5 1287 mm_init_uprobes_state(mm);
13db8c50 1288 hugetlb_count_init(mm);
1da177e4 1289
a0715cc2
AT
1290 if (current->mm) {
1291 mm->flags = current->mm->flags & MMF_INIT_MASK;
1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1293 } else {
1294 mm->flags = default_dump_filter;
1da177e4 1295 mm->def_flags = 0;
a0715cc2
AT
1296 }
1297
41f727fd
VD
1298 if (mm_alloc_pgd(mm))
1299 goto fail_nopgd;
1300
1301 if (init_new_context(p, mm))
1302 goto fail_nocontext;
78fb7466 1303
223baf9d
MD
1304 if (mm_alloc_cid(mm))
1305 goto fail_cid;
1306
f1a79412
SB
1307 for (i = 0; i < NR_MM_COUNTERS; i++)
1308 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1309 goto fail_pcpu;
1310
bfedb589 1311 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1312 lru_gen_init_mm(mm);
41f727fd
VD
1313 return mm;
1314
f1a79412
SB
1315fail_pcpu:
1316 while (i > 0)
1317 percpu_counter_destroy(&mm->rss_stat[--i]);
223baf9d
MD
1318 mm_destroy_cid(mm);
1319fail_cid:
b20b0368 1320 destroy_context(mm);
41f727fd
VD
1321fail_nocontext:
1322 mm_free_pgd(mm);
1323fail_nopgd:
1da177e4
LT
1324 free_mm(mm);
1325 return NULL;
1326}
1327
1328/*
1329 * Allocate and initialize an mm_struct.
1330 */
fb0a685c 1331struct mm_struct *mm_alloc(void)
1da177e4 1332{
fb0a685c 1333 struct mm_struct *mm;
1da177e4
LT
1334
1335 mm = allocate_mm();
de03c72c
KM
1336 if (!mm)
1337 return NULL;
1338
1339 memset(mm, 0, sizeof(*mm));
bfedb589 1340 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1341}
1342
ec8d7c14
MH
1343static inline void __mmput(struct mm_struct *mm)
1344{
1345 VM_BUG_ON(atomic_read(&mm->mm_users));
1346
1347 uprobe_clear_state(mm);
1348 exit_aio(mm);
1349 ksm_exit(mm);
1350 khugepaged_exit(mm); /* must run before exit_mmap */
1351 exit_mmap(mm);
6fcb52a5 1352 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1353 set_mm_exe_file(mm, NULL);
1354 if (!list_empty(&mm->mmlist)) {
1355 spin_lock(&mmlist_lock);
1356 list_del(&mm->mmlist);
1357 spin_unlock(&mmlist_lock);
1358 }
1359 if (mm->binfmt)
1360 module_put(mm->binfmt->module);
bd74fdae 1361 lru_gen_del_mm(mm);
ec8d7c14
MH
1362 mmdrop(mm);
1363}
1364
1da177e4
LT
1365/*
1366 * Decrement the use count and release all resources for an mm.
1367 */
1368void mmput(struct mm_struct *mm)
1369{
0ae26f1b
AM
1370 might_sleep();
1371
ec8d7c14
MH
1372 if (atomic_dec_and_test(&mm->mm_users))
1373 __mmput(mm);
1374}
1375EXPORT_SYMBOL_GPL(mmput);
1376
a1b2289c
SY
1377#ifdef CONFIG_MMU
1378static void mmput_async_fn(struct work_struct *work)
1379{
1380 struct mm_struct *mm = container_of(work, struct mm_struct,
1381 async_put_work);
1382
1383 __mmput(mm);
1384}
1385
1386void mmput_async(struct mm_struct *mm)
1387{
1388 if (atomic_dec_and_test(&mm->mm_users)) {
1389 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1390 schedule_work(&mm->async_put_work);
1391 }
1392}
85eaeb50 1393EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1394#endif
1395
90f31d0e
KK
1396/**
1397 * set_mm_exe_file - change a reference to the mm's executable file
1398 *
1399 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1400 *
6e399cd1
DB
1401 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1402 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1403 * threaded.
fe69d560
DH
1404 *
1405 * Can only fail if new_exe_file != NULL.
90f31d0e 1406 */
fe69d560 1407int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1408{
6e399cd1
DB
1409 struct file *old_exe_file;
1410
1411 /*
1412 * It is safe to dereference the exe_file without RCU as
1413 * this function is only called if nobody else can access
1414 * this mm -- see comment above for justification.
1415 */
1416 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1417
fe69d560
DH
1418 if (new_exe_file) {
1419 /*
1420 * We expect the caller (i.e., sys_execve) to already denied
1421 * write access, so this is unlikely to fail.
1422 */
1423 if (unlikely(deny_write_access(new_exe_file)))
1424 return -EACCES;
38646013 1425 get_file(new_exe_file);
fe69d560 1426 }
90f31d0e 1427 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1428 if (old_exe_file) {
1429 allow_write_access(old_exe_file);
90f31d0e 1430 fput(old_exe_file);
fe69d560
DH
1431 }
1432 return 0;
38646013
JS
1433}
1434
35d7bdc8
DH
1435/**
1436 * replace_mm_exe_file - replace a reference to the mm's executable file
1437 *
1438 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1439 * dealing with concurrent invocation and without grabbing the mmap lock in
1440 * write mode.
1441 *
1442 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1443 */
1444int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1445{
1446 struct vm_area_struct *vma;
1447 struct file *old_exe_file;
1448 int ret = 0;
1449
1450 /* Forbid mm->exe_file change if old file still mapped. */
1451 old_exe_file = get_mm_exe_file(mm);
1452 if (old_exe_file) {
fa5e5876 1453 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1454 mmap_read_lock(mm);
fa5e5876 1455 for_each_vma(vmi, vma) {
35d7bdc8
DH
1456 if (!vma->vm_file)
1457 continue;
1458 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1459 &old_exe_file->f_path)) {
35d7bdc8 1460 ret = -EBUSY;
fa5e5876
MWO
1461 break;
1462 }
35d7bdc8
DH
1463 }
1464 mmap_read_unlock(mm);
1465 fput(old_exe_file);
1466 if (ret)
1467 return ret;
1468 }
1469
1470 /* set the new file, lockless */
fe69d560
DH
1471 ret = deny_write_access(new_exe_file);
1472 if (ret)
1473 return -EACCES;
35d7bdc8 1474 get_file(new_exe_file);
fe69d560 1475
35d7bdc8 1476 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1477 if (old_exe_file) {
1478 /*
1479 * Don't race with dup_mmap() getting the file and disallowing
1480 * write access while someone might open the file writable.
1481 */
1482 mmap_read_lock(mm);
1483 allow_write_access(old_exe_file);
35d7bdc8 1484 fput(old_exe_file);
fe69d560
DH
1485 mmap_read_unlock(mm);
1486 }
35d7bdc8 1487 return 0;
38646013
JS
1488}
1489
90f31d0e
KK
1490/**
1491 * get_mm_exe_file - acquire a reference to the mm's executable file
1492 *
1493 * Returns %NULL if mm has no associated executable file.
1494 * User must release file via fput().
1495 */
38646013
JS
1496struct file *get_mm_exe_file(struct mm_struct *mm)
1497{
1498 struct file *exe_file;
1499
90f31d0e
KK
1500 rcu_read_lock();
1501 exe_file = rcu_dereference(mm->exe_file);
1502 if (exe_file && !get_file_rcu(exe_file))
1503 exe_file = NULL;
1504 rcu_read_unlock();
38646013
JS
1505 return exe_file;
1506}
1507
cd81a917
MG
1508/**
1509 * get_task_exe_file - acquire a reference to the task's executable file
1510 *
1511 * Returns %NULL if task's mm (if any) has no associated executable file or
1512 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1513 * User must release file via fput().
1514 */
1515struct file *get_task_exe_file(struct task_struct *task)
1516{
1517 struct file *exe_file = NULL;
1518 struct mm_struct *mm;
1519
1520 task_lock(task);
1521 mm = task->mm;
1522 if (mm) {
1523 if (!(task->flags & PF_KTHREAD))
1524 exe_file = get_mm_exe_file(mm);
1525 }
1526 task_unlock(task);
1527 return exe_file;
1528}
38646013 1529
1da177e4
LT
1530/**
1531 * get_task_mm - acquire a reference to the task's mm
1532 *
246bb0b1 1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1534 * this kernel workthread has transiently adopted a user mm with use_mm,
1535 * to do its AIO) is not set and if so returns a reference to it, after
1536 * bumping up the use count. User must release the mm via mmput()
1537 * after use. Typically used by /proc and ptrace.
1538 */
1539struct mm_struct *get_task_mm(struct task_struct *task)
1540{
1541 struct mm_struct *mm;
1542
1543 task_lock(task);
1544 mm = task->mm;
1545 if (mm) {
246bb0b1 1546 if (task->flags & PF_KTHREAD)
1da177e4
LT
1547 mm = NULL;
1548 else
3fce371b 1549 mmget(mm);
1da177e4
LT
1550 }
1551 task_unlock(task);
1552 return mm;
1553}
1554EXPORT_SYMBOL_GPL(get_task_mm);
1555
8cdb878d
CY
1556struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1557{
1558 struct mm_struct *mm;
1559 int err;
1560
f7cfd871 1561 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1562 if (err)
1563 return ERR_PTR(err);
1564
1565 mm = get_task_mm(task);
1566 if (mm && mm != current->mm &&
1567 !ptrace_may_access(task, mode)) {
1568 mmput(mm);
1569 mm = ERR_PTR(-EACCES);
1570 }
f7cfd871 1571 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1572
1573 return mm;
1574}
1575
57b59c4a 1576static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1577{
d68b46fe 1578 struct completion *vfork;
c415c3b4 1579
d68b46fe
ON
1580 task_lock(tsk);
1581 vfork = tsk->vfork_done;
1582 if (likely(vfork)) {
1583 tsk->vfork_done = NULL;
1584 complete(vfork);
1585 }
1586 task_unlock(tsk);
1587}
1588
1589static int wait_for_vfork_done(struct task_struct *child,
1590 struct completion *vfork)
1591{
f5d39b02 1592 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1593 int killed;
1594
76f969e8 1595 cgroup_enter_frozen();
f5d39b02 1596 killed = wait_for_completion_state(vfork, state);
76f969e8 1597 cgroup_leave_frozen(false);
d68b46fe
ON
1598
1599 if (killed) {
1600 task_lock(child);
1601 child->vfork_done = NULL;
1602 task_unlock(child);
1603 }
1604
1605 put_task_struct(child);
1606 return killed;
c415c3b4
ON
1607}
1608
1da177e4
LT
1609/* Please note the differences between mmput and mm_release.
