dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2
KO
162
163 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
bfe4037e 184 bool cancelled;
363bee27
EB
185 bool work_scheduled;
186 bool work_need_resched;
bfe4037e
CH
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda 222static DEFINE_SPINLOCK(aio_nr_lock);
86b12b6c
XN
223static unsigned long aio_nr; /* current system wide number of aio requests */
224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4 225/*----end sysctl variables---*/
86b12b6c
XN
226#ifdef CONFIG_SYSCTL
227static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242 {}
243};
244
245static void __init aio_sysctl_init(void)
246{
247 register_sysctl_init("fs", aio_sysctls);
248}
249#else
250#define aio_sysctl_init() do { } while (0)
251#endif
1da177e4 252
e18b890b
CL
253static struct kmem_cache *kiocb_cachep;
254static struct kmem_cache *kioctx_cachep;
1da177e4 255
71ad7490
BL
256static struct vfsmount *aio_mnt;
257
258static const struct file_operations aio_ring_fops;
259static const struct address_space_operations aio_ctx_aops;
260
261static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262{
71ad7490 263 struct file *file;
71ad7490 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
265 if (IS_ERR(inode))
266 return ERR_CAST(inode);
71ad7490
BL
267
268 inode->i_mapping->a_ops = &aio_ctx_aops;
269 inode->i_mapping->private_data = ctx;
270 inode->i_size = PAGE_SIZE * nr_pages;
271
d93aa9d8
AV
272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 O_RDWR, &aio_ring_fops);
c9c554f2 274 if (IS_ERR(file))
71ad7490 275 iput(inode);
71ad7490
BL
276 return file;
277}
278
52db59df 279static int aio_init_fs_context(struct fs_context *fc)
71ad7490 280{
52db59df
DH
281 if (!init_pseudo(fc, AIO_RING_MAGIC))
282 return -ENOMEM;
283 fc->s_iflags |= SB_I_NOEXEC;
284 return 0;
71ad7490
BL
285}
286
1da177e4
LT
287/* aio_setup
288 * Creates the slab caches used by the aio routines, panic on
289 * failure as this is done early during the boot sequence.
290 */
291static int __init aio_setup(void)
292{
71ad7490
BL
293 static struct file_system_type aio_fs = {
294 .name = "aio",
52db59df 295 .init_fs_context = aio_init_fs_context,
71ad7490
BL
296 .kill_sb = kill_anon_super,
297 };
298 aio_mnt = kern_mount(&aio_fs);
299 if (IS_ERR(aio_mnt))
300 panic("Failed to create aio fs mount.");
301
04b2fa9f 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86b12b6c 304 aio_sysctl_init();
1da177e4
LT
305 return 0;
306}
385773e0 307__initcall(aio_setup);
1da177e4 308
5e9ae2e5
BL
309static void put_aio_ring_file(struct kioctx *ctx)
310{
311 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
312 struct address_space *i_mapping;
313
5e9ae2e5 314 if (aio_ring_file) {
45063097 315 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
316
317 /* Prevent further access to the kioctx from migratepages */
45063097 318 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
319 spin_lock(&i_mapping->private_lock);
320 i_mapping->private_data = NULL;
5e9ae2e5 321 ctx->aio_ring_file = NULL;
de04e769 322 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
323
324 fput(aio_ring_file);
325 }
326}
327
1da177e4
LT
328static void aio_free_ring(struct kioctx *ctx)
329{
36bc08cc 330 int i;
1da177e4 331
fa8a53c3
BL
332 /* Disconnect the kiotx from the ring file. This prevents future
333 * accesses to the kioctx from page migration.
334 */
335 put_aio_ring_file(ctx);
336
36bc08cc 337 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 338 struct page *page;
36bc08cc
GZ
339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 page_count(ctx->ring_pages[i]));
8e321fef
BL
341 page = ctx->ring_pages[i];
342 if (!page)
343 continue;
344 ctx->ring_pages[i] = NULL;
345 put_page(page);
36bc08cc 346 }
1da177e4 347
ddb8c45b 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 349 kfree(ctx->ring_pages);
ddb8c45b
SL
350 ctx->ring_pages = NULL;
351 }
36bc08cc
GZ
352}
353
14d07113 354static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 355{
5477e70a 356 struct file *file = vma->vm_file;
e4a0d3e7
PE
357 struct mm_struct *mm = vma->vm_mm;
358 struct kioctx_table *table;
b2edffdd 359 int i, res = -EINVAL;
e4a0d3e7
PE
360
361 spin_lock(&mm->ioctx_lock);
362 rcu_read_lock();
363 table = rcu_dereference(mm->ioctx_table);
81e9d6f8
SJ
364 if (!table)
365 goto out_unlock;
366
e4a0d3e7
PE
367 for (i = 0; i < table->nr; i++) {
368 struct kioctx *ctx;
369
d0264c01 370 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 371 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
372 if (!atomic_read(&ctx->dead)) {
373 ctx->user_id = ctx->mmap_base = vma->vm_start;
374 res = 0;
375 }
e4a0d3e7
PE
376 break;
377 }
378 }
379
81e9d6f8 380out_unlock:
e4a0d3e7
PE
381 rcu_read_unlock();
382 spin_unlock(&mm->ioctx_lock);
b2edffdd 383 return res;
e4a0d3e7
PE
384}
385
5477e70a
ON
386static const struct vm_operations_struct aio_ring_vm_ops = {
387 .mremap = aio_ring_mremap,
388#if IS_ENABLED(CONFIG_MMU)
389 .fault = filemap_fault,
390 .map_pages = filemap_map_pages,
391 .page_mkwrite = filemap_page_mkwrite,
392#endif
393};
394
395static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396{
1c71222e 397 vm_flags_set(vma, VM_DONTEXPAND);
5477e70a
ON
398 vma->vm_ops = &aio_ring_vm_ops;
399 return 0;
400}
401
36bc08cc
GZ
402static const struct file_operations aio_ring_fops = {
403 .mmap = aio_ring_mmap,
404};
405
0c45355f 406#if IS_ENABLED(CONFIG_MIGRATION)
3648951c
MWO
407static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 struct folio *src, enum migrate_mode mode)
36bc08cc 409{
5e9ae2e5 410 struct kioctx *ctx;
36bc08cc 411 unsigned long flags;
fa8a53c3 412 pgoff_t idx;
36bc08cc
GZ
413 int rc;
414
2916ecc0
JG
415 /*
416 * We cannot support the _NO_COPY case here, because copy needs to
417 * happen under the ctx->completion_lock. That does not work with the
418 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 */
420 if (mode == MIGRATE_SYNC_NO_COPY)
421 return -EINVAL;
422
8e321fef
BL
423 rc = 0;
424
fa8a53c3 425 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
426 spin_lock(&mapping->private_lock);
427 ctx = mapping->private_data;
fa8a53c3
BL
428 if (!ctx) {
429 rc = -EINVAL;
430 goto out;
431 }
432
433 /* The ring_lock mutex. The prevents aio_read_events() from writing
434 * to the ring's head, and prevents page migration from mucking in
435 * a partially initialized kiotx.
436 */
437 if (!mutex_trylock(&ctx->ring_lock)) {
438 rc = -EAGAIN;
439 goto out;
440 }
441
3648951c 442 idx = src->index;
fa8a53c3 443 if (idx < (pgoff_t)ctx->nr_pages) {
3648951c
MWO
444 /* Make sure the old folio hasn't already been changed */
445 if (ctx->ring_pages[idx] != &src->page)
fa8a53c3 446 rc = -EAGAIN;
8e321fef
BL
447 } else
448 rc = -EINVAL;
8e321fef
BL
449
450 if (rc != 0)
fa8a53c3 451 goto out_unlock;
8e321fef 452
36bc08cc 453 /* Writeback must be complete */
3648951c
MWO
454 BUG_ON(folio_test_writeback(src));
455 folio_get(dst);
36bc08cc 456
3648951c 457 rc = folio_migrate_mapping(mapping, dst, src, 1);
36bc08cc 458 if (rc != MIGRATEPAGE_SUCCESS) {
3648951c 459 folio_put(dst);
fa8a53c3 460 goto out_unlock;
36bc08cc
GZ
461 }
462
fa8a53c3 463 /* Take completion_lock to prevent other writes to the ring buffer
3648951c 464 * while the old folio is copied to the new. This prevents new
fa8a53c3 465 * events from being lost.
