dm: dm-zoned: use __bio_add_page for adding single metadata page
[linux-block.git] / crypto / lrw.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
64470f1b
RS
2/* LRW: as defined by Cyril Guyot in
3 * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
4 *
5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
6 *
6c2205b8 7 * Based on ecb.c
64470f1b 8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
64470f1b
RS
9 */
10/* This implementation is checked against the test vectors in the above
11 * document and by a test vector provided by Ken Buchanan at
9332a9e7 12 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
64470f1b
RS
13 *
14 * The test vectors are included in the testing module tcrypt.[ch] */
6c2205b8 15
700cb3f5
HX
16#include <crypto/internal/skcipher.h>
17#include <crypto/scatterwalk.h>
64470f1b
RS
18#include <linux/err.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/scatterlist.h>
23#include <linux/slab.h>
24
25#include <crypto/b128ops.h>
26#include <crypto/gf128mul.h>
64470f1b 27
217afccf
EB
28#define LRW_BLOCK_SIZE 16
29
e456ef6a 30struct lrw_tfm_ctx {
700cb3f5 31 struct crypto_skcipher *child;
217afccf
EB
32
33 /*
34 * optimizes multiplying a random (non incrementing, as at the
35 * start of a new sector) value with key2, we could also have
36 * used 4k optimization tables or no optimization at all. In the
37 * latter case we would have to store key2 here
38 */
39 struct gf128mul_64k *table;
40
41 /*
42 * stores:
43 * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
44 * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
45 * key2*{ 0,0,...1,1,1,1,1 }, etc
46 * needed for optimized multiplication of incrementing values
47 * with key2
48 */
49 be128 mulinc[128];
171c0204
JK
50};
51
e456ef6a 52struct lrw_request_ctx {
700cb3f5 53 be128 t;
700cb3f5
HX
54 struct skcipher_request subreq;
55};
56
e456ef6a 57static inline void lrw_setbit128_bbe(void *b, int bit)
64470f1b 58{
8eb2dfac
HX
59 __set_bit(bit ^ (0x80 -
60#ifdef __BIG_ENDIAN
61 BITS_PER_LONG
62#else
63 BITS_PER_BYTE
64#endif
65 ), b);
64470f1b
RS
66}
67
e456ef6a
EB
68static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
69 unsigned int keylen)
64470f1b 70{
e456ef6a 71 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
217afccf
EB
72 struct crypto_skcipher *child = ctx->child;
73 int err, bsize = LRW_BLOCK_SIZE;
74 const u8 *tweak = key + keylen - bsize;
64470f1b 75 be128 tmp = { 0 };
171c0204 76 int i;
64470f1b 77
217afccf
EB
78 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
79 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
80 CRYPTO_TFM_REQ_MASK);
81 err = crypto_skcipher_setkey(child, key, keylen - bsize);
217afccf
EB
82 if (err)
83 return err;
84
64470f1b
RS
85 if (ctx->table)
86 gf128mul_free_64k(ctx->table);
87
88 /* initialize multiplication table for Key2 */
171c0204 89 ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
64470f1b
RS
90 if (!ctx->table)
91 return -ENOMEM;
92
93 /* initialize optimization table */
94 for (i = 0; i < 128; i++) {
e456ef6a 95 lrw_setbit128_bbe(&tmp, i);
64470f1b
RS
96 ctx->mulinc[i] = tmp;
97 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
98 }
99
100 return 0;
101}
171c0204 102
c778f96b
OM
103/*
104 * Returns the number of trailing '1' bits in the words of the counter, which is
105 * represented by 4 32-bit words, arranged from least to most significant.
106 * At the same time, increments the counter by one.
107 *
108 * For example:
109 *
110 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
e456ef6a 111 * int i = lrw_next_index(&counter);
c778f96b
OM
112 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
113 */
e456ef6a 114static int lrw_next_index(u32 *counter)
64470f1b 115{
c778f96b 116 int i, res = 0;
64470f1b 117
c778f96b 118 for (i = 0; i < 4; i++) {
fd27b571
AB
119 if (counter[i] + 1 != 0)
120 return res + ffz(counter[i]++);
121
c778f96b
OM
122 counter[i] = 0;
123 res += 32;
64470f1b
RS
124 }
125
fbe1a850
OM
126 /*
127 * If we get here, then x == 128 and we are incrementing the counter
128 * from all ones to all zeros. This means we must return index 127, i.e.
129 * the one corresponding to key2*{ 1,...,1 }.