1610 * mmput is called whenever we stop holding onto a mm_struct,
1611 * error success whatever.
1612 *
1613 * mm_release is called after a mm_struct has been removed
1614 * from the current process.
1615 *
1616 * This difference is important for error handling, when we
1617 * only half set up a mm_struct for a new process and need to restore
1618 * the old one. Because we mmput the new mm_struct before
1619 * restoring the old one. . .
1620 * Eric Biederman 10 January 1998
1621 */
4610ba7a 1622static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1623{
0326f5a9
SD
1624 uprobe_free_utask(tsk);
1625
1da177e4
LT
1626 /* Get rid of any cached register state */
1627 deactivate_mm(tsk, mm);
1628
fec1d011 1629 /*
735f2770
MH
1630 * Signal userspace if we're not exiting with a core dump
1631 * because we want to leave the value intact for debugging
1632 * purposes.
fec1d011 1633 */
9c8a8228 1634 if (tsk->clear_child_tid) {
92307383 1635 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1636 /*
1637 * We don't check the error code - if userspace has
1638 * not set up a proper pointer then tough luck.
1639 */
1640 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1642 1, NULL, NULL, 0, 0);
9c8a8228 1643 }
1da177e4 1644 tsk->clear_child_tid = NULL;
1da177e4 1645 }
f7505d64
KK
1646
1647 /*
1648 * All done, finally we can wake up parent and return this mm to him.
1649 * Also kthread_stop() uses this completion for synchronization.
1650 */
1651 if (tsk->vfork_done)
1652 complete_vfork_done(tsk);
1da177e4
LT
1653}
1654
4610ba7a
TG
1655void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1656{
150d7158 1657 futex_exit_release(tsk);
4610ba7a
TG
1658 mm_release(tsk, mm);
1659}
1660
1661void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1662{
150d7158 1663 futex_exec_release(tsk);
4610ba7a
TG
1664 mm_release(tsk, mm);
1665}
1666
13585fa0
NA
1667/**
1668 * dup_mm() - duplicates an existing mm structure
1669 * @tsk: the task_struct with which the new mm will be associated.
1670 * @oldmm: the mm to duplicate.
1671 *
1672 * Allocates a new mm structure and duplicates the provided @oldmm structure
1673 * content into it.
1674 *
1675 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1676 */
13585fa0
NA
1677static struct mm_struct *dup_mm(struct task_struct *tsk,
1678 struct mm_struct *oldmm)
a0a7ec30 1679{
13585fa0 1680 struct mm_struct *mm;
a0a7ec30
JD
1681 int err;
1682
a0a7ec30
JD
1683 mm = allocate_mm();
1684 if (!mm)
1685 goto fail_nomem;
1686
1687 memcpy(mm, oldmm, sizeof(*mm));
1688
bfedb589 1689 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1690 goto fail_nomem;
1691
a0a7ec30
JD
1692 err = dup_mmap(mm, oldmm);
1693 if (err)
1694 goto free_pt;
1695
1696 mm->hiwater_rss = get_mm_rss(mm);
1697 mm->hiwater_vm = mm->total_vm;
1698
801460d0
HS
1699 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700 goto free_pt;
1701
a0a7ec30
JD
1702 return mm;
1703
1704free_pt:
801460d0
HS
1705 /* don't put binfmt in mmput, we haven't got module yet */
1706 mm->binfmt = NULL;
c3f3ce04 1707 mm_init_owner(mm, NULL);
a0a7ec30
JD
1708 mmput(mm);
1709
1710fail_nomem:
1711 return NULL;
a0a7ec30
JD
1712}
1713
fb0a685c 1714static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1715{
fb0a685c 1716 struct mm_struct *mm, *oldmm;
1da177e4
LT
1717
1718 tsk->min_flt = tsk->maj_flt = 0;
1719 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1720#ifdef CONFIG_DETECT_HUNG_TASK
1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1722 tsk->last_switch_time = 0;
17406b82 1723#endif
1da177e4
LT
1724
1725 tsk->mm = NULL;
1726 tsk->active_mm = NULL;
1727
1728 /*
1729 * Are we cloning a kernel thread?
1730 *
1731 * We need to steal a active VM for that..
1732 */
1733 oldmm = current->mm;
1734 if (!oldmm)
1735 return 0;
1736
1737 if (clone_flags & CLONE_VM) {
3fce371b 1738 mmget(oldmm);
1da177e4 1739 mm = oldmm;
a6895399
REB
1740 } else {
1741 mm = dup_mm(tsk, current->mm);
1742 if (!mm)
1743 return -ENOMEM;
1da177e4
LT
1744 }
1745
1da177e4
LT
1746 tsk->mm = mm;
1747 tsk->active_mm = mm;
af7f588d 1748 sched_mm_cid_fork(tsk);
1da177e4 1749 return 0;
1da177e4
LT
1750}
1751
a39bc516 1752static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1753{
498052bb 1754 struct fs_struct *fs = current->fs;
1da177e4 1755 if (clone_flags & CLONE_FS) {
498052bb 1756 /* tsk->fs is already what we want */
2a4419b5 1757 spin_lock(&fs->lock);
498052bb 1758 if (fs->in_exec) {
2a4419b5 1759 spin_unlock(&fs->lock);
498052bb
AV
1760 return -EAGAIN;
1761 }
1762 fs->users++;
2a4419b5 1763 spin_unlock(&fs->lock);
1da177e4
LT
1764 return 0;
1765 }
498052bb 1766 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1767 if (!tsk->fs)
1768 return -ENOMEM;
1769 return 0;
1770}
1771
11f3f500
MC
1772static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1773 int no_files)
a016f338
JD
1774{
1775 struct files_struct *oldf, *newf;
1776 int error = 0;
1777
1778 /*
1779 * A background process may not have any files ...
1780 */
1781 oldf = current->files;
1782 if (!oldf)
1783 goto out;
1784
11f3f500
MC
1785 if (no_files) {
1786 tsk->files = NULL;
1787 goto out;
1788 }
1789
a016f338
JD
1790 if (clone_flags & CLONE_FILES) {
1791 atomic_inc(&oldf->count);
1792 goto out;
1793 }
1794
60997c3d 1795 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1796 if (!newf)
1797 goto out;
1798
1799 tsk->files = newf;
1800 error = 0;
1801out:
1802 return error;
1803}
1804
a39bc516 1805static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1806{
1807 struct sighand_struct *sig;
1808
60348802 1809 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1810 refcount_inc(&current->sighand->count);
1da177e4
LT
1811 return 0;
1812 }
1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1814 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1815 if (!sig)
1816 return -ENOMEM;
9d7fb042 1817
d036bda7 1818 refcount_set(&sig->count, 1);
06e62a46 1819 spin_lock_irq(&current->sighand->siglock);
1da177e4 1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1821 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1822
1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1824 if (clone_flags & CLONE_CLEAR_SIGHAND)
1825 flush_signal_handlers(tsk, 0);
1826
1da177e4
LT
1827 return 0;
1828}
1829
a7e5328a 1830void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1831{
d036bda7 1832 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1833 signalfd_cleanup(sighand);
392809b2 1834 /*
5f0d5a3a 1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1836 * without an RCU grace period, see __lock_task_sighand().
1837 */
c81addc9 1838 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1839 }
c81addc9
ON
1840}
1841
f06febc9
FM
1842/*
1843 * Initialize POSIX timer handling for a thread group.
1844 */
1845static void posix_cpu_timers_init_group(struct signal_struct *sig)
1846{
2b69942f 1847 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1848 unsigned long cpu_limit;
1849
316c1608 1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1851 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1852}
1853
a39bc516 1854static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1855{
1856 struct signal_struct *sig;
1da177e4 1857
4ab6c083 1858 if (clone_flags & CLONE_THREAD)
490dea45 1859 return 0;
490dea45 1860
a56704ef 1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1862 tsk->signal = sig;
1863 if (!sig)
1864 return -ENOMEM;
1865
b3ac022c 1866 sig->nr_threads = 1;
d80f7d7b 1867 sig->quick_threads = 1;
1da177e4 1868 atomic_set(&sig->live, 1);
60d4de3f 1869 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1870
1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1874
1da177e4 1875 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1876 sig->curr_target = tsk;
1da177e4 1877 init_sigpending(&sig->shared_pending);
c3ad2c3b 1878 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1879 seqlock_init(&sig->stats_lock);
9d7fb042 1880 prev_cputime_init(&sig->prev_cputime);
1da177e4 1881
baa73d9e 1882#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1883 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1885 sig->real_timer.function = it_real_fn;
baa73d9e 1886#endif
1da177e4 1887
1da177e4
LT
1888 task_lock(current->group_leader);
1889 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1890 task_unlock(current->group_leader);
1891
6279a751
ON
1892 posix_cpu_timers_init_group(sig);
1893
522ed776 1894 tty_audit_fork(sig);
5091faa4 1895 sched_autogroup_fork(sig);
522ed776 1896
a63d83f4 1897 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1898 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1899
9b1bf12d 1900 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1901 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1902
1da177e4
LT
1903 return 0;
1904}
1905
dbd95212
KC
1906static void copy_seccomp(struct task_struct *p)
1907{
1908#ifdef CONFIG_SECCOMP
1909 /*
1910 * Must be called with sighand->lock held, which is common to
1911 * all threads in the group. Holding cred_guard_mutex is not
1912 * needed because this new task is not yet running and cannot
1913 * be racing exec.