5e9ae2e5 466 */
fa8a53c3 467 spin_lock_irqsave(&ctx->completion_lock, flags);
3648951c
MWO
468 folio_migrate_copy(dst, src);
469 BUG_ON(ctx->ring_pages[idx] != &src->page);
470 ctx->ring_pages[idx] = &dst->page;
fa8a53c3 471 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 472
3648951c
MWO
473 /* The old folio is no longer accessible. */
474 folio_put(src);
8e321fef 475
fa8a53c3
BL
476out_unlock:
477 mutex_unlock(&ctx->ring_lock);
478out:
479 spin_unlock(&mapping->private_lock);
36bc08cc 480 return rc;
1da177e4 481}
3648951c
MWO
482#else
483#define aio_migrate_folio NULL
0c45355f 484#endif
1da177e4 485
36bc08cc 486static const struct address_space_operations aio_ctx_aops = {
46de8b97 487 .dirty_folio = noop_dirty_folio,
3648951c 488 .migrate_folio = aio_migrate_folio,
36bc08cc
GZ
489};
490
2a8a9867 491static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
492{
493 struct aio_ring *ring;
41003a7b 494 struct mm_struct *mm = current->mm;
3dc9acb6 495 unsigned long size, unused;
1da177e4 496 int nr_pages;
36bc08cc
GZ
497 int i;
498 struct file *file;
1da177e4
LT
499
500 /* Compensate for the ring buffer's head/tail overlap entry */
501 nr_events += 2; /* 1 is required, 2 for good luck */
502
503 size = sizeof(struct aio_ring);
504 size += sizeof(struct io_event) * nr_events;
1da177e4 505
36bc08cc 506 nr_pages = PFN_UP(size);
1da177e4
LT
507 if (nr_pages < 0)
508 return -EINVAL;
509
71ad7490 510 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
511 if (IS_ERR(file)) {
512 ctx->aio_ring_file = NULL;
fa8a53c3 513 return -ENOMEM;
36bc08cc
GZ
514 }
515
3dc9acb6
LT
516 ctx->aio_ring_file = file;
517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 / sizeof(struct io_event);
519
520 ctx->ring_pages = ctx->internal_pages;
521 if (nr_pages > AIO_RING_PAGES) {
522 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 GFP_KERNEL);
524 if (!ctx->ring_pages) {
525 put_aio_ring_file(ctx);
526 return -ENOMEM;
527 }
528 }
529
36bc08cc
GZ
530 for (i = 0; i < nr_pages; i++) {
531 struct page *page;
45063097 532 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
533 i, GFP_HIGHUSER | __GFP_ZERO);
534 if (!page)
535 break;
536 pr_debug("pid(%d) page[%d]->count=%d\n",
537 current->pid, i, page_count(page));
538 SetPageUptodate(page);
36bc08cc 539 unlock_page(page);
3dc9acb6
LT
540
541 ctx->ring_pages[i] = page;
36bc08cc 542 }
3dc9acb6 543 ctx->nr_pages = i;
1da177e4 544
3dc9acb6
LT
545 if (unlikely(i != nr_pages)) {
546 aio_free_ring(ctx);
fa8a53c3 547 return -ENOMEM;
1da177e4
LT
548 }
549
58c85dc2
KO
550 ctx->mmap_size = nr_pages * PAGE_SIZE;
551 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 552
d8ed45c5 553 if (mmap_write_lock_killable(mm)) {
013373e8
MH
554 ctx->mmap_size = 0;
555 aio_free_ring(ctx);
556 return -EINTR;
557 }
558
45e55300
PC
559 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 PROT_READ | PROT_WRITE,
561 MAP_SHARED, 0, &unused, NULL);
d8ed45c5 562 mmap_write_unlock(mm);
58c85dc2 563 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 564 ctx->mmap_size = 0;
1da177e4 565 aio_free_ring(ctx);
fa8a53c3 566 return -ENOMEM;
1da177e4
LT
567 }
568
58c85dc2 569 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 570
58c85dc2
KO
571 ctx->user_id = ctx->mmap_base;
572 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 573
58c85dc2 574 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 575 ring->nr = nr_events; /* user copy */
db446a08 576 ring->id = ~0U;
1da177e4
LT
577 ring->head = ring->tail = 0;
578 ring->magic = AIO_RING_MAGIC;
579 ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 582 kunmap_atomic(ring);
58c85dc2 583 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
584
585 return 0;
586}
587
1da177e4
LT
588#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
589#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
590#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
591
04b2fa9f 592void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 593{
54843f87 594 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
595 struct kioctx *ctx = req->ki_ctx;
596 unsigned long flags;
597
75321b50
CH
598 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
599 return;
0460fef2 600
75321b50
CH
601 spin_lock_irqsave(&ctx->ctx_lock, flags);
602 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 603 req->ki_cancel = cancel;
0460fef2
KO
604 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
605}
606EXPORT_SYMBOL(kiocb_set_cancel_fn);
607
a6d7cff4
TH
608/*
609 * free_ioctx() should be RCU delayed to synchronize against the RCU
610 * protected lookup_ioctx() and also needs process context to call
f729863a 611 * aio_free_ring(). Use rcu_work.
a6d7cff4 612 */
e34ecee2 613static void free_ioctx(struct work_struct *work)
36f55889 614{
f729863a
TH
615 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
616 free_rwork);
e34ecee2 617 pr_debug("freeing %p\n", ctx);
e1bdd5f2 618
e34ecee2 619 aio_free_ring(ctx);
e1bdd5f2 620 free_percpu(ctx->cpu);
9a1049da
TH
621 percpu_ref_exit(&ctx->reqs);
622 percpu_ref_exit(&ctx->users);
36f55889
KO
623 kmem_cache_free(kioctx_cachep, ctx);
624}
625
e34ecee2
KO
626static void free_ioctx_reqs(struct percpu_ref *ref)
627{
628 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
629
e02ba72a 630 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
631 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
632 complete(&ctx->rq_wait->comp);
e02ba72a 633
a6d7cff4 634 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
635 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
636 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
637}
638
36f55889
KO
639/*
640 * When this function runs, the kioctx has been removed from the "hash table"
641 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
642 * now it's safe to cancel any that need to be.
643 */
e34ecee2 644static void free_ioctx_users(struct percpu_ref *ref)
36f55889 645{
e34ecee2 646 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 647 struct aio_kiocb *req;
36f55889
KO
648
649 spin_lock_irq(&ctx->ctx_lock);
650
651 while (!list_empty(&ctx->active_reqs)) {
652 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 653 struct aio_kiocb, ki_list);
888933f8 654 req->ki_cancel(&req->rw);
4faa9996 655 list_del_init(&req->ki_list);
36f55889
KO
656 }
657
658 spin_unlock_irq(&ctx->ctx_lock);
659
e34ecee2
KO
660 percpu_ref_kill(&ctx->reqs);
661 percpu_ref_put(&ctx->reqs);
36f55889
KO
662}
663
db446a08
BL
664static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
665{
666 unsigned i, new_nr;
667 struct kioctx_table *table, *old;
668 struct aio_ring *ring;
669
670 spin_lock(&mm->ioctx_lock);
855ef0de 671 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
672
673 while (1) {
674 if (table)
675 for (i = 0; i < table->nr; i++)
d0264c01 676 if (!rcu_access_pointer(table->table[i])) {
db446a08 677 ctx->id = i;
d0264c01 678 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
679 spin_unlock(&mm->ioctx_lock);
680
fa8a53c3
BL
681 /* While kioctx setup is in progress,
682 * we are protected from page migration
683 * changes ring_pages by ->ring_lock.
684 */
db446a08
BL
685 ring = kmap_atomic(ctx->ring_pages[0]);
686 ring->id = ctx->id;
687 kunmap_atomic(ring);
688 return 0;
689 }
690
691 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
692 spin_unlock(&mm->ioctx_lock);
693
6446c4fb 694 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
695 if (!table)
696 return -ENOMEM;
697
698 table->nr = new_nr;
699
700 spin_lock(&mm->ioctx_lock);
855ef0de 701 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
702
703 if (!old) {
704 rcu_assign_pointer(mm->ioctx_table, table);
705 } else if (table->nr > old->nr) {
706 memcpy(table->table, old->table,
707 old->nr * sizeof(struct kioctx *));
708
709 rcu_assign_pointer(mm->ioctx_table, table);
710 kfree_rcu(old, rcu);
711 } else {
712 kfree(table);
713 table = old;
714 }
715 }
716}
717
e34ecee2
KO
718static void aio_nr_sub(unsigned nr)
719{
720 spin_lock(&aio_nr_lock);
721 if (WARN_ON(aio_nr - nr > aio_nr))
722 aio_nr = 0;
723 else
724 aio_nr -= nr;
725 spin_unlock(&aio_nr_lock);
726}
727
1da177e4
LT
728/* ioctx_alloc
729 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
730 */
731static struct kioctx *ioctx_alloc(unsigned nr_events)
732{
41003a7b 733 struct mm_struct *mm = current->mm;
1da177e4 734 struct kioctx *ctx;
e23754f8 735 int err = -ENOMEM;
1da177e4 736
2a8a9867
MFO
737 /*
738 * Store the original nr_events -- what userspace passed to io_setup(),
739 * for counting against the global limit -- before it changes.
740 */
741 unsigned int max_reqs = nr_events;
742
e1bdd5f2
KO
743 /*
744 * We keep track of the number of available ringbuffer slots, to prevent
745 * overflow (reqs_available), and we also use percpu counters for this.