1914 */
69f6a34b 1915 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1916
1917 /* Ref-count the new filter user, and assign it. */
1918 get_seccomp_filter(current);
1919 p->seccomp = current->seccomp;
1920
1921 /*
1922 * Explicitly enable no_new_privs here in case it got set
1923 * between the task_struct being duplicated and holding the
1924 * sighand lock. The seccomp state and nnp must be in sync.
1925 */
1926 if (task_no_new_privs(current))
1927 task_set_no_new_privs(p);
1928
1929 /*
1930 * If the parent gained a seccomp mode after copying thread
1931 * flags and between before we held the sighand lock, we have
1932 * to manually enable the seccomp thread flag here.
1933 */
1934 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1935 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1936#endif
1937}
1938
17da2bd9 1939SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1940{
1941 current->clear_child_tid = tidptr;
1942
b488893a 1943 return task_pid_vnr(current);
1da177e4
LT
1944}
1945
a39bc516 1946static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1947{
1d615482 1948 raw_spin_lock_init(&p->pi_lock);
e29e175b 1949#ifdef CONFIG_RT_MUTEXES
a23ba907 1950 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1951 p->pi_top_task = NULL;
23f78d4a 1952 p->pi_blocked_on = NULL;
23f78d4a
IM
1953#endif
1954}
1955
2c470475
EB
1956static inline void init_task_pid_links(struct task_struct *task)
1957{
1958 enum pid_type type;
1959
96e1e984 1960 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1961 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1962}
1963
81907739
ON
1964static inline void
1965init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1966{
2c470475
EB
1967 if (type == PIDTYPE_PID)
1968 task->thread_pid = pid;
1969 else
1970 task->signal->pids[type] = pid;
81907739
ON
1971}
1972
6bfbaa51
IM
1973static inline void rcu_copy_process(struct task_struct *p)
1974{
1975#ifdef CONFIG_PREEMPT_RCU
1976 p->rcu_read_lock_nesting = 0;
1977 p->rcu_read_unlock_special.s = 0;
1978 p->rcu_blocked_node = NULL;
1979 INIT_LIST_HEAD(&p->rcu_node_entry);
1980#endif /* #ifdef CONFIG_PREEMPT_RCU */
1981#ifdef CONFIG_TASKS_RCU
1982 p->rcu_tasks_holdout = false;
1983 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1984 p->rcu_tasks_idle_cpu = -1;
1985#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1986#ifdef CONFIG_TASKS_TRACE_RCU
1987 p->trc_reader_nesting = 0;
276c4104 1988 p->trc_reader_special.s = 0;
d5f177d3 1989 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1990 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1991#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1992}
1993
3695eae5
CB
1994struct pid *pidfd_pid(const struct file *file)
1995{
1996 if (file->f_op == &pidfd_fops)
1997 return file->private_data;
1998
1999 return ERR_PTR(-EBADF);
2000}
2001
b3e58382
CB
2002static int pidfd_release(struct inode *inode, struct file *file)
2003{
2004 struct pid *pid = file->private_data;
2005
2006 file->private_data = NULL;
2007 put_pid(pid);
2008 return 0;
2009}
2010
2011#ifdef CONFIG_PROC_FS
15d42eb2
CK
2012/**
2013 * pidfd_show_fdinfo - print information about a pidfd
2014 * @m: proc fdinfo file
2015 * @f: file referencing a pidfd
2016 *
2017 * Pid:
2018 * This function will print the pid that a given pidfd refers to in the
2019 * pid namespace of the procfs instance.
2020 * If the pid namespace of the process is not a descendant of the pid
2021 * namespace of the procfs instance 0 will be shown as its pid. This is
2022 * similar to calling getppid() on a process whose parent is outside of
2023 * its pid namespace.
2024 *
2025 * NSpid:
2026 * If pid namespaces are supported then this function will also print
2027 * the pid of a given pidfd refers to for all descendant pid namespaces
2028 * starting from the current pid namespace of the instance, i.e. the
2029 * Pid field and the first entry in the NSpid field will be identical.
2030 * If the pid namespace of the process is not a descendant of the pid
2031 * namespace of the procfs instance 0 will be shown as its first NSpid
2032 * entry and no others will be shown.
2033 * Note that this differs from the Pid and NSpid fields in
2034 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2035 * the pid namespace of the procfs instance. The difference becomes
2036 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 2037 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
2038 * present between the pid namespaces:
2039 * - create two new pid namespaces ns1 and ns2 in the initial pid
2040 * namespace (also take care to create new mount namespaces in the
2041 * new pid namespace and mount procfs)
2042 * - create a process with a pidfd in ns1
2043 * - send pidfd from ns1 to ns2
2044 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2045 * have exactly one entry, which is 0
2046 */
b3e58382
CB
2047static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2048{
b3e58382 2049 struct pid *pid = f->private_data;
3d6d8da4
CB
2050 struct pid_namespace *ns;
2051 pid_t nr = -1;
15d42eb2 2052
3d6d8da4 2053 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 2054 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
2055 nr = pid_nr_ns(pid, ns);
2056 }
2057
2058 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 2059
15d42eb2 2060#ifdef CONFIG_PID_NS
3d6d8da4
CB
2061 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2062 if (nr > 0) {
15d42eb2 2063 int i;
b3e58382 2064
15d42eb2
CK
2065 /* If nr is non-zero it means that 'pid' is valid and that
2066 * ns, i.e. the pid namespace associated with the procfs
2067 * instance, is in the pid namespace hierarchy of pid.
2068 * Start at one below the already printed level.
2069 */
2070 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 2071 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
2072 }
2073#endif
b3e58382
CB
2074 seq_putc(m, '\n');
2075}
2076#endif
2077
b53b0b9d
JFG
2078/*
2079 * Poll support for process exit notification.
2080 */
9e77716a 2081static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 2082{
b53b0b9d 2083 struct pid *pid = file->private_data;
9e77716a 2084 __poll_t poll_flags = 0;
b53b0b9d
JFG
2085
2086 poll_wait(file, &pid->wait_pidfd, pts);
2087
b53b0b9d
JFG
2088 /*
2089 * Inform pollers only when the whole thread group exits.
2090 * If the thread group leader exits before all other threads in the
2091 * group, then poll(2) should block, similar to the wait(2) family.
2092 */
38fd525a 2093 if (thread_group_exited(pid))
9e77716a 2094 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
2095
2096 return poll_flags;
2097}
2098
b3e58382
CB
2099const struct file_operations pidfd_fops = {
2100 .release = pidfd_release,
b53b0b9d 2101 .poll = pidfd_poll,
b3e58382
CB
2102#ifdef CONFIG_PROC_FS
2103 .show_fdinfo = pidfd_show_fdinfo,
2104#endif
2105};
2106
6ae930d9
CB
2107/**
2108 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2109 * @pid: the struct pid for which to create a pidfd
2110 * @flags: flags of the new @pidfd
2111 * @pidfd: the pidfd to return
2112 *
2113 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2114 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2115
2116 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2117 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2118 * pidfd file are prepared.
2119 *
2120 * If this function returns successfully the caller is responsible to either
2121 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2122 * order to install the pidfd into its file descriptor table or they must use
2123 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2124 * respectively.
2125 *
2126 * This function is useful when a pidfd must already be reserved but there
2127 * might still be points of failure afterwards and the caller wants to ensure
2128 * that no pidfd is leaked into its file descriptor table.
2129 *
2130 * Return: On success, a reserved pidfd is returned from the function and a new
2131 * pidfd file is returned in the last argument to the function. On
2132 * error, a negative error code is returned from the function and the
2133 * last argument remains unchanged.
2134 */
2135static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2136{
2137 int pidfd;
2138 struct file *pidfd_file;
2139
2140 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2141 return -EINVAL;
2142
2143 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2144 if (pidfd < 0)
2145 return pidfd;
2146
2147 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2148 flags | O_RDWR | O_CLOEXEC);
2149 if (IS_ERR(pidfd_file)) {
2150 put_unused_fd(pidfd);
2151 return PTR_ERR(pidfd_file);
2152 }
2153 get_pid(pid); /* held by pidfd_file now */
2154 *ret = pidfd_file;
2155 return pidfd;
2156}
2157
2158/**
2159 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2160 * @pid: the struct pid for which to create a pidfd
2161 * @flags: flags of the new @pidfd
2162 * @pidfd: the pidfd to return
2163 *
2164 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2165 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2166 *
2167 * The helper verifies that @pid is used as a thread group leader.
2168 *
2169 * If this function returns successfully the caller is responsible to either
2170 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2171 * order to install the pidfd into its file descriptor table or they must use
2172 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2173 * respectively.
2174 *
2175 * This function is useful when a pidfd must already be reserved but there
2176 * might still be points of failure afterwards and the caller wants to ensure
2177 * that no pidfd is leaked into its file descriptor table.
2178 *
2179 * Return: On success, a reserved pidfd is returned from the function and a new
2180 * pidfd file is returned in the last argument to the function. On
2181 * error, a negative error code is returned from the function and the
2182 * last argument remains unchanged.
2183 */
2184int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2185{
2186 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2187 return -EINVAL;
2188
2189 return __pidfd_prepare(pid, flags, ret);
2190}
2191
c3f3ce04
AA
2192static void __delayed_free_task(struct rcu_head *rhp)
2193{
2194 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2195
2196 free_task(tsk);
2197}
2198
2199static __always_inline void delayed_free_task(struct task_struct *tsk)
2200{
2201 if (IS_ENABLED(CONFIG_MEMCG))
2202 call_rcu(&tsk->rcu, __delayed_free_task);
2203 else
2204 free_task(tsk);
2205}
2206
67197a4f
SB
2207static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2208{
2209 /* Skip if kernel thread */
2210 if (!tsk->mm)
2211 return;
2212
2213 /* Skip if spawning a thread or using vfork */
2214 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2215 return;
2216
2217 /* We need to synchronize with __set_oom_adj */
2218 mutex_lock(&oom_adj_mutex);
2219 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2220 /* Update the values in case they were changed after copy_signal */
2221 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2222 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2223 mutex_unlock(&oom_adj_mutex);
2224}
2225
79257534
DBO
2226#ifdef CONFIG_RV
2227static void rv_task_fork(struct task_struct *p)
2228{
2229 int i;
2230
2231 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2232 p->rv[i].da_mon.monitoring = false;
2233}
2234#else
2235#define rv_task_fork(p) do {} while (0)
2236#endif
2237
1da177e4
LT
2238/*
2239 * This creates a new process as a copy of the old one,
2240 * but does not actually start it yet.
2241 *
2242 * It copies the registers, and all the appropriate
2243 * parts of the process environment (as per the clone
2244 * flags). The actual kick-off is left to the caller.
2245 */
89c8e98d 2246__latent_entropy struct task_struct *copy_process(
09a05394 2247 struct pid *pid,
3033f14a 2248 int trace,
7f192e3c
CB
2249 int node,
2250 struct kernel_clone_args *args)
1da177e4 2251{
b3e58382 2252 int pidfd = -1, retval;
a24efe62 2253 struct task_struct *p;
c3ad2c3b 2254 struct multiprocess_signals delayed;
6fd2fe49 2255 struct file *pidfile = NULL;
c5febea0 2256 const u64 clone_flags = args->flags;
769071ac 2257 struct nsproxy *nsp = current->nsproxy;
1da177e4 2258
667b6094
MPS
2259 /*
2260 * Don't allow sharing the root directory with processes in a different
2261 * namespace
2262 */
1da177e4
LT
2263 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2264 return ERR_PTR(-EINVAL);
2265
e66eded8
EB
2266 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2267 return ERR_PTR(-EINVAL);
2268
1da177e4
LT
2269 /*
2270 * Thread groups must share signals as well, and detached threads
2271 * can only be started up within the thread group.
2272 */
2273 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2274 return ERR_PTR(-EINVAL);
2275
2276 /*
2277 * Shared signal handlers imply shared VM. By way of the above,
2278 * thread groups also imply shared VM. Blocking this case allows
2279 * for various simplifications in other code.
2280 */
2281 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2282 return ERR_PTR(-EINVAL);
2283
123be07b
SB
2284 /*
2285 * Siblings of global init remain as zombies on exit since they are
2286 * not reaped by their parent (swapper). To solve this and to avoid
2287 * multi-rooted process trees, prevent global and container-inits
2288 * from creating siblings.
2289 */
2290 if ((clone_flags & CLONE_PARENT) &&
2291 current->signal->flags & SIGNAL_UNKILLABLE)
2292 return ERR_PTR(-EINVAL);
2293
8382fcac 2294 /*
40a0d32d 2295 * If the new process will be in a different pid or user namespace
faf00da5 2296 * do not allow it to share a thread group with the forking task.
8382fcac 2297 */
faf00da5 2298 if (clone_flags & CLONE_THREAD) {
40a0d32d 2299 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2300 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2301 return ERR_PTR(-EINVAL);
2302 }
2303
b3e58382 2304 if (clone_flags & CLONE_PIDFD) {
b3e58382 2305 /*
b3e58382
CB
2306 * - CLONE_DETACHED is blocked so that we can potentially
2307 * reuse it later for CLONE_PIDFD.
2308 * - CLONE_THREAD is blocked until someone really needs it.
2309 */
7f192e3c 2310 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2311 return ERR_PTR(-EINVAL);
b3e58382
CB
2312 }
2313
c3ad2c3b
EB
2314 /*
2315 * Force any signals received before this point to be delivered
2316 * before the fork happens. Collect up signals sent to multiple
2317 * processes that happen during the fork and delay them so that
2318 * they appear to happen after the fork.
2319 */
2320 sigemptyset(&delayed.signal);
2321 INIT_HLIST_NODE(&delayed.node);
2322
2323 spin_lock_irq(&current->sighand->siglock);
2324 if (!(clone_flags & CLONE_THREAD))
2325 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2326 recalc_sigpending();
2327 spin_unlock_irq(&current->sighand->siglock);
2328 retval = -ERESTARTNOINTR;
66ae0d1e 2329 if (task_sigpending(current))
c3ad2c3b
EB
2330 goto fork_out;
2331
1da177e4 2332 retval = -ENOMEM;
725fc629 2333 p = dup_task_struct(current, node);
1da177e4
LT
2334 if (!p)
2335 goto fork_out;
753550eb
EB
2336 p->flags &= ~PF_KTHREAD;
2337 if (args->kthread)
2338 p->flags |= PF_KTHREAD;
54e6842d
MC
2339 if (args->user_worker)
2340 p->flags |= PF_USER_WORKER;
b16b3855
JA
2341 if (args->io_thread) {
2342 /*
2343 * Mark us an IO worker, and block any signal that isn't
2344 * fatal or STOP
2345 */
cc440e87 2346 p->flags |= PF_IO_WORKER;
b16b3855
JA
2347 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2348 }
1da177e4 2349
cf587db2
MC
2350 if (args->name)
2351 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2352
7f192e3c 2353 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2354 /*
2355 * Clear TID on mm_release()?
2356 */
7f192e3c 2357 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2358
f7e8b616
SR
2359 ftrace_graph_init_task(p);
2360
bea493a0
PZ
2361 rt_mutex_init_task(p);
2362
a21ee605 2363 lockdep_assert_irqs_enabled();
d12c1a37 2364#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2365 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2366#endif
8f2f9c4d
EB
2367 retval = copy_creds(p, clone_flags);
2368 if (retval < 0)
2369 goto bad_fork_free;
2370
1da177e4 2371 retval = -EAGAIN;
de399236 2372 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2373 if (p->real_cred->user != INIT_USER &&
2374 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2375 goto bad_fork_cleanup_count;
1da177e4 2376 }
72fa5997 2377 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2378
1da177e4
LT
2379 /*
2380 * If multiple threads are within copy_process(), then this check
2381 * triggers too late. This doesn't hurt, the check is only there
2382 * to stop root fork bombs.