746 *
747 * So since up to half the slots might be on other cpu's percpu counters
748 * and unavailable, double nr_events so userspace sees what they
749 * expected: additionally, we move req_batch slots to/from percpu
750 * counters at a time, so make sure that isn't 0:
751 */
752 nr_events = max(nr_events, num_possible_cpus() * 4);
753 nr_events *= 2;
754
1da177e4 755 /* Prevent overflows */
08397acd 756 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
757 pr_debug("ENOMEM: nr_events too high\n");
758 return ERR_PTR(-EINVAL);
759 }
760
2a8a9867 761 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
762 return ERR_PTR(-EAGAIN);
763
c3762229 764 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
765 if (!ctx)
766 return ERR_PTR(-ENOMEM);
767
2a8a9867 768 ctx->max_reqs = max_reqs;
1da177e4 769
1da177e4 770 spin_lock_init(&ctx->ctx_lock);
0460fef2 771 spin_lock_init(&ctx->completion_lock);
58c85dc2 772 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
773 /* Protect against page migration throughout kiotx setup by keeping
774 * the ring_lock mutex held until setup is complete. */
775 mutex_lock(&ctx->ring_lock);
1da177e4
LT
776 init_waitqueue_head(&ctx->wait);
777
778 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 779
2aad2a86 780 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
781 goto err;
782
2aad2a86 783 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
784 goto err;
785
e1bdd5f2
KO
786 ctx->cpu = alloc_percpu(struct kioctx_cpu);
787 if (!ctx->cpu)
e34ecee2 788 goto err;
1da177e4 789
2a8a9867 790 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 791 if (err < 0)
e34ecee2 792 goto err;
e1bdd5f2 793
34e83fc6 794 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 795 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
796 if (ctx->req_batch < 1)
797 ctx->req_batch = 1;
34e83fc6 798
1da177e4 799 /* limit the number of system wide aios */
9fa1cb39 800 spin_lock(&aio_nr_lock);
2a8a9867
MFO
801 if (aio_nr + ctx->max_reqs > aio_max_nr ||
802 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 803 spin_unlock(&aio_nr_lock);
e34ecee2 804 err = -EAGAIN;
d1b94327 805 goto err_ctx;
2dd542b7
AV
806 }
807 aio_nr += ctx->max_reqs;
9fa1cb39 808 spin_unlock(&aio_nr_lock);
1da177e4 809
1881686f
BL
810 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
811 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 812
da90382c
BL
813 err = ioctx_add_table(ctx, mm);
814 if (err)
e34ecee2 815 goto err_cleanup;
da90382c 816
fa8a53c3
BL
817 /* Release the ring_lock mutex now that all setup is complete. */
818 mutex_unlock(&ctx->ring_lock);
819
caf4167a 820 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 821 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
822 return ctx;
823
e34ecee2
KO
824err_cleanup:
825 aio_nr_sub(ctx->max_reqs);
d1b94327 826err_ctx:
deeb8525
AV
827 atomic_set(&ctx->dead, 1);
828 if (ctx->mmap_size)
829 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 830 aio_free_ring(ctx);
e34ecee2 831err:
fa8a53c3 832 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 833 free_percpu(ctx->cpu);
9a1049da
TH
834 percpu_ref_exit(&ctx->reqs);
835 percpu_ref_exit(&ctx->users);
1da177e4 836 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 837 pr_debug("error allocating ioctx %d\n", err);
e23754f8 838 return ERR_PTR(err);
1da177e4
LT
839}
840
36f55889
KO
841/* kill_ioctx
842 * Cancels all outstanding aio requests on an aio context. Used
843 * when the processes owning a context have all exited to encourage
844 * the rapid destruction of the kioctx.
845 */
fb2d4483 846static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 847 struct ctx_rq_wait *wait)
36f55889 848{
fa88b6f8 849 struct kioctx_table *table;
db446a08 850
b2edffdd
AV
851 spin_lock(&mm->ioctx_lock);
852 if (atomic_xchg(&ctx->dead, 1)) {
853 spin_unlock(&mm->ioctx_lock);
fa88b6f8 854 return -EINVAL;
b2edffdd 855 }
db446a08 856
855ef0de 857 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
858 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
859 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 860 spin_unlock(&mm->ioctx_lock);
4fcc712f 861
a6d7cff4 862 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 863 wake_up_all(&ctx->wait);
4fcc712f 864
fa88b6f8
BL
865 /*
866 * It'd be more correct to do this in free_ioctx(), after all
867 * the outstanding kiocbs have finished - but by then io_destroy
868 * has already returned, so io_setup() could potentially return
869 * -EAGAIN with no ioctxs actually in use (as far as userspace
870 * could tell).
871 */
872 aio_nr_sub(ctx->max_reqs);
4fcc712f 873
fa88b6f8
BL
874 if (ctx->mmap_size)
875 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 876
dc48e56d 877 ctx->rq_wait = wait;
fa88b6f8
BL
878 percpu_ref_kill(&ctx->users);
879 return 0;
1da177e4
LT
880}
881
36f55889
KO
882/*
883 * exit_aio: called when the last user of mm goes away. At this point, there is
884 * no way for any new requests to be submited or any of the io_* syscalls to be
885 * called on the context.
886 *
887 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
888 * them.
1da177e4 889 */
fc9b52cd 890void exit_aio(struct mm_struct *mm)
1da177e4 891{
4b70ac5f 892 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
893 struct ctx_rq_wait wait;
894 int i, skipped;
db446a08 895
4b70ac5f
ON
896 if (!table)
897 return;
db446a08 898
dc48e56d
JA
899 atomic_set(&wait.count, table->nr);
900 init_completion(&wait.comp);
901
902 skipped = 0;
4b70ac5f 903 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
904 struct kioctx *ctx =
905 rcu_dereference_protected(table->table[i], true);
abf137dd 906
dc48e56d
JA
907 if (!ctx) {
908 skipped++;
4b70ac5f 909 continue;
dc48e56d
JA
910 }
911
936af157 912 /*
4b70ac5f
ON
913 * We don't need to bother with munmap() here - exit_mmap(mm)
914 * is coming and it'll unmap everything. And we simply can't,
915 * this is not necessarily our ->mm.
916 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
917 * that it needs to unmap the area, just set it to 0.
936af157 918 */
58c85dc2 919 ctx->mmap_size = 0;
dc48e56d
JA
920 kill_ioctx(mm, ctx, &wait);
921 }
36f55889 922
dc48e56d 923 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 924 /* Wait until all IO for the context are done. */
dc48e56d 925 wait_for_completion(&wait.comp);
1da177e4 926 }
4b70ac5f
ON
927
928 RCU_INIT_POINTER(mm->ioctx_table, NULL);
929 kfree(table);
1da177e4
LT
930}
931
e1bdd5f2
KO
932static void put_reqs_available(struct kioctx *ctx, unsigned nr)
933{
934 struct kioctx_cpu *kcpu;
263782c1 935 unsigned long flags;
e1bdd5f2 936
263782c1 937 local_irq_save(flags);
be6fb451 938 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 939 kcpu->reqs_available += nr;
263782c1 940
e1bdd5f2
KO
941 while (kcpu->reqs_available >= ctx->req_batch * 2) {
942 kcpu->reqs_available -= ctx->req_batch;
943 atomic_add(ctx->req_batch, &ctx->reqs_available);
944 }
945
263782c1 946 local_irq_restore(flags);
e1bdd5f2
KO
947}
948
432c7997 949static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
950{
951 struct kioctx_cpu *kcpu;
952 bool ret = false;
263782c1 953 unsigned long flags;
e1bdd5f2 954
263782c1 955 local_irq_save(flags);
be6fb451 956 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 957 if (!kcpu->reqs_available) {
38ace0d5 958 int avail = atomic_read(&ctx->reqs_available);
e1bdd5f2
KO
959
960 do {
961 if (avail < ctx->req_batch)
962 goto out;
38ace0d5
UB
963 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
964 &avail, avail - ctx->req_batch));
e1bdd5f2
KO
965
966 kcpu->reqs_available += ctx->req_batch;
967 }
968
969 ret = true;
970 kcpu->reqs_available--;
971out:
263782c1 972 local_irq_restore(flags);
e1bdd5f2
KO
973 return ret;
974}
975
d856f32a
BL
976/* refill_reqs_available
977 * Updates the reqs_available reference counts used for tracking the
978 * number of free slots in the completion ring. This can be called
979 * from aio_complete() (to optimistically update reqs_available) or
980 * from aio_get_req() (the we're out of events case). It must be
981 * called holding ctx->completion_lock.
982 */
983static void refill_reqs_available(struct kioctx *ctx, unsigned head,
984 unsigned tail)
985{
986 unsigned events_in_ring, completed;
987
988 /* Clamp head since userland can write to it. */
989 head %= ctx->nr_events;
990 if (head <= tail)
991 events_in_ring = tail - head;
992 else
993 events_in_ring = ctx->nr_events - (head - tail);
994
995 completed = ctx->completed_events;
996 if (events_in_ring < completed)
997 completed -= events_in_ring;
998 else
999 completed = 0;
1000
1001 if (!completed)
1002 return;
1003
1004 ctx->completed_events -= completed;
1005 put_reqs_available(ctx, completed);
1006}
1007
1008/* user_refill_reqs_available
1009 * Called to refill reqs_available when aio_get_req() encounters an
1010 * out of space in the completion ring.
1011 */
1012static void user_refill_reqs_available(struct kioctx *ctx)
1013{
1014 spin_lock_irq(&ctx->completion_lock);
1015 if (ctx->completed_events) {
1016 struct aio_ring *ring;
1017 unsigned head;
1018
1019 /* Access of ring->head may race with aio_read_events_ring()
1020 * here, but that's okay since whether we read the old version
1021 * or the new version, and either will be valid. The important
1022 * part is that head cannot pass tail since we prevent
1023 * aio_complete() from updating tail by holding
1024 * ctx->completion_lock. Even if head is invalid, the check
1025 * against ctx->completed_events below will make sure we do the
1026 * safe/right thing.