2383 */
04ec93fe 2384 retval = -EAGAIN;
c17d1a3a 2385 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2386 goto bad_fork_cleanup_count;
2387
ca74e92b 2388 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2389 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2390 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2391 INIT_LIST_HEAD(&p->children);
2392 INIT_LIST_HEAD(&p->sibling);
f41d911f 2393 rcu_copy_process(p);
1da177e4
LT
2394 p->vfork_done = NULL;
2395 spin_lock_init(&p->alloc_lock);
1da177e4 2396
1da177e4
LT
2397 init_sigpending(&p->pending);
2398
64861634 2399 p->utime = p->stime = p->gtime = 0;
40565b5a 2400#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2401 p->utimescaled = p->stimescaled = 0;
40565b5a 2402#endif
9d7fb042
PZ
2403 prev_cputime_init(&p->prev_cputime);
2404
6a61671b 2405#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2406 seqcount_init(&p->vtime.seqcount);
2407 p->vtime.starttime = 0;
2408 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2409#endif
2410
0f212204
JA
2411#ifdef CONFIG_IO_URING
2412 p->io_uring = NULL;
2413#endif
2414
a3a2e76c
KH
2415#if defined(SPLIT_RSS_COUNTING)
2416 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2417#endif
172ba844 2418
6976675d
AV
2419 p->default_timer_slack_ns = current->timer_slack_ns;
2420
eb414681
JW
2421#ifdef CONFIG_PSI
2422 p->psi_flags = 0;
2423#endif
2424
5995477a 2425 task_io_accounting_init(&p->ioac);
1da177e4
LT
2426 acct_clear_integrals(p);
2427
3a245c0f 2428 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2429
1da177e4 2430 p->io_context = NULL;
c0b0ae8a 2431 audit_set_context(p, NULL);
b4f48b63 2432 cgroup_fork(p);
343f4c49 2433 if (args->kthread) {
40966e31 2434 if (!set_kthread_struct(p))
ff8288ff 2435 goto bad_fork_cleanup_delayacct;
40966e31 2436 }
1da177e4 2437#ifdef CONFIG_NUMA
846a16bf 2438 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2439 if (IS_ERR(p->mempolicy)) {
2440 retval = PTR_ERR(p->mempolicy);
2441 p->mempolicy = NULL;
ff8288ff 2442 goto bad_fork_cleanup_delayacct;
fb0a685c 2443 }
1da177e4 2444#endif
778d3b0f
MH
2445#ifdef CONFIG_CPUSETS
2446 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2447 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2448 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2449#endif
de30a2b3 2450#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2451 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2452 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2453 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2454 p->softirqs_enabled = 1;
2455 p->softirq_context = 0;
de30a2b3 2456#endif
8bcbde54
DH
2457
2458 p->pagefault_disabled = 0;
2459
fbb9ce95 2460#ifdef CONFIG_LOCKDEP
b09be676 2461 lockdep_init_task(p);
fbb9ce95 2462#endif
1da177e4 2463
408894ee
IM
2464#ifdef CONFIG_DEBUG_MUTEXES
2465 p->blocked_on = NULL; /* not blocked yet */
2466#endif
cafe5635
KO
2467#ifdef CONFIG_BCACHE
2468 p->sequential_io = 0;
2469 p->sequential_io_avg = 0;
2470#endif
a10787e6
SL
2471#ifdef CONFIG_BPF_SYSCALL
2472 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2473 p->bpf_ctx = NULL;
a10787e6 2474#endif
0f481406 2475
3c90e6e9 2476 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2477 retval = sched_fork(clone_flags, p);
2478 if (retval)
2479 goto bad_fork_cleanup_policy;
6ab423e0 2480
2b26f0aa 2481 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2482 if (retval)
2483 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2484 retval = audit_alloc(p);
2485 if (retval)
6c72e350 2486 goto bad_fork_cleanup_perf;
1da177e4 2487 /* copy all the process information */
ab602f79 2488 shm_init_task(p);
e4e55b47 2489 retval = security_task_alloc(p, clone_flags);
fb0a685c 2490 if (retval)
1da177e4 2491 goto bad_fork_cleanup_audit;
e4e55b47
TH
2492 retval = copy_semundo(clone_flags, p);
2493 if (retval)
2494 goto bad_fork_cleanup_security;
11f3f500 2495 retval = copy_files(clone_flags, p, args->no_files);
fb0a685c 2496 if (retval)
1da177e4 2497 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2498 retval = copy_fs(clone_flags, p);
2499 if (retval)
1da177e4 2500 goto bad_fork_cleanup_files;
fb0a685c
DRO
2501 retval = copy_sighand(clone_flags, p);
2502 if (retval)
1da177e4 2503 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2504 retval = copy_signal(clone_flags, p);
2505 if (retval)
1da177e4 2506 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2507 retval = copy_mm(clone_flags, p);
2508 if (retval)
1da177e4 2509 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2510 retval = copy_namespaces(clone_flags, p);
2511 if (retval)
d84f4f99 2512 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2513 retval = copy_io(clone_flags, p);
2514 if (retval)
fd0928df 2515 goto bad_fork_cleanup_namespaces;
c5febea0 2516 retval = copy_thread(p, args);
1da177e4 2517 if (retval)
fd0928df 2518 goto bad_fork_cleanup_io;
1da177e4 2519
09471758
MC
2520 if (args->ignore_signals)
2521 ignore_signals(p);
2522
afaef01c
AP
2523 stackleak_task_init(p);
2524
425fb2b4 2525 if (pid != &init_struct_pid) {
49cb2fc4
AR
2526 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2527 args->set_tid_size);
35f71bc0
MH
2528 if (IS_ERR(pid)) {
2529 retval = PTR_ERR(pid);
0740aa5f 2530 goto bad_fork_cleanup_thread;
35f71bc0 2531 }
425fb2b4
PE
2532 }
2533
b3e58382
CB
2534 /*
2535 * This has to happen after we've potentially unshared the file
2536 * descriptor table (so that the pidfd doesn't leak into the child
2537 * if the fd table isn't shared).
2538 */
2539 if (clone_flags & CLONE_PIDFD) {
ca7707f5
CB
2540 /* Note that no task has been attached to @pid yet. */
2541 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
b3e58382
CB
2542 if (retval < 0)
2543 goto bad_fork_free_pid;
b3e58382 2544 pidfd = retval;
6fd2fe49 2545
7f192e3c 2546 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2547 if (retval)
2548 goto bad_fork_put_pidfd;
2549 }
2550
73c10101
JA
2551#ifdef CONFIG_BLOCK
2552 p->plug = NULL;
2553#endif
ba31c1a4
TG
2554 futex_init_task(p);
2555
f9a3879a
GM
2556 /*
2557 * sigaltstack should be cleared when sharing the same VM
2558 */
2559 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2560 sas_ss_reset(p);
f9a3879a 2561
1da177e4 2562 /*
6580807d
ON
2563 * Syscall tracing and stepping should be turned off in the
2564 * child regardless of CLONE_PTRACE.
1da177e4 2565 */
6580807d 2566 user_disable_single_step(p);
64c19ba2 2567 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2568#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2569 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2570#endif
e02c9b0d 2571 clear_tsk_latency_tracing(p);
1da177e4 2572
1da177e4 2573 /* ok, now we should be set up.. */
18c830df
ON
2574 p->pid = pid_nr(pid);
2575 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2576 p->group_leader = current->group_leader;
2577 p->tgid = current->tgid;
2578 } else {
18c830df
ON
2579 p->group_leader = p;
2580 p->tgid = p->pid;
2581 }
5f8aadd8 2582
9d823e8f
WF
2583 p->nr_dirtied = 0;
2584 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2585 p->dirty_paused_when = 0;
9d823e8f 2586
bb8cbbfe 2587 p->pdeath_signal = 0;
47e65328 2588 INIT_LIST_HEAD(&p->thread_group);
158e1645 2589 p->task_works = NULL;
ca7752ca 2590 clear_posix_cputimers_work(p);
1da177e4 2591
d741bf41
PZ
2592#ifdef CONFIG_KRETPROBES
2593 p->kretprobe_instances.first = NULL;
2594#endif
54ecbe6f
MH
2595#ifdef CONFIG_RETHOOK
2596 p->rethooks.first = NULL;
2597#endif
d741bf41 2598
7e47682e
AS
2599 /*
2600 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2601 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2602 * between here and cgroup_post_fork() if an organisation operation is in
2603 * progress.
2604 */
ef2c41cf 2605 retval = cgroup_can_fork(p, args);
7e47682e 2606 if (retval)
5a5cf5cb 2607 goto bad_fork_put_pidfd;
7e47682e 2608
b1e82065
PZ
2609 /*
2610 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2611 * the new task on the correct runqueue. All this *before* the task
2612 * becomes visible.
2613 *
2614 * This isn't part of ->can_fork() because while the re-cloning is
2615 * cgroup specific, it unconditionally needs to place the task on a
2616 * runqueue.
2617 */
2618 sched_cgroup_fork(p, args);
2619
7b558513
DH
2620 /*
2621 * From this point on we must avoid any synchronous user-space
2622 * communication until we take the tasklist-lock. In particular, we do
2623 * not want user-space to be able to predict the process start-time by
2624 * stalling fork(2) after we recorded the start_time but before it is
2625 * visible to the system.
2626 */
2627
2628 p->start_time = ktime_get_ns();
cf25e24d 2629 p->start_boottime = ktime_get_boottime_ns();
7b558513 2630
18c830df
ON
2631 /*
2632 * Make it visible to the rest of the system, but dont wake it up yet.
2633 * Need tasklist lock for parent etc handling!
2634 */
1da177e4
LT
2635 write_lock_irq(&tasklist_lock);
2636
1da177e4 2637 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2638 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2639 p->real_parent = current->real_parent;
2d5516cb 2640 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2641 if (clone_flags & CLONE_THREAD)
2642 p->exit_signal = -1;
2643 else
2644 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2645 } else {
1da177e4 2646 p->real_parent = current;
2d5516cb 2647 p->parent_exec_id = current->self_exec_id;
b4e00444 2648 p->exit_signal = args->exit_signal;
2d5516cb 2649 }
1da177e4 2650
d83a7cb3
JP
2651 klp_copy_process(p);
2652
85dd3f61
PZ
2653 sched_core_fork(p);
2654
3f17da69 2655 spin_lock(&current->sighand->siglock);
4a2c7a78 2656
79257534
DBO
2657 rv_task_fork(p);
2658
d7822b1e
MD
2659 rseq_fork(p, clone_flags);
2660
4ca1d3ee 2661 /* Don't start children in a dying pid namespace */
e8cfbc24 2662 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2663 retval = -ENOMEM;
2664 goto bad_fork_cancel_cgroup;
2665 }
4a2c7a78 2666
7673bf55
EB
2667 /* Let kill terminate clone/fork in the middle */
2668 if (fatal_signal_pending(current)) {
2669 retval = -EINTR;
2670 goto bad_fork_cancel_cgroup;
2671 }
2672
a1140cb2
KI
2673 /* No more failure paths after this point. */
2674
2675 /*
2676 * Copy seccomp details explicitly here, in case they were changed
2677 * before holding sighand lock.
2678 */
2679 copy_seccomp(p);
2680
2c470475 2681 init_task_pid_links(p);
73b9ebfe 2682 if (likely(p->pid)) {
4b9d33e6 2683 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2684
81907739 2685 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2686 if (thread_group_leader(p)) {
6883f81a 2687 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2688 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2689 init_task_pid(p, PIDTYPE_SID, task_session(current));
2690
1c4042c2 2691 if (is_child_reaper(pid)) {
17cf22c3 2692 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2693 p->signal->flags |= SIGNAL_UNKILLABLE;
2694 }
c3ad2c3b 2695 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2696 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2697 /*
2698 * Inherit has_child_subreaper flag under the same
2699 * tasklist_lock with adding child to the process tree
2700 * for propagate_has_child_subreaper optimization.
2701 */
2702 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2703 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2704 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2705 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2706 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2707 attach_pid(p, PIDTYPE_PGID);
2708 attach_pid(p, PIDTYPE_SID);
909ea964 2709 __this_cpu_inc(process_counts);
80628ca0
ON
2710 } else {
2711 current->signal->nr_threads++;
d80f7d7b 2712 current->signal->quick_threads++;
80628ca0 2713 atomic_inc(&current->signal->live);
60d4de3f 2714 refcount_inc(&current->signal->sigcnt);
924de3b8 2715 task_join_group_stop(p);
80628ca0
ON
2716 list_add_tail_rcu(&p->thread_group,
2717 &p->group_leader->thread_group);
0c740d0a
ON
2718 list_add_tail_rcu(&p->thread_node,
2719 &p->signal->thread_head);
73b9ebfe 2720 }
81907739 2721 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2722 nr_threads++;
1da177e4 2723 }
1da177e4 2724 total_forks++;
c3ad2c3b 2725 hlist_del_init(&delayed.node);
3f17da69 2726 spin_unlock(&current->sighand->siglock);
4af4206b 2727 syscall_tracepoint_update(p);
1da177e4 2728 write_unlock_irq(&tasklist_lock);
4af4206b 2729
ddc204b5
WL
2730 if (pidfile)
2731 fd_install(pidfd, pidfile);
2732
c13cf856 2733 proc_fork_connector(p);
b1e82065 2734 sched_post_fork(p);
ef2c41cf 2735 cgroup_post_fork(p, args);
cdd6c482 2736 perf_event_fork(p);
43d2b113
KH
2737
2738 trace_task_newtask(p, clone_flags);
3ab67966 2739 uprobe_copy_process(p, clone_flags);
fd593511 2740 user_events_fork(p, clone_flags);
43d2b113 2741
67197a4f
SB
2742 copy_oom_score_adj(clone_flags, p);
2743
1da177e4
LT
2744 return p;
2745
7e47682e 2746bad_fork_cancel_cgroup:
85dd3f61 2747 sched_core_free(p);
3fd37226
KT
2748 spin_unlock(&current->sighand->siglock);
2749 write_unlock_irq(&tasklist_lock);
ef2c41cf 2750 cgroup_cancel_fork(p, args);
b3e58382 2751bad_fork_put_pidfd:
6fd2fe49
AV
2752 if (clone_flags & CLONE_PIDFD) {
2753 fput(pidfile);
2754 put_unused_fd(pidfd);
2755 }
425fb2b4
PE
2756bad_fork_free_pid:
2757 if (pid != &init_struct_pid)
2758 free_pid(pid);
0740aa5f
JS
2759bad_fork_cleanup_thread:
2760 exit_thread(p);
fd0928df 2761bad_fork_cleanup_io:
b69f2292
LR
2762 if (p->io_context)
2763 exit_io_context(p);
ab516013 2764bad_fork_cleanup_namespaces:
444f378b 2765 exit_task_namespaces(p);
1da177e4 2766bad_fork_cleanup_mm:
c3f3ce04
AA
2767 if (p->mm) {
2768 mm_clear_owner(p->mm, p);
1da177e4 2769 mmput(p->mm);
c3f3ce04 2770 }
1da177e4 2771bad_fork_cleanup_signal:
4ab6c083 2772 if (!(clone_flags & CLONE_THREAD))
1c5354de 2773 free_signal_struct(p->signal);
1da177e4 2774bad_fork_cleanup_sighand:
a7e5328a 2775 __cleanup_sighand(p->sighand);
1da177e4
LT
2776bad_fork_cleanup_fs:
2777 exit_fs(p); /* blocking */
2778bad_fork_cleanup_files:
2779 exit_files(p); /* blocking */
2780bad_fork_cleanup_semundo:
2781 exit_sem(p);
e4e55b47
TH
2782bad_fork_cleanup_security:
2783 security_task_free(p);
1da177e4
LT
2784bad_fork_cleanup_audit:
2785 audit_free(p);
6c72e350 2786bad_fork_cleanup_perf:
cdd6c482 2787 perf_event_free_task(p);
6c72e350 2788bad_fork_cleanup_policy:
b09be676 2789 lockdep_free_task(p);
1da177e4 2790#ifdef CONFIG_NUMA
f0be3d32 2791 mpol_put(p->mempolicy);
1da177e4 2792#endif
ff8288ff 2793bad_fork_cleanup_delayacct:
35df17c5 2794 delayacct_tsk_free(p);
1da177e4 2795bad_fork_cleanup_count:
21d1c5e3 2796 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2797 exit_creds(p);
1da177e4 2798bad_fork_free:
2f064a59 2799 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2800 exit_task_stack_account(p);
68f24b08 2801 put_task_stack(p);
c3f3ce04 2802 delayed_free_task(p);
fe7d37d1 2803fork_out:
c3ad2c3b
EB
2804 spin_lock_irq(&current->sighand->siglock);
2805 hlist_del_init(&delayed.node);
2806 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2807 return ERR_PTR(retval);
1da177e4
LT
2808}
2809
2c470475 2810static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2811{
2812 enum pid_type type;
2813
2814 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2815 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2816 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2817 }
2818}
2819
36cb0e1c
EB
2820static int idle_dummy(void *dummy)
2821{
2822 /* This function is never called */
2823 return 0;
2824}
2825
f1a0a376 2826struct task_struct * __init fork_idle(int cpu)
1da177e4 2827{
36c8b586 2828 struct task_struct *task;
7f192e3c 2829 struct kernel_clone_args args = {
343f4c49 2830 .flags = CLONE_VM,
5bd2e97c
EB
2831 .fn = &idle_dummy,
2832 .fn_arg = NULL,
343f4c49 2833 .kthread = 1,
36cb0e1c 2834 .idle = 1,
7f192e3c
CB
2835 };
2836
2837 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2838 if (!IS_ERR(task)) {
2c470475 2839 init_idle_pids(task);
753ca4f3 2840 init_idle(task, cpu);
f106eee1 2841 }
73b9ebfe 2842
1da177e4
LT
2843 return task;
2844}
2845
cc440e87
JA
2846/*
2847 * This is like kernel_clone(), but shaved down and tailored to just
2848 * creating io_uring workers. It returns a created task, or an error pointer.
2849 * The returned task is inactive, and the caller must fire it up through
2850 * wake_up_new_task(p). All signals are blocked in the created task.
2851 */
2852struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2853{
2854 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2855 CLONE_IO;
2856 struct kernel_clone_args args = {
2857 .flags = ((lower_32_bits(flags) | CLONE_VM |
2858 CLONE_UNTRACED) & ~CSIGNAL),
2859 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2860 .fn = fn,
2861 .fn_arg = arg,
cc440e87 2862 .io_thread = 1,
54e6842d 2863 .user_worker = 1,
cc440e87 2864 };
cc440e87 2865
b16b3855 2866 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2867}
2868
1da177e4
LT
2869/*
2870 * Ok, this is the main fork-routine.
2871 *
2872 * It copies the process, and if successful kick-starts
2873 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2874 *
2875 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2876 */
cad6967a 2877pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2878{
7f192e3c 2879 u64 clone_flags = args->flags;
9f5325aa
MPS
2880 struct completion vfork;
2881 struct pid *pid;
1da177e4
LT
2882 struct task_struct *p;
2883 int trace = 0;
cad6967a 2884 pid_t nr;
1da177e4 2885
3af8588c
CB
2886 /*
2887 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2888 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2889 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2890 * field in struct clone_args and it still doesn't make sense to have
2891 * them both point at the same memory location. Performing this check
2892 * here has the advantage that we don't need to have a separate helper
2893 * to check for legacy clone().
2894 */
2895 if ((args->flags & CLONE_PIDFD) &&
2896 (args->flags & CLONE_PARENT_SETTID) &&
2897 (args->pidfd == args->parent_tid))
2898 return -EINVAL;
2899
09a05394 2900 /*
4b9d33e6
TH
2901 * Determine whether and which event to report to ptracer. When
2902 * called from kernel_thread or CLONE_UNTRACED is explicitly
2903 * requested, no event is reported; otherwise, report if the event
2904 * for the type of forking is enabled.
09a05394 2905 */
e80d6661 2906 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2907 if (clone_flags & CLONE_VFORK)
2908 trace = PTRACE_EVENT_VFORK;
7f192e3c 2909 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2910 trace = PTRACE_EVENT_CLONE;
2911 else
2912 trace = PTRACE_EVENT_FORK;
2913
2914 if (likely(!ptrace_event_enabled(current, trace)))
2915 trace = 0;
2916 }
1da177e4 2917
7f192e3c 2918 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2919 add_latent_entropy();
9f5325aa
MPS
2920
2921 if (IS_ERR(p))
2922 return PTR_ERR(p);
2923
1da177e4
LT
2924 /*
2925 * Do this prior waking up the new thread - the thread pointer
2926 * might get invalid after that point, if the thread exits quickly.
2927 */
9f5325aa 2928 trace_sched_process_fork(current, p);
0a16b607 2929
9f5325aa
MPS
2930 pid = get_task_pid(p, PIDTYPE_PID);
2931 nr = pid_vnr(pid);
30e49c26 2932
9f5325aa 2933 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2934 put_user(nr, args->parent_tid);
a6f5e063 2935
9f5325aa
MPS
2936 if (clone_flags & CLONE_VFORK) {
2937 p->vfork_done = &vfork;
2938 init_completion(&vfork);
2939 get_task_struct(p);
2940 }
1da177e4 2941
bd74fdae
YZ
2942 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2943 /* lock the task to synchronize with memcg migration */
2944 task_lock(p);
2945 lru_gen_add_mm(p->mm);
2946 task_unlock(p);
2947 }
2948
9f5325aa 2949 wake_up_new_task(p);
09a05394 2950
9f5325aa
MPS
2951 /* forking complete and child started to run, tell ptracer */
2952 if (unlikely(trace))
2953 ptrace_event_pid(trace, pid);
4e52365f 2954
9f5325aa
MPS
2955 if (clone_flags & CLONE_VFORK) {
2956 if (!wait_for_vfork_done(p, &vfork))
2957 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2958 }
9f5325aa
MPS
2959
2960 put_pid(pid);
92476d7f 2961 return nr;
1da177e4
LT
2962}
2963
2aa3a7f8
AV
2964/*
2965 * Create a kernel thread.