1027 */
1028 ring = kmap_atomic(ctx->ring_pages[0]);
1029 head = ring->head;
1030 kunmap_atomic(ring);
1031
1032 refill_reqs_available(ctx, head, ctx->tail);
1033 }
1034
1035 spin_unlock_irq(&ctx->completion_lock);
1036}
1037
432c7997
CH
1038static bool get_reqs_available(struct kioctx *ctx)
1039{
1040 if (__get_reqs_available(ctx))
1041 return true;
1042 user_refill_reqs_available(ctx);
1043 return __get_reqs_available(ctx);
1044}
1045
1da177e4 1046/* aio_get_req
57282d8f
KO
1047 * Allocate a slot for an aio request.
1048 * Returns NULL if no requests are free.
b53119f1
LT
1049 *
1050 * The refcount is initialized to 2 - one for the async op completion,
1051 * one for the synchronous code that does this.
1da177e4 1052 */
04b2fa9f 1053static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1054{
04b2fa9f 1055 struct aio_kiocb *req;
a1c8eae7 1056
2bc4ca9b 1057 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1058 if (unlikely(!req))
432c7997 1059 return NULL;
1da177e4 1060
fa0ca2ae 1061 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1062 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1063 return NULL;
1064 }
1065
e34ecee2 1066 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1067 req->ki_ctx = ctx;
75321b50 1068 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1069 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1070 req->ki_eventfd = NULL;
080d676d 1071 return req;
1da177e4
LT
1072}
1073
d5470b59 1074static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1075{
db446a08 1076 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1077 struct mm_struct *mm = current->mm;
65c24491 1078 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1079 struct kioctx_table *table;
1080 unsigned id;
1081
1082 if (get_user(id, &ring->id))
1083 return NULL;
1da177e4 1084
abf137dd 1085 rcu_read_lock();
db446a08 1086 table = rcu_dereference(mm->ioctx_table);
abf137dd 1087
db446a08
BL
1088 if (!table || id >= table->nr)
1089 goto out;
1da177e4 1090
a538e3ff 1091 id = array_index_nospec(id, table->nr);
d0264c01 1092 ctx = rcu_dereference(table->table[id]);
f30d704f 1093 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1094 if (percpu_ref_tryget_live(&ctx->users))
1095 ret = ctx;
db446a08
BL
1096 }
1097out:
abf137dd 1098 rcu_read_unlock();
65c24491 1099 return ret;
1da177e4
LT
1100}
1101
b53119f1
LT
1102static inline void iocb_destroy(struct aio_kiocb *iocb)
1103{
74259703
AV
1104 if (iocb->ki_eventfd)
1105 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1106 if (iocb->ki_filp)
1107 fput(iocb->ki_filp);
1108 percpu_ref_put(&iocb->ki_ctx->reqs);
1109 kmem_cache_free(kiocb_cachep, iocb);
1110}
1111
1da177e4
LT
1112/* aio_complete
1113 * Called when the io request on the given iocb is complete.
1da177e4 1114 */
2bb874c0 1115static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1116{
1117 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1118 struct aio_ring *ring;
21b40200 1119 struct io_event *ev_page, *event;
d856f32a 1120 unsigned tail, pos, head;
1da177e4 1121 unsigned long flags;
1da177e4 1122
0460fef2
KO
1123 /*
1124 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1125 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1126 * pointer since we might be called from irq context.
1127 */
1128 spin_lock_irqsave(&ctx->completion_lock, flags);
1129
58c85dc2 1130 tail = ctx->tail;
21b40200
KO
1131 pos = tail + AIO_EVENTS_OFFSET;
1132
58c85dc2 1133 if (++tail >= ctx->nr_events)
4bf69b2a 1134 tail = 0;
1da177e4 1135
58c85dc2 1136 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1137 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1138
a9339b78 1139 *event = iocb->ki_res;
1da177e4 1140
21b40200 1141 kunmap_atomic(ev_page);
58c85dc2 1142 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1143
a9339b78
AV
1144 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1145 (void __user *)(unsigned long)iocb->ki_res.obj,
1146 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1147
1148 /* after flagging the request as done, we
1149 * must never even look at it again
1150 */
1151 smp_wmb(); /* make event visible before updating tail */
1152
58c85dc2 1153 ctx->tail = tail;
1da177e4 1154
58c85dc2 1155 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1156 head = ring->head;
21b40200 1157 ring->tail = tail;
e8e3c3d6 1158 kunmap_atomic(ring);
58c85dc2 1159 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1160
d856f32a
BL
1161 ctx->completed_events++;
1162 if (ctx->completed_events > 1)
1163 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1164 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1165
21b40200 1166 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1167
1168 /*
1169 * Check if the user asked us to deliver the result through an
1170 * eventfd. The eventfd_signal() function is safe to be called
1171 * from IRQ context.
1172 */
74259703 1173 if (iocb->ki_eventfd)
8d1c98b0
DL
1174 eventfd_signal(iocb->ki_eventfd, 1);
1175
6cb2a210
QB
1176 /*
1177 * We have to order our ring_info tail store above and test
1178 * of the wait list below outside the wait lock. This is
1179 * like in wake_up_bit() where clearing a bit has to be
1180 * ordered with the unlocked test.
1181 */
1182 smp_mb();
1183
1da177e4
LT
1184 if (waitqueue_active(&ctx->wait))
1185 wake_up(&ctx->wait);
2bb874c0
AV
1186}
1187
1188static inline void iocb_put(struct aio_kiocb *iocb)
1189{
1190 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1191 aio_complete(iocb);
1192 iocb_destroy(iocb);
1193 }
1da177e4
LT
1194}
1195
2be4e7de 1196/* aio_read_events_ring
a31ad380
KO
1197 * Pull an event off of the ioctx's event ring. Returns the number of
1198 * events fetched
1da177e4 1199 */
a31ad380
KO
1200static long aio_read_events_ring(struct kioctx *ctx,
1201 struct io_event __user *event, long nr)
1da177e4 1202{
1da177e4 1203 struct aio_ring *ring;
5ffac122 1204 unsigned head, tail, pos;
a31ad380
KO
1205 long ret = 0;
1206 int copy_ret;
1207
9c9ce763
DC
1208 /*
1209 * The mutex can block and wake us up and that will cause
1210 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211 * and repeat. This should be rare enough that it doesn't cause
1212 * peformance issues. See the comment in read_events() for more detail.
1213 */
1214 sched_annotate_sleep();
58c85dc2 1215 mutex_lock(&ctx->ring_lock);
1da177e4 1216
fa8a53c3 1217 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1218 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1219 head = ring->head;
5ffac122 1220 tail = ring->tail;
a31ad380
KO
1221 kunmap_atomic(ring);
1222
2ff396be
JM
1223 /*
1224 * Ensure that once we've read the current tail pointer, that
1225 * we also see the events that were stored up to the tail.
1226 */
1227 smp_rmb();
1228
5ffac122 1229 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1230
5ffac122 1231 if (head == tail)
1da177e4
LT
1232 goto out;
1233
edfbbf38
BL
1234 head %= ctx->nr_events;
1235 tail %= ctx->nr_events;
1236
a31ad380
KO
1237 while (ret < nr) {
1238 long avail;
1239 struct io_event *ev;
1240 struct page *page;
1241
5ffac122
KO
1242 avail = (head <= tail ? tail : ctx->nr_events) - head;
1243 if (head == tail)
a31ad380
KO
1244 break;
1245
a31ad380 1246 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1247 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1248 pos %= AIO_EVENTS_PER_PAGE;
1249
d2988bd4
AV
1250 avail = min(avail, nr - ret);
1251 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1252
a31ad380
KO
1253 ev = kmap(page);
1254 copy_ret = copy_to_user(event + ret, ev + pos,
1255 sizeof(*ev) * avail);
1256 kunmap(page);
1257
1258 if (unlikely(copy_ret)) {
1259 ret = -EFAULT;
1260 goto out;
1261 }
1262
1263 ret += avail;
1264 head += avail;
58c85dc2 1265 head %= ctx->nr_events;
1da177e4 1266 }
1da177e4 1267
58c85dc2 1268 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1269 ring->head = head;
91d80a84 1270 kunmap_atomic(ring);
58c85dc2 1271 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1272
5ffac122 1273 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1274out:
58c85dc2 1275 mutex_unlock(&ctx->ring_lock);
a31ad380 1276
1da177e4
LT
1277 return ret;
1278}
1279
a31ad380
KO
1280static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1281 struct io_event __user *event, long *i)
1da177e4 1282{
a31ad380 1283 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1284
a31ad380
KO
1285 if (ret > 0)
1286 *i += ret;
1da177e4 1287
a31ad380
KO
1288 if (unlikely(atomic_read(&ctx->dead)))
1289 ret = -EINVAL;
1da177e4 1290
a31ad380
KO
1291 if (!*i)
1292 *i = ret;
1da177e4 1293
a31ad380 1294 return ret < 0 || *i >= min_nr;
1da177e4
LT
1295}
1296
a31ad380 1297static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1298 struct io_event __user *event,
fa2e62a5 1299 ktime_t until)
1da177e4 1300{
a31ad380 1301 long ret = 0;
1da177e4 1302
a31ad380
KO
1303 /*
1304 * Note that aio_read_events() is being called as the conditional - i.e.
1305 * we're calling it after prepare_to_wait() has set task state to
1306 * TASK_INTERRUPTIBLE.
1307 *
1308 * But aio_read_events() can block, and if it blocks it's going to flip
1309 * the task state back to TASK_RUNNING.
1310 *
1311 * This should be ok, provided it doesn't flip the state back to
1312 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1313 * will only happen if the mutex_lock() call blocks, and we then find
1314 * the ringbuffer empty. So in practice we should be ok, but it's
1315 * something to be aware of when touching this code.
1316 */
2456e855 1317 if (until == 0)
5f785de5
FZ
1318 aio_read_events(ctx, min_nr, nr, event, &ret);
1319 else
1320 wait_event_interruptible_hrtimeout(ctx->wait,
1321 aio_read_events(ctx, min_nr, nr, event, &ret),
1322 until);
a31ad380 1323 return ret;
1da177e4
LT
1324}
1325
1da177e4
LT
1326/* sys_io_setup:
1327 * Create an aio_context capable of receiving at least nr_events.
1328 * ctxp must not point to an aio_context that already exists, and
1329 * must be initialized to 0 prior to the call. On successful
1330 * creation of the aio_context, *ctxp is filled in with the resulting
1331 * handle. May fail with -EINVAL if *ctxp is not initialized,
1332 * if the specified nr_events exceeds internal limits. May fail
1333 * with -EAGAIN if the specified nr_events exceeds the user's limit
1334 * of available events. May fail with -ENOMEM if insufficient kernel
1335 * resources are available. May fail with -EFAULT if an invalid
1336 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1337 * implemented.
1338 */
002c8976 1339SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1340{
1341 struct kioctx *ioctx = NULL;
1342 unsigned long ctx;
1343 long ret;
1344
1345 ret = get_user(ctx, ctxp);
1346 if (unlikely(ret))
1347 goto out;
1348
1349 ret = -EINVAL;
d55b5fda 1350 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1351 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1352 ctx, nr_events);
1da177e4
LT
1353 goto out;
1354 }
1355
1356 ioctx = ioctx_alloc(nr_events);
1357 ret = PTR_ERR(ioctx);
1358 if (!IS_ERR(ioctx)) {
1359 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1360 if (ret)
e02ba72a 1361 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1362 percpu_ref_put(&ioctx->users);
1da177e4
LT
1363 }
1364
1365out:
1366 return ret;
1367}
1368
c00d2c7e
AV
1369#ifdef CONFIG_COMPAT
1370COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1371{
1372 struct kioctx *ioctx = NULL;
1373 unsigned long ctx;
1374 long ret;
1375
1376 ret = get_user(ctx, ctx32p);
1377 if (unlikely(ret))
1378 goto out;
1379
1380 ret = -EINVAL;
1381 if (unlikely(ctx || nr_events == 0)) {
1382 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1383 ctx, nr_events);
1384 goto out;
1385 }
1386
1387 ioctx = ioctx_alloc(nr_events);
1388 ret = PTR_ERR(ioctx);
1389 if (!IS_ERR(ioctx)) {
1390 /* truncating is ok because it's a user address */
1391 ret = put_user((u32)ioctx->user_id, ctx32p);
1392 if (ret)
1393 kill_ioctx(current->mm, ioctx, NULL);
1394 percpu_ref_put(&ioctx->users);
1395 }
1396
1397out:
1398 return ret;
1399}
1400#endif
1401
1da177e4
LT
1402/* sys_io_destroy:
1403 * Destroy the aio_context specified. May cancel any outstanding
1404 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1405 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1406 * is invalid.
1407 */
002c8976 1408SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1409{
1410 struct kioctx *ioctx = lookup_ioctx(ctx);
1411 if (likely(NULL != ioctx)) {
dc48e56d 1412 struct ctx_rq_wait wait;
fb2d4483 1413 int ret;
e02ba72a 1414
dc48e56d
JA
1415 init_completion(&wait.comp);
1416 atomic_set(&wait.count, 1);
1417
e02ba72a
AP
1418 /* Pass requests_done to kill_ioctx() where it can be set
1419 * in a thread-safe way. If we try to set it here then we have
1420 * a race condition if two io_destroy() called simultaneously.
1421 */
dc48e56d 1422 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1423 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1424
1425 /* Wait until all IO for the context are done. Otherwise kernel
1426 * keep using user-space buffers even if user thinks the context
1427 * is destroyed.
1428 */
fb2d4483 1429 if (!ret)
dc48e56d 1430 wait_for_completion(&wait.comp);
e02ba72a 1431
fb2d4483 1432 return ret;
1da177e4 1433 }
acd88d4e 1434 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1435 return -EINVAL;
1436}
1437
3c96c7f4
AV
1438static void aio_remove_iocb(struct aio_kiocb *iocb)
1439{
1440 struct kioctx *ctx = iocb->ki_ctx;
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(&ctx->ctx_lock, flags);
1444 list_del(&iocb->ki_list);
1445 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1446}
1447
6b19b766 1448static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1449{
1450 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1451
3c96c7f4
AV
1452 if (!list_empty_careful(&iocb->ki_list))
1453 aio_remove_iocb(iocb);
1454
54843f87
CH
1455 if (kiocb->ki_flags & IOCB_WRITE) {
1456 struct inode *inode = file_inode(kiocb->ki_filp);
1457
1458 /*
1459 * Tell lockdep we inherited freeze protection from submission
1460 * thread.
1461 */
1462 if (S_ISREG(inode->i_mode))
1463 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1464 file_end_write(kiocb->ki_filp);
1465 }
1466
2bb874c0 1467 iocb->ki_res.res = res;
6b19b766 1468 iocb->ki_res.res2 = 0;
2bb874c0 1469 iocb_put(iocb);
54843f87
CH
1470}
1471
88a6f18b 1472static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1473{
1474 int ret;
1475
54843f87 1476 req->ki_complete = aio_complete_rw;
ec51f8ee 1477 req->private = NULL;
54843f87 1478 req->ki_pos = iocb->aio_offset;
164f4064 1479 req->ki_flags = req->ki_filp->f_iocb_flags;
54843f87
CH
1480 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1481 req->ki_flags |= IOCB_EVENTFD;
d9a08a9e
AM
1482 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1483 /*
1484 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1485 * aio_reqprio is interpreted as an I/O scheduling
1486 * class and priority.
1487 */
1488 ret = ioprio_check_cap(iocb->aio_reqprio);
1489 if (ret) {
9a6d9a62 1490 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1491 return ret;
d9a08a9e
AM
1492 }
1493
1494 req->ki_ioprio = iocb->aio_reqprio;
1495 } else
76dc8913 1496 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1497
54843f87
CH
1498 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1499 if (unlikely(ret))
84c4e1f8 1500 return ret;
154989e4
CH
1501
1502 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1503 return 0;
54843f87
CH
1504}
1505
87e5e6da
JA
1506static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1507 struct iovec **iovec, bool vectored, bool compat,
1508 struct iov_iter *iter)
eed4e51f 1509{
89319d31
CH
1510 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1511 size_t len = iocb->aio_nbytes;
1512
1513 if (!vectored) {
1514 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1515 *iovec = NULL;
1516 return ret;
1517 }
89cd35c5
CH
1518
1519 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1520}
1521
9061d14a 1522static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1523{
1524 switch (ret) {
1525 case -EIOCBQUEUED:
9061d14a 1526 break;
89319d31
CH
1527 case -ERESTARTSYS:
1528 case -ERESTARTNOINTR:
1529 case -ERESTARTNOHAND:
1530 case -ERESTART_RESTARTBLOCK:
1531 /*
1532 * There's no easy way to restart the syscall since other AIO's
1533 * may be already running. Just fail this IO with EINTR.
1534 */
1535 ret = -EINTR;
df561f66 1536 fallthrough;
89319d31 1537 default:
6b19b766 1538 req->ki_complete(req, ret);
89319d31
CH
1539 }
1540}
1541
958c13ce 1542static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1543 bool vectored, bool compat)
1da177e4 1544{
00fefb9c 1545 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1546 struct iov_iter iter;
54843f87 1547 struct file *file;
958c13ce 1548 int ret;
1da177e4 1549
54843f87
CH
1550 ret = aio_prep_rw(req, iocb);
1551 if (ret)
1552 return ret;
1553 file = req->ki_filp;
89319d31 1554 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1555 return -EBADF;
89319d31 1556 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1557 return -EINVAL;
73a7075e 1558
de4eda9d 1559 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1560 if (ret < 0)
84c4e1f8 1561 return ret;
89319d31
CH
1562 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1563 if (!ret)
9061d14a 1564 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1565 kfree(iovec);
1566 return ret;
1567}
73a7075e 1568
958c13ce 1569static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1570 bool vectored, bool compat)
89319d31 1571{
89319d31
CH
1572 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1573 struct iov_iter iter;
54843f87 1574 struct file *file;
958c13ce 1575 int ret;
41ef4eb8 1576
54843f87
CH
1577 ret = aio_prep_rw(req, iocb);
1578 if (ret)
1579 return ret;
1580 file = req->ki_filp;
1581
89319d31 1582 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1583 return -EBADF;
89319d31 1584 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1585 return -EINVAL;
1da177e4 1586
de4eda9d 1587 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1588 if (ret < 0)
84c4e1f8 1589 return ret;
89319d31
CH
1590 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1591 if (!ret) {
70fe2f48 1592 /*
92ce4728 1593 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1594 * which will be released by another thread in
1595 * aio_complete_rw(). Fool lockdep by telling it the lock got
1596 * released so that it doesn't complain about the held lock when
1597 * we return to userspace.