2966 */
cf587db2
MC
2967pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2968 unsigned long flags)
2aa3a7f8 2969{
7f192e3c 2970 struct kernel_clone_args args = {
3f2c788a
CB
2971 .flags = ((lower_32_bits(flags) | CLONE_VM |
2972 CLONE_UNTRACED) & ~CSIGNAL),
2973 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2974 .fn = fn,
2975 .fn_arg = arg,
cf587db2 2976 .name = name,
343f4c49
EB
2977 .kthread = 1,
2978 };
2979
2980 return kernel_clone(&args);
2981}
2982
2983/*
2984 * Create a user mode thread.
2985 */
2986pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2987{
7f192e3c 2988 struct kernel_clone_args args = {
3f2c788a
CB
2989 .flags = ((lower_32_bits(flags) | CLONE_VM |
2990 CLONE_UNTRACED) & ~CSIGNAL),
2991 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2992 .fn = fn,
2993 .fn_arg = arg,
7f192e3c
CB
2994 };
2995
cad6967a 2996 return kernel_clone(&args);
2aa3a7f8 2997}
2aa3a7f8 2998
d2125043
AV
2999#ifdef __ARCH_WANT_SYS_FORK
3000SYSCALL_DEFINE0(fork)
3001{
3002#ifdef CONFIG_MMU
7f192e3c
CB
3003 struct kernel_clone_args args = {
3004 .exit_signal = SIGCHLD,
3005 };
3006
cad6967a 3007 return kernel_clone(&args);
d2125043
AV
3008#else
3009 /* can not support in nommu mode */
5d59e182 3010 return -EINVAL;
d2125043
AV
3011#endif
3012}
3013#endif
3014
3015#ifdef __ARCH_WANT_SYS_VFORK
3016SYSCALL_DEFINE0(vfork)
3017{
7f192e3c
CB
3018 struct kernel_clone_args args = {
3019 .flags = CLONE_VFORK | CLONE_VM,
3020 .exit_signal = SIGCHLD,
3021 };
3022
cad6967a 3023 return kernel_clone(&args);
d2125043
AV
3024}
3025#endif
3026
3027#ifdef __ARCH_WANT_SYS_CLONE
3028#ifdef CONFIG_CLONE_BACKWARDS
3029SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3030 int __user *, parent_tidptr,
3033f14a 3031 unsigned long, tls,
d2125043
AV
3032 int __user *, child_tidptr)
3033#elif defined(CONFIG_CLONE_BACKWARDS2)
3034SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3035 int __user *, parent_tidptr,
3036 int __user *, child_tidptr,
3033f14a 3037 unsigned long, tls)
dfa9771a
MS
3038#elif defined(CONFIG_CLONE_BACKWARDS3)
3039SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3040 int, stack_size,
3041 int __user *, parent_tidptr,
3042 int __user *, child_tidptr,
3033f14a 3043 unsigned long, tls)
d2125043
AV
3044#else
3045SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3046 int __user *, parent_tidptr,
3047 int __user *, child_tidptr,
3033f14a 3048 unsigned long, tls)
d2125043
AV
3049#endif
3050{
7f192e3c 3051 struct kernel_clone_args args = {
3f2c788a 3052 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
3053 .pidfd = parent_tidptr,
3054 .child_tid = child_tidptr,
3055 .parent_tid = parent_tidptr,
3f2c788a 3056 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
3057 .stack = newsp,
3058 .tls = tls,
3059 };
3060
cad6967a 3061 return kernel_clone(&args);
7f192e3c 3062}
d68dbb0c 3063#endif
7f192e3c 3064
d68dbb0c 3065#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 3066
7f192e3c
CB
3067noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3068 struct clone_args __user *uargs,
f14c234b 3069 size_t usize)
7f192e3c 3070{
f14c234b 3071 int err;
7f192e3c 3072 struct clone_args args;
49cb2fc4 3073 pid_t *kset_tid = kargs->set_tid;
7f192e3c 3074
a966dcfe
ES
3075 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3076 CLONE_ARGS_SIZE_VER0);
3077 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3078 CLONE_ARGS_SIZE_VER1);
3079 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3080 CLONE_ARGS_SIZE_VER2);
3081 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3082
f14c234b 3083 if (unlikely(usize > PAGE_SIZE))
7f192e3c 3084 return -E2BIG;
f14c234b 3085 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
3086 return -EINVAL;
3087
f14c234b
AS
3088 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3089 if (err)
3090 return err;
7f192e3c 3091
49cb2fc4
AR
3092 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3093 return -EINVAL;
3094
3095 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3096 return -EINVAL;
3097
3098 if (unlikely(args.set_tid && args.set_tid_size == 0))
3099 return -EINVAL;
3100
a0eb9abd
ES
3101 /*
3102 * Verify that higher 32bits of exit_signal are unset and that
3103 * it is a valid signal
3104 */
3105 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3106 !valid_signal(args.exit_signal)))
3107 return -EINVAL;
3108
62173872
ES
3109 if ((args.flags & CLONE_INTO_CGROUP) &&
3110 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
3111 return -EINVAL;
3112
7f192e3c
CB
3113 *kargs = (struct kernel_clone_args){
3114 .flags = args.flags,
3115 .pidfd = u64_to_user_ptr(args.pidfd),
3116 .child_tid = u64_to_user_ptr(args.child_tid),
3117 .parent_tid = u64_to_user_ptr(args.parent_tid),
3118 .exit_signal = args.exit_signal,
3119 .stack = args.stack,
3120 .stack_size = args.stack_size,
3121 .tls = args.tls,
49cb2fc4 3122 .set_tid_size = args.set_tid_size,
ef2c41cf 3123 .cgroup = args.cgroup,
7f192e3c
CB
3124 };
3125
49cb2fc4
AR
3126 if (args.set_tid &&
3127 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3128 (kargs->set_tid_size * sizeof(pid_t))))
3129 return -EFAULT;
3130
3131 kargs->set_tid = kset_tid;
3132
7f192e3c
CB
3133 return 0;
3134}
3135
fa729c4d
CB
3136/**
3137 * clone3_stack_valid - check and prepare stack
3138 * @kargs: kernel clone args
3139 *
3140 * Verify that the stack arguments userspace gave us are sane.
3141 * In addition, set the stack direction for userspace since it's easy for us to
3142 * determine.
3143 */
3144static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3145{
3146 if (kargs->stack == 0) {
3147 if (kargs->stack_size > 0)
3148 return false;
3149 } else {
3150 if (kargs->stack_size == 0)
3151 return false;
3152
3153 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3154 return false;
3155
3156#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3157 kargs->stack += kargs->stack_size;
3158#endif
3159 }
3160
3161 return true;
3162}
3163
3164static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 3165{
b612e5df 3166 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
3167 if (kargs->flags &
3168 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
3169 return false;
3170
3171 /*
a8ca6b13
XC
3172 * - make the CLONE_DETACHED bit reusable for clone3
3173 * - make the CSIGNAL bits reusable for clone3
7f192e3c 3174 */
a402f1e3 3175 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
3176 return false;
3177
b612e5df
CB
3178 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3179 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3180 return false;
3181
7f192e3c
CB
3182 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3183 kargs->exit_signal)
3184 return false;
3185
fa729c4d
CB
3186 if (!clone3_stack_valid(kargs))
3187 return false;
3188
7f192e3c
CB
3189 return true;
3190}
3191
501bd016
CB
3192/**
3193 * clone3 - create a new process with specific properties
3194 * @uargs: argument structure
3195 * @size: size of @uargs
3196 *
3197 * clone3() is the extensible successor to clone()/clone2().
3198 * It takes a struct as argument that is versioned by its size.
3199 *
3200 * Return: On success, a positive PID for the child process.
3201 * On error, a negative errno number.
3202 */
7f192e3c
CB
3203SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3204{
3205 int err;
3206
3207 struct kernel_clone_args kargs;
49cb2fc4
AR
3208 pid_t set_tid[MAX_PID_NS_LEVEL];
3209
3210 kargs.set_tid = set_tid;
7f192e3c
CB
3211
3212 err = copy_clone_args_from_user(&kargs, uargs, size);
3213 if (err)
3214 return err;
3215
3216 if (!clone3_args_valid(&kargs))
3217 return -EINVAL;
3218
cad6967a 3219 return kernel_clone(&kargs);
d2125043
AV
3220}
3221#endif
3222
0f1b92cb
ON
3223void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3224{
3225 struct task_struct *leader, *parent, *child;
3226 int res;
3227
3228 read_lock(&tasklist_lock);
3229 leader = top = top->group_leader;
3230down:
3231 for_each_thread(leader, parent) {
3232 list_for_each_entry(child, &parent->children, sibling) {
3233 res = visitor(child, data);
3234 if (res) {
3235 if (res < 0)
3236 goto out;
3237 leader = child;
3238 goto down;
3239 }
3240up:
3241 ;
3242 }
3243 }
3244
3245 if (leader != top) {
3246 child = leader;
3247 parent = child->real_parent;
3248 leader = parent->group_leader;
3249 goto up;
3250 }
3251out:
3252 read_unlock(&tasklist_lock);
3253}
3254
5fd63b30
RT
3255#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3256#define ARCH_MIN_MMSTRUCT_ALIGN 0
3257#endif
3258
51cc5068 3259static void sighand_ctor(void *data)
aa1757f9
ON
3260{
3261 struct sighand_struct *sighand = data;
3262
a35afb83 3263 spin_lock_init(&sighand->siglock);
b8fceee1 3264 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3265}
3266
af806027 3267void __init mm_cache_init(void)
1da177e4 3268{
c1a2f7f0
RR
3269 unsigned int mm_size;
3270
af806027
PZ
3271 /*
3272 * The mm_cpumask is located at the end of mm_struct, and is
3273 * dynamically sized based on the maximum CPU number this system
3274 * can have, taking hotplug into account (nr_cpu_ids).