70fe2f48 1598 */
92ce4728 1599 if (S_ISREG(file_inode(file)->i_mode)) {
8a3c84b6 1600 sb_start_write(file_inode(file)->i_sb);
a12f1ae6 1601 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1602 }
1603 req->ki_flags |= IOCB_WRITE;
9061d14a 1604 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1605 }
89319d31
CH
1606 kfree(iovec);
1607 return ret;
1da177e4
LT
1608}
1609
a3c0d439
CH
1610static void aio_fsync_work(struct work_struct *work)
1611{
2bb874c0 1612 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1613 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1614
2bb874c0 1615 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1616 revert_creds(old_cred);
1617 put_cred(iocb->fsync.creds);
2bb874c0 1618 iocb_put(iocb);
a3c0d439
CH
1619}
1620
88a6f18b
JA
1621static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1622 bool datasync)
a3c0d439
CH
1623{
1624 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1625 iocb->aio_rw_flags))
1626 return -EINVAL;
a11e1d43 1627
84c4e1f8 1628 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1629 return -EINVAL;
a3c0d439 1630
530f32fc
MS
1631 req->creds = prepare_creds();
1632 if (!req->creds)
1633 return -ENOMEM;
1634
a3c0d439
CH
1635 req->datasync = datasync;
1636 INIT_WORK(&req->work, aio_fsync_work);
1637 schedule_work(&req->work);
9061d14a 1638 return 0;
a3c0d439
CH
1639}
1640
01d7a356
JA
1641static void aio_poll_put_work(struct work_struct *work)
1642{
1643 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1644 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1645
1646 iocb_put(iocb);
1647}
1648
50252e4b
EB
1649/*
1650 * Safely lock the waitqueue which the request is on, synchronizing with the
1651 * case where the ->poll() provider decides to free its waitqueue early.
1652 *
1653 * Returns true on success, meaning that req->head->lock was locked, req->wait
1654 * is on req->head, and an RCU read lock was taken. Returns false if the
1655 * request was already removed from its waitqueue (which might no longer exist).
1656 */
1657static bool poll_iocb_lock_wq(struct poll_iocb *req)
1658{
1659 wait_queue_head_t *head;
1660
1661 /*
1662 * While we hold the waitqueue lock and the waitqueue is nonempty,
1663 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1664 * lock in the first place can race with the waitqueue being freed.
1665 *
1666 * We solve this as eventpoll does: by taking advantage of the fact that
1667 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1668 * we enter rcu_read_lock() and see that the pointer to the queue is
1669 * non-NULL, we can then lock it without the memory being freed out from
1670 * under us, then check whether the request is still on the queue.
1671 *
1672 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1673 * case the caller deletes the entry from the queue, leaving it empty.
1674 * In that case, only RCU prevents the queue memory from being freed.
1675 */
1676 rcu_read_lock();
1677 head = smp_load_acquire(&req->head);
1678 if (head) {
1679 spin_lock(&head->lock);
1680 if (!list_empty(&req->wait.entry))
1681 return true;
1682 spin_unlock(&head->lock);
1683 }
1684 rcu_read_unlock();
1685 return false;
1686}
1687
1688static void poll_iocb_unlock_wq(struct poll_iocb *req)
1689{
1690 spin_unlock(&req->head->lock);
1691 rcu_read_unlock();
1692}
1693
bfe4037e
CH
1694static void aio_poll_complete_work(struct work_struct *work)
1695{
1696 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1697 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1698 struct poll_table_struct pt = { ._key = req->events };
1699 struct kioctx *ctx = iocb->ki_ctx;
1700 __poll_t mask = 0;
1701
1702 if (!READ_ONCE(req->cancelled))
1703 mask = vfs_poll(req->file, &pt) & req->events;
1704
1705 /*
1706 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1707 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1708 * synchronize with them. In the cancellation case the list_del_init
1709 * itself is not actually needed, but harmless so we keep it in to
1710 * avoid further branches in the fast path.
1711 */
1712 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1713 if (poll_iocb_lock_wq(req)) {
1714 if (!mask && !READ_ONCE(req->cancelled)) {
1715 /*
1716 * The request isn't actually ready to be completed yet.
1717 * Reschedule completion if another wakeup came in.
1718 */
1719 if (req->work_need_resched) {
1720 schedule_work(&req->work);
1721 req->work_need_resched = false;
1722 } else {
1723 req->work_scheduled = false;
1724 }
1725 poll_iocb_unlock_wq(req);
1726 spin_unlock_irq(&ctx->ctx_lock);
1727 return;
363bee27 1728 }
50252e4b
EB
1729 list_del_init(&req->wait.entry);
1730 poll_iocb_unlock_wq(req);
1731 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1732 list_del_init(&iocb->ki_list);
af5c72b1 1733 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1734 spin_unlock_irq(&ctx->ctx_lock);
1735
af5c72b1 1736 iocb_put(iocb);
bfe4037e
CH
1737}
1738
1739/* assumes we are called with irqs disabled */
1740static int aio_poll_cancel(struct kiocb *iocb)
1741{
1742 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1743 struct poll_iocb *req = &aiocb->poll;
1744
50252e4b
EB
1745 if (poll_iocb_lock_wq(req)) {
1746 WRITE_ONCE(req->cancelled, true);
1747 if (!req->work_scheduled) {
1748 schedule_work(&aiocb->poll.work);
1749 req->work_scheduled = true;
1750 }
1751 poll_iocb_unlock_wq(req);
1752 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1753
1754 return 0;
1755}
1756
1757static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1758 void *key)
1759{
1760 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1761 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1762 __poll_t mask = key_to_poll(key);
d3d6a18d 1763 unsigned long flags;
bfe4037e 1764
bfe4037e 1765 /* for instances that support it check for an event match first: */
af5c72b1
AV
1766 if (mask && !(mask & req->events))
1767 return 0;
e8693bcf 1768
363bee27
EB
1769 /*
1770 * Complete the request inline if possible. This requires that three
1771 * conditions be met:
1772 * 1. An event mask must have been passed. If a plain wakeup was done
1773 * instead, then mask == 0 and we have to call vfs_poll() to get
1774 * the events, so inline completion isn't possible.
1775 * 2. The completion work must not have already been scheduled.
1776 * 3. ctx_lock must not be busy. We have to use trylock because we
1777 * already hold the waitqueue lock, so this inverts the normal
1778 * locking order. Use irqsave/irqrestore because not all
1779 * filesystems (e.g. fuse) call this function with IRQs disabled,
1780 * yet IRQs have to be disabled before ctx_lock is obtained.
1781 */
1782 if (mask && !req->work_scheduled &&
1783 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1784 struct kioctx *ctx = iocb->ki_ctx;
1785
363bee27 1786 list_del_init(&req->wait.entry);
af5c72b1
AV
1787 list_del(&iocb->ki_list);
1788 iocb->ki_res.res = mangle_poll(mask);
4b374986 1789 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
01d7a356
JA
1790 iocb = NULL;
1791 INIT_WORK(&req->work, aio_poll_put_work);
1792 schedule_work(&req->work);
1793 }
1794 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1795 if (iocb)
1796 iocb_put(iocb);
af5c72b1 1797 } else {
363bee27
EB
1798 /*
1799 * Schedule the completion work if needed. If it was already
1800 * scheduled, record that another wakeup came in.
1801 *
1802 * Don't remove the request from the waitqueue here, as it might
1803 * not actually be complete yet (we won't know until vfs_poll()
50252e4b
EB
1804 * is called), and we must not miss any wakeups. POLLFREE is an
1805 * exception to this; see below.
363bee27
EB
1806 */
1807 if (req->work_scheduled) {
1808 req->work_need_resched = true;
1809 } else {
1810 schedule_work(&req->work);
1811 req->work_scheduled = true;
1812 }
50252e4b
EB
1813
1814 /*
1815 * If the waitqueue is being freed early but we can't complete
1816 * the request inline, we have to tear down the request as best
1817 * we can. That means immediately removing the request from its
1818 * waitqueue and preventing all further accesses to the
1819 * waitqueue via the request. We also need to schedule the
1820 * completion work (done above). Also mark the request as
1821 * cancelled, to potentially skip an unneeded call to ->poll().
1822 */
1823 if (mask & POLLFREE) {
1824 WRITE_ONCE(req->cancelled, true);
1825 list_del_init(&req->wait.entry);
1826
1827 /*
1828 * Careful: this *must* be the last step, since as soon
1829 * as req->head is NULL'ed out, the request can be
1830 * completed and freed, since aio_poll_complete_work()
1831 * will no longer need to take the waitqueue lock.
1832 */
1833 smp_store_release(&req->head, NULL);
1834 }
e8693bcf 1835 }
bfe4037e
CH
1836 return 1;
1837}
1838
1839struct aio_poll_table {
1840 struct poll_table_struct pt;
1841 struct aio_kiocb *iocb;
50252e4b 1842 bool queued;
bfe4037e
CH
1843 int error;
1844};
1845
1846static void
1847aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1848 struct poll_table_struct *p)
1849{
1850 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1851
1852 /* multiple wait queues per file are not supported */
50252e4b 1853 if (unlikely(pt->queued)) {
bfe4037e
CH
1854 pt->error = -EINVAL;
1855 return;
1856 }
1857
50252e4b 1858 pt->queued = true;
bfe4037e
CH
1859 pt->error = 0;
1860 pt->iocb->poll.head = head;
1861 add_wait_queue(head, &pt->iocb->poll.wait);
1862}
1863
958c13ce 1864static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1865{
1866 struct kioctx *ctx = aiocb->ki_ctx;
1867 struct poll_iocb *req = &aiocb->poll;
1868 struct aio_poll_table apt;
af5c72b1 1869 bool cancel = false;
bfe4037e
CH
1870 __poll_t mask;
1871
1872 /* reject any unknown events outside the normal event mask. */
1873 if ((u16)iocb->aio_buf != iocb->aio_buf)
1874 return -EINVAL;
1875 /* reject fields that are not defined for poll */
1876 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1877 return -EINVAL;
1878
1879 INIT_WORK(&req->work, aio_poll_complete_work);
1880 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1881
2bc4ca9b 1882 req->head = NULL;
2bc4ca9b 1883 req->cancelled = false;
363bee27
EB
1884 req->work_scheduled = false;
1885 req->work_need_resched = false;
2bc4ca9b 1886
bfe4037e
CH
1887 apt.pt._qproc = aio_poll_queue_proc;
1888 apt.pt._key = req->events;
1889 apt.iocb = aiocb;
50252e4b 1890 apt.queued = false;
bfe4037e
CH
1891 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1892
1893 /* initialized the list so that we can do list_empty checks */
1894 INIT_LIST_HEAD(&req->wait.entry);
1895 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1896
bfe4037e 1897 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1898 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1899 if (likely(apt.queued)) {
1900 bool on_queue = poll_iocb_lock_wq(req);
1901
1902 if (!on_queue || req->work_scheduled) {
363bee27
EB
1903 /*
1904 * aio_poll_wake() already either scheduled the async
1905 * completion work, or completed the request inline.
1906 */
1907 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1908 cancel = true;
1909 apt.error = 0;
1910 mask = 0;
1911 }
1912 if (mask || apt.error) {
363bee27 1913 /* Steal to complete synchronously. */
af5c72b1
AV
1914 list_del_init(&req->wait.entry);
1915 } else if (cancel) {
363bee27 1916 /* Cancel if possible (may be too late though). */
af5c72b1 1917 WRITE_ONCE(req->cancelled, true);
50252e4b 1918 } else if (on_queue) {
363bee27
EB
1919 /*
1920 * Actually waiting for an event, so add the request to
1921 * active_reqs so that it can be cancelled if needed.
1922 */
af5c72b1
AV
1923 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1924 aiocb->ki_cancel = aio_poll_cancel;
1925 }
50252e4b
EB
1926 if (on_queue)
1927 poll_iocb_unlock_wq(req);
af5c72b1
AV
1928 }
1929 if (mask) { /* no async, we'd stolen it */
1930 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1931 apt.error = 0;
bfe4037e 1932 }
bfe4037e 1933 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1934 if (mask)
af5c72b1
AV
1935 iocb_put(aiocb);
1936 return apt.error;
bfe4037e
CH
1937}
1938
88a6f18b 1939static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1940 struct iocb __user *user_iocb, struct aio_kiocb *req,
1941 bool compat)
1da177e4 1942{
84c4e1f8 1943 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1944 if (unlikely(!req->ki_filp))
7316b49c 1945 return -EBADF;
84c4e1f8 1946
88a6f18b 1947 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1948 struct eventfd_ctx *eventfd;
9c3060be
DL
1949 /*
1950 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1951 * instance of the file* now. The file descriptor must be
1952 * an eventfd() fd, and will be signaled for each completed
1953 * event using the eventfd_signal() function.
1954 */
74259703 1955 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1956 if (IS_ERR(eventfd))
18bfb9c6 1957 return PTR_ERR(eventfd);
7316b49c 1958
74259703 1959 req->ki_eventfd = eventfd;
9830f4be
GR
1960 }
1961
7316b49c 1962 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1963 pr_debug("EFAULT: aio_key\n");
7316b49c 1964 return -EFAULT;
1da177e4
LT
1965 }
1966
a9339b78
AV
1967 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1968 req->ki_res.data = iocb->aio_data;
1969 req->ki_res.res = 0;
1970 req->ki_res.res2 = 0;
1da177e4 1971
88a6f18b 1972 switch (iocb->aio_lio_opcode) {
89319d31 1973 case IOCB_CMD_PREAD:
7316b49c 1974 return aio_read(&req->rw, iocb, false, compat);
89319d31 1975 case IOCB_CMD_PWRITE:
7316b49c 1976 return aio_write(&req->rw, iocb, false, compat);
89319d31 1977 case IOCB_CMD_PREADV:
7316b49c 1978 return aio_read(&req->rw, iocb, true, compat);
89319d31 1979 case IOCB_CMD_PWRITEV:
7316b49c 1980 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1981 case IOCB_CMD_FSYNC:
7316b49c 1982 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1983 case IOCB_CMD_FDSYNC:
7316b49c 1984 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1985 case IOCB_CMD_POLL:
7316b49c 1986 return aio_poll(req, iocb);
89319d31 1987 default:
88a6f18b 1988 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1989 return -EINVAL;
89319d31 1990 }
1da177e4
LT
1991}
1992
88a6f18b
JA
1993static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1994 bool compat)
1995{
7316b49c 1996 struct aio_kiocb *req;
88a6f18b 1997 struct iocb iocb;
7316b49c 1998 int err;
88a6f18b
JA
1999
2000 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2001 return -EFAULT;
2002
7316b49c
AV
2003 /* enforce forwards compatibility on users */
2004 if (unlikely(iocb.aio_reserved2)) {
2005 pr_debug("EINVAL: reserve field set\n");
2006 return -EINVAL;
2007 }
2008
2009 /* prevent overflows */
2010 if (unlikely(
2011 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2012 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2013 ((ssize_t)iocb.aio_nbytes < 0)
2014 )) {
2015 pr_debug("EINVAL: overflow check\n");
2016 return -EINVAL;
2017 }
2018
2019 req = aio_get_req(ctx);
2020 if (unlikely(!req))
2021 return -EAGAIN;
2022
2023 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2024
2025 /* Done with the synchronous reference */
2026 iocb_put(req);
2027
2028 /*
2029 * If err is 0, we'd either done aio_complete() ourselves or have
2030 * arranged for that to be done asynchronously. Anything non-zero
2031 * means that we need to destroy req ourselves.
2032 */
2033 if (unlikely(err)) {
2034 iocb_destroy(req);
2035 put_reqs_available(ctx, 1);
2036 }
2037 return err;
88a6f18b
JA
2038}
2039
67ba049f
AV
2040/* sys_io_submit:
2041 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2042 * the number of iocbs queued. May return -EINVAL if the aio_context
2043 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2044 * *iocbpp[0] is not properly initialized, if the operation specified
2045 * is invalid for the file descriptor in the iocb. May fail with
2046 * -EFAULT if any of the data structures point to invalid data. May
2047 * fail with -EBADF if the file descriptor specified in the first
2048 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2049 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2050 * fail with -ENOSYS if not implemented.
2051 */
2052SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2053 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2054{
2055 struct kioctx *ctx;
2056 long ret = 0;
080d676d 2057 int i = 0;
9f5b9425 2058 struct blk_plug plug;
1da177e4
LT
2059
2060 if (unlikely(nr < 0))
2061 return -EINVAL;
2062
1da177e4
LT
2063 ctx = lookup_ioctx(ctx_id);
2064 if (unlikely(!ctx)) {
caf4167a 2065 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2066 return -EINVAL;
2067 }
2068
1da92779
AV
2069 if (nr > ctx->nr_events)
2070 nr = ctx->nr_events;
2071
a79d40e9
JA
2072 if (nr > AIO_PLUG_THRESHOLD)
2073 blk_start_plug(&plug);
67ba049f 2074 for (i = 0; i < nr; i++) {
1da177e4 2075 struct iocb __user *user_iocb;
1da177e4 2076
67ba049f 2077 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2078 ret = -EFAULT;
2079 break;
2080 }
2081
67ba049f 2082 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2083 if (ret)
2084 break;
2085 }
a79d40e9
JA
2086 if (nr > AIO_PLUG_THRESHOLD)
2087 blk_finish_plug(&plug);
1da177e4 2088
723be6e3 2089 percpu_ref_put(&ctx->users);
1da177e4
LT
2090 return i ? i : ret;
2091}
2092
c00d2c7e 2093#ifdef CONFIG_COMPAT
c00d2c7e 2094COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2095 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2096{
67ba049f
AV
2097 struct kioctx *ctx;
2098 long ret = 0;
2099 int i = 0;
2100 struct blk_plug plug;
c00d2c7e
AV
2101
2102 if (unlikely(nr < 0))
2103 return -EINVAL;
2104
67ba049f
AV
2105 ctx = lookup_ioctx(ctx_id);
2106 if (unlikely(!ctx)) {
2107 pr_debug("EINVAL: invalid context id\n");
2108 return -EINVAL;
2109 }
2110
1da92779
AV
2111 if (nr > ctx->nr_events)
2112 nr = ctx->nr_events;
2113
a79d40e9
JA
2114 if (nr > AIO_PLUG_THRESHOLD)
2115 blk_start_plug(&plug);
67ba049f
AV
2116 for (i = 0; i < nr; i++) {
2117 compat_uptr_t user_iocb;
2118
2119 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2120 ret = -EFAULT;
2121 break;
2122 }
2123
2124 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2125 if (ret)
2126 break;
2127 }
a79d40e9
JA
2128 if (nr > AIO_PLUG_THRESHOLD)
2129 blk_finish_plug(&plug);
67ba049f
AV
2130
2131 percpu_ref_put(&ctx->users);
2132 return i ? i : ret;
c00d2c7e
AV
2133}
2134#endif
2135
1da177e4
LT
2136/* sys_io_cancel:
2137 * Attempts to cancel an iocb previously passed to io_submit. If
2138 * the operation is successfully cancelled, the resulting event is
2139 * copied into the memory pointed to by result without being placed
2140 * into the completion queue and 0 is returned. May fail with
2141 * -EFAULT if any of the data structures pointed to are invalid.