3275 */
af7f588d 3276 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3277
3278 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3279 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3280 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3281 offsetof(struct mm_struct, saved_auxv),
3282 sizeof_field(struct mm_struct, saved_auxv),
3283 NULL);
3284}
3285
3286void __init proc_caches_init(void)
3287{
1da177e4
LT
3288 sighand_cachep = kmem_cache_create("sighand_cache",
3289 sizeof(struct sighand_struct), 0,
5f0d5a3a 3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3291 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3292 signal_cachep = kmem_cache_create("signal_cache",
3293 sizeof(struct signal_struct), 0,
75f296d9 3294 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3295 NULL);
20c2df83 3296 files_cachep = kmem_cache_create("files_cache",
1da177e4 3297 sizeof(struct files_struct), 0,
75f296d9 3298 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3299 NULL);
20c2df83 3300 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3301 sizeof(struct fs_struct), 0,
75f296d9 3302 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3303 NULL);
c1a2f7f0 3304
5d097056 3305 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
c7f8f31c
SB
3306#ifdef CONFIG_PER_VMA_LOCK
3307 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3308#endif
8feae131 3309 mmap_init();
66577193 3310 nsproxy_cache_init();
1da177e4 3311}
cf2e340f 3312
cf2e340f 3313/*
9bfb23fc 3314 * Check constraints on flags passed to the unshare system call.
cf2e340f 3315 */
9bfb23fc 3316static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3317{
9bfb23fc
ON
3318 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3319 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3320 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3321 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3322 CLONE_NEWTIME))
9bfb23fc 3323 return -EINVAL;
cf2e340f 3324 /*
12c641ab
EB
3325 * Not implemented, but pretend it works if there is nothing
3326 * to unshare. Note that unsharing the address space or the
3327 * signal handlers also need to unshare the signal queues (aka
3328 * CLONE_THREAD).
cf2e340f 3329 */
9bfb23fc 3330 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3331 if (!thread_group_empty(current))
3332 return -EINVAL;
3333 }
3334 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3335 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3336 return -EINVAL;
3337 }
3338 if (unshare_flags & CLONE_VM) {
3339 if (!current_is_single_threaded())
9bfb23fc
ON
3340 return -EINVAL;
3341 }
cf2e340f
JD
3342
3343 return 0;
3344}
3345
3346/*
99d1419d 3347 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3348 */
3349static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3350{
3351 struct fs_struct *fs = current->fs;
3352
498052bb
AV
3353 if (!(unshare_flags & CLONE_FS) || !fs)
3354 return 0;
3355
3356 /* don't need lock here; in the worst case we'll do useless copy */
3357 if (fs->users == 1)
3358 return 0;
3359
3360 *new_fsp = copy_fs_struct(fs);
3361 if (!*new_fsp)
3362 return -ENOMEM;
cf2e340f
JD
3363
3364 return 0;
3365}
3366
cf2e340f 3367/*
a016f338 3368 * Unshare file descriptor table if it is being shared
cf2e340f 3369 */
60997c3d
CB
3370int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3371 struct files_struct **new_fdp)
cf2e340f
JD
3372{
3373 struct files_struct *fd = current->files;
a016f338 3374 int error = 0;
cf2e340f
JD
3375
3376 if ((unshare_flags & CLONE_FILES) &&
a016f338 3377 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3378 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3379 if (!*new_fdp)
3380 return error;
3381 }
cf2e340f
JD
3382
3383 return 0;
3384}
3385
cf2e340f
JD
3386/*
3387 * unshare allows a process to 'unshare' part of the process
3388 * context which was originally shared using clone. copy_*
cad6967a 3389 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3390 * because they modify an inactive task_struct that is being
3391 * constructed. Here we are modifying the current, active,
3392 * task_struct.
3393 */
9b32105e 3394int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3395{
cf2e340f 3396 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3397 struct files_struct *new_fd = NULL;
b2e0d987 3398 struct cred *new_cred = NULL;
cf7b708c 3399 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3400 int do_sysvsem = 0;
9bfb23fc 3401 int err;
cf2e340f 3402
b2e0d987 3403 /*
faf00da5
EB
3404 * If unsharing a user namespace must also unshare the thread group
3405 * and unshare the filesystem root and working directories.
b2e0d987
EB
3406 */
3407 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3408 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3409 /*
3410 * If unsharing vm, must also unshare signal handlers.
3411 */
3412 if (unshare_flags & CLONE_VM)
3413 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3414 /*
3415 * If unsharing a signal handlers, must also unshare the signal queues.
3416 */
3417 if (unshare_flags & CLONE_SIGHAND)
3418 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3419 /*
3420 * If unsharing namespace, must also unshare filesystem information.
3421 */
3422 if (unshare_flags & CLONE_NEWNS)
3423 unshare_flags |= CLONE_FS;
50804fe3
EB
3424
3425 err = check_unshare_flags(unshare_flags);
3426 if (err)
3427 goto bad_unshare_out;
6013f67f
MS
3428 /*
3429 * CLONE_NEWIPC must also detach from the undolist: after switching
3430 * to a new ipc namespace, the semaphore arrays from the old
3431 * namespace are unreachable.
3432 */
3433 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3434 do_sysvsem = 1;
fb0a685c
DRO
3435 err = unshare_fs(unshare_flags, &new_fs);
3436 if (err)
9bfb23fc 3437 goto bad_unshare_out;
60997c3d 3438 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3439 if (err)
9bfb23fc 3440 goto bad_unshare_cleanup_fs;
b2e0d987 3441 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3442 if (err)
9edff4ab 3443 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3444 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3445 new_cred, new_fs);
3446 if (err)
3447 goto bad_unshare_cleanup_cred;
c0b2fc31 3448
905ae01c
AG
3449 if (new_cred) {
3450 err = set_cred_ucounts(new_cred);
3451 if (err)
3452 goto bad_unshare_cleanup_cred;
3453 }
3454
b2e0d987 3455 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3456 if (do_sysvsem) {
3457 /*
3458 * CLONE_SYSVSEM is equivalent to sys_exit().
3459 */
3460 exit_sem(current);
3461 }
ab602f79
JM
3462 if (unshare_flags & CLONE_NEWIPC) {
3463 /* Orphan segments in old ns (see sem above). */
3464 exit_shm(current);
3465 shm_init_task(current);
3466 }
ab516013 3467
6f977e6b 3468 if (new_nsproxy)
cf7b708c 3469 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3470
cf7b708c
PE
3471 task_lock(current);
3472
cf2e340f
JD
3473 if (new_fs) {
3474 fs = current->fs;
2a4419b5 3475 spin_lock(&fs->lock);
cf2e340f 3476 current->fs = new_fs;
498052bb
AV
3477 if (--fs->users)
3478 new_fs = NULL;
3479 else
3480 new_fs = fs;
2a4419b5 3481 spin_unlock(&fs->lock);
cf2e340f
JD
3482 }
3483
ba1f70dd
RX
3484 if (new_fd)
3485 swap(current->files, new_fd);
cf2e340f
JD
3486
3487 task_unlock(current);
b2e0d987
EB
3488
3489 if (new_cred) {
3490 /* Install the new user namespace */
3491 commit_creds(new_cred);
3492 new_cred = NULL;
3493 }
cf2e340f
JD
3494 }
3495
e4222673
HB
3496 perf_event_namespaces(current);
3497
b2e0d987
EB
3498bad_unshare_cleanup_cred:
3499 if (new_cred)
3500 put_cred(new_cred);
cf2e340f
JD
3501bad_unshare_cleanup_fd:
3502 if (new_fd)
3503 put_files_struct(new_fd);
3504
cf2e340f
JD
3505bad_unshare_cleanup_fs:
3506 if (new_fs)
498052bb 3507 free_fs_struct(new_fs);
cf2e340f 3508
cf2e340f
JD
3509bad_unshare_out:
3510 return err;
3511}
3b125388 3512
9b32105e
DB
3513SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3514{
3515 return ksys_unshare(unshare_flags);
3516}
3517
3b125388
AV
3518/*
3519 * Helper to unshare the files of the current task.
3520 * We don't want to expose copy_files internals to
3521 * the exec layer of the kernel.
3522 */
3523
1f702603 3524int unshare_files(void)
3b125388
AV
3525{
3526 struct task_struct *task = current;
1f702603 3527 struct files_struct *old, *copy = NULL;
3b125388
AV
3528 int error;
3529
60997c3d 3530 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3531 if (error || !copy)
3b125388 3532 return error;
1f702603
EB
3533
3534 old = task->files;
3b125388
AV
3535 task_lock(task);
3536 task->files = copy;
3537 task_unlock(task);
1f702603 3538 put_files_struct(old);
3b125388
AV
3539 return 0;
3540}
16db3d3f
HS
3541
3542int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3543 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3544{
3545 struct ctl_table t;
3546 int ret;
3547 int threads = max_threads;
b0f53dbc 3548 int min = 1;
16db3d3f
HS
3549 int max = MAX_THREADS;
3550
3551 t = *table;
3552 t.data = &threads;
3553 t.extra1 = &min;
3554 t.extra2 = &max;
3555
3556 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3557 if (ret || !write)
3558 return ret;
3559
b0f53dbc 3560 max_threads = threads;
16db3d3f
HS
3561
3562 return 0;
3563}