2142 * May fail with -EINVAL if aio_context specified by ctx_id is
2143 * invalid. May fail with -EAGAIN if the iocb specified was not
2144 * cancelled. Will fail with -ENOSYS if not implemented.
2145 */
002c8976
HC
2146SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2147 struct io_event __user *, result)
1da177e4 2148{
1da177e4 2149 struct kioctx *ctx;
04b2fa9f 2150 struct aio_kiocb *kiocb;
888933f8 2151 int ret = -EINVAL;
1da177e4 2152 u32 key;
a9339b78 2153 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2154
f3a2752a 2155 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2156 return -EFAULT;
f3a2752a
CH
2157 if (unlikely(key != KIOCB_KEY))
2158 return -EINVAL;
1da177e4
LT
2159
2160 ctx = lookup_ioctx(ctx_id);
2161 if (unlikely(!ctx))
2162 return -EINVAL;
2163
2164 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2165 /* TODO: use a hash or array, this sucks. */
2166 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2167 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2168 ret = kiocb->ki_cancel(&kiocb->rw);
2169 list_del_init(&kiocb->ki_list);
2170 break;
2171 }
888933f8 2172 }
1da177e4
LT
2173 spin_unlock_irq(&ctx->ctx_lock);
2174
906b973c 2175 if (!ret) {
bec68faa
KO
2176 /*
2177 * The result argument is no longer used - the io_event is
2178 * always delivered via the ring buffer. -EINPROGRESS indicates
2179 * cancellation is progress:
906b973c 2180 */
bec68faa 2181 ret = -EINPROGRESS;
906b973c 2182 }
1da177e4 2183
723be6e3 2184 percpu_ref_put(&ctx->users);
1da177e4
LT
2185
2186 return ret;
2187}
2188
fa2e62a5
DD
2189static long do_io_getevents(aio_context_t ctx_id,
2190 long min_nr,
2191 long nr,
2192 struct io_event __user *events,
2193 struct timespec64 *ts)
2194{
2195 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2196 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2197 long ret = -EINVAL;
2198
2199 if (likely(ioctx)) {
2200 if (likely(min_nr <= nr && min_nr >= 0))
2201 ret = read_events(ioctx, min_nr, nr, events, until);
2202 percpu_ref_put(&ioctx->users);
2203 }
2204
2205 return ret;
2206}
2207
1da177e4
LT
2208/* io_getevents:
2209 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2210 * the completion queue for the aio_context specified by ctx_id. If
2211 * it succeeds, the number of read events is returned. May fail with
2212 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2213 * out of range, if timeout is out of range. May fail with -EFAULT
2214 * if any of the memory specified is invalid. May return 0 or
2215 * < min_nr if the timeout specified by timeout has elapsed
2216 * before sufficient events are available, where timeout == NULL
2217 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2218 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2219 */
3ca47e95 2220#ifdef CONFIG_64BIT
7a35397f 2221
002c8976
HC
2222SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2223 long, min_nr,
2224 long, nr,
2225 struct io_event __user *, events,
7a35397f 2226 struct __kernel_timespec __user *, timeout)
1da177e4 2227{
fa2e62a5 2228 struct timespec64 ts;
7a074e96
CH
2229 int ret;
2230
2231 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2232 return -EFAULT;
2233
2234 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2235 if (!ret && signal_pending(current))
2236 ret = -EINTR;
2237 return ret;
2238}
1da177e4 2239
7a35397f
DD
2240#endif
2241
9ba546c0
CH
2242struct __aio_sigset {
2243 const sigset_t __user *sigmask;
2244 size_t sigsetsize;
2245};
2246
7a074e96
CH
2247SYSCALL_DEFINE6(io_pgetevents,
2248 aio_context_t, ctx_id,
2249 long, min_nr,
2250 long, nr,
2251 struct io_event __user *, events,
7a35397f 2252 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2253 const struct __aio_sigset __user *, usig)
2254{
2255 struct __aio_sigset ksig = { NULL, };
7a074e96 2256 struct timespec64 ts;
97abc889 2257 bool interrupted;
7a074e96
CH
2258 int ret;
2259
2260 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261 return -EFAULT;
2262
2263 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2264 return -EFAULT;
2265
b772434b 2266 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2267 if (ret)
2268 return ret;
7a074e96
CH
2269
2270 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2271
2272 interrupted = signal_pending(current);
b772434b 2273 restore_saved_sigmask_unless(interrupted);
97abc889 2274 if (interrupted && !ret)
7a35397f 2275 ret = -ERESTARTNOHAND;
7a074e96 2276
7a35397f
DD
2277 return ret;
2278}
2279
2280#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2281
2282SYSCALL_DEFINE6(io_pgetevents_time32,
2283 aio_context_t, ctx_id,
2284 long, min_nr,
2285 long, nr,
2286 struct io_event __user *, events,
2287 struct old_timespec32 __user *, timeout,
2288 const struct __aio_sigset __user *, usig)
2289{
2290 struct __aio_sigset ksig = { NULL, };
7a35397f 2291 struct timespec64 ts;
97abc889 2292 bool interrupted;
7a35397f
DD
2293 int ret;
2294
2295 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2296 return -EFAULT;
2297
2298 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299 return -EFAULT;
2300
ded653cc 2301
b772434b 2302 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2303 if (ret)
2304 return ret;
7a074e96
CH
2305
2306 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2307
2308 interrupted = signal_pending(current);
b772434b 2309 restore_saved_sigmask_unless(interrupted);
97abc889 2310 if (interrupted && !ret)
854a6ed5 2311 ret = -ERESTARTNOHAND;
fa2e62a5 2312
7a074e96 2313 return ret;
1da177e4 2314}
c00d2c7e 2315
7a35397f
DD
2316#endif
2317
2318#if defined(CONFIG_COMPAT_32BIT_TIME)
2319
8dabe724
AB
2320SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2321 __s32, min_nr,
2322 __s32, nr,
2323 struct io_event __user *, events,
2324 struct old_timespec32 __user *, timeout)
c00d2c7e 2325{
fa2e62a5 2326 struct timespec64 t;
7a074e96
CH
2327 int ret;
2328
9afc5eee 2329 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2330 return -EFAULT;
2331
2332 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2333 if (!ret && signal_pending(current))
2334 ret = -EINTR;
2335 return ret;
2336}
2337
7a35397f
DD
2338#endif
2339
2340#ifdef CONFIG_COMPAT
c00d2c7e 2341
7a074e96 2342struct __compat_aio_sigset {
97eba80f 2343 compat_uptr_t sigmask;
7a074e96
CH
2344 compat_size_t sigsetsize;
2345};
2346
7a35397f
DD
2347#if defined(CONFIG_COMPAT_32BIT_TIME)
2348
7a074e96
CH
2349COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2350 compat_aio_context_t, ctx_id,
2351 compat_long_t, min_nr,
2352 compat_long_t, nr,
2353 struct io_event __user *, events,
9afc5eee 2354 struct old_timespec32 __user *, timeout,
7a074e96
CH
2355 const struct __compat_aio_sigset __user *, usig)
2356{
97eba80f 2357 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2358 struct timespec64 t;
97abc889 2359 bool interrupted;
7a074e96
CH
2360 int ret;
2361
9afc5eee 2362 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2363 return -EFAULT;
2364
2365 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2366 return -EFAULT;
2367
97eba80f 2368 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2369 if (ret)
2370 return ret;
c00d2c7e 2371
7a074e96 2372 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2373
2374 interrupted = signal_pending(current);
b772434b 2375 restore_saved_sigmask_unless(interrupted);
97abc889 2376 if (interrupted && !ret)
854a6ed5 2377 ret = -ERESTARTNOHAND;
fa2e62a5 2378
7a074e96 2379 return ret;
c00d2c7e 2380}
7a35397f
DD
2381
2382#endif
2383
2384COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2385 compat_aio_context_t, ctx_id,
2386 compat_long_t, min_nr,
2387 compat_long_t, nr,
2388 struct io_event __user *, events,
2389 struct __kernel_timespec __user *, timeout,
2390 const struct __compat_aio_sigset __user *, usig)
2391{
97eba80f 2392 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2393 struct timespec64 t;
97abc889 2394 bool interrupted;
7a35397f
DD
2395 int ret;
2396
2397 if (timeout && get_timespec64(&t, timeout))
2398 return -EFAULT;
2399
2400 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401 return -EFAULT;
2402
97eba80f 2403 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2404 if (ret)
2405 return ret;
2406
2407 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2408
2409 interrupted = signal_pending(current);
b772434b 2410 restore_saved_sigmask_unless(interrupted);
97abc889 2411 if (interrupted && !ret)
7a35397f 2412 ret = -ERESTARTNOHAND;
fa2e62a5 2413
7a074e96 2414 return ret;
c00d2c7e
AV
2415}
2416#endif