130 */
131 return 127;
64470f1b
RS
132}
133
ac3c8f36
OM
134/*
135 * We compute the tweak masks twice (both before and after the ECB encryption or
136 * decryption) to avoid having to allocate a temporary buffer and/or make
137 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
e456ef6a 138 * just doing the lrw_next_index() calls again.
ac3c8f36 139 */
e456ef6a 140static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
64470f1b 141{
700cb3f5 142 const int bs = LRW_BLOCK_SIZE;
700cb3f5 143 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
e456ef6a
EB
144 const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
145 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
ac3c8f36 146 be128 t = rctx->t;
700cb3f5 147 struct skcipher_walk w;
c778f96b
OM
148 __be32 *iv;
149 u32 counter[4];
700cb3f5 150 int err;
64470f1b 151
ac3c8f36
OM
152 if (second_pass) {
153 req = &rctx->subreq;
154 /* set to our TFM to enforce correct alignment: */
155 skcipher_request_set_tfm(req, tfm);
156 }
64470f1b 157
ac3c8f36 158 err = skcipher_walk_virt(&w, req, false);
aec286cd
EB
159 if (err)
160 return err;
c778f96b 161
aec286cd 162 iv = (__be32 *)w.iv;
c778f96b
OM
163 counter[0] = be32_to_cpu(iv[3]);
164 counter[1] = be32_to_cpu(iv[2]);
165 counter[2] = be32_to_cpu(iv[1]);
166 counter[3] = be32_to_cpu(iv[0]);
64470f1b 167
700cb3f5
HX
168 while (w.nbytes) {
169 unsigned int avail = w.nbytes;
170 be128 *wsrc;
171 be128 *wdst;
172
173 wsrc = w.src.virt.addr;
174 wdst = w.dst.virt.addr;
64470f1b 175
64470f1b 176 do {
ac3c8f36 177 be128_xor(wdst++, &t, wsrc++);
700cb3f5 178
64470f1b
RS
179 /* T <- I*Key2, using the optimization
180 * discussed in the specification */
e456ef6a
EB
181 be128_xor(&t, &t,
182 &ctx->mulinc[lrw_next_index(counter)]);
700cb3f5 183 } while ((avail -= bs) >= bs);
64470f1b 184
ac3c8f36 185 if (second_pass && w.nbytes == w.total) {
c778f96b
OM
186 iv[0] = cpu_to_be32(counter[3]);
187 iv[1] = cpu_to_be32(counter[2]);
188 iv[2] = cpu_to_be32(counter[1]);
189 iv[3] = cpu_to_be32(counter[0]);
190 }
191
700cb3f5
HX
192 err = skcipher_walk_done(&w, avail);
193 }
64470f1b 194
700cb3f5
HX
195 return err;
196}
197
e456ef6a 198static int lrw_xor_tweak_pre(struct skcipher_request *req)
700cb3f5 199{
e456ef6a 200 return lrw_xor_tweak(req, false);
700cb3f5
HX
201}
202
e456ef6a 203static int lrw_xor_tweak_post(struct skcipher_request *req)
700cb3f5 204{
e456ef6a 205 return lrw_xor_tweak(req, true);
64470f1b
RS
206}
207
255e48eb 208static void lrw_crypt_done(void *data, int err)
700cb3f5 209{
255e48eb 210 struct skcipher_request *req = data;
700cb3f5 211
b257b48c 212 if (!err) {
e456ef6a 213 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
b257b48c
HX
214
215 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
e456ef6a 216 err = lrw_xor_tweak_post(req);
b257b48c 217 }
700cb3f5
HX
218
219 skcipher_request_complete(req, err);
220}
221
e456ef6a 222static void lrw_init_crypt(struct skcipher_request *req)
64470f1b 223{
e456ef6a
EB
224 const struct lrw_tfm_ctx *ctx =
225 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
ac3c8f36 227 struct skcipher_request *subreq = &rctx->subreq;
700cb3f5 228
ac3c8f36 229 skcipher_request_set_tfm(subreq, ctx->child);
e456ef6a
EB
230 skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
231 req);
ac3c8f36
OM
232 /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
233 skcipher_request_set_crypt(subreq, req->dst, req->dst,
234 req->cryptlen, req->iv);
700cb3f5 235
ac3c8f36
OM
236 /* calculate first value of T */
237 memcpy(&rctx->t, req->iv, sizeof(rctx->t));
64470f1b 238
ac3c8f36
OM
239 /* T <- I*Key2 */
240 gf128mul_64k_bbe(&rctx->t, ctx->table);
64470f1b
RS
241}
242
e456ef6a 243static int lrw_encrypt(struct skcipher_request *req)
64470f1b 244{
e456ef6a 245 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
ac3c8f36 246 struct skcipher_request *subreq = &rctx->subreq;
64470f1b 247
e456ef6a
EB
248 lrw_init_crypt(req);
249 return lrw_xor_tweak_pre(req) ?:
ac3c8f36 250 crypto_skcipher_encrypt(subreq) ?:
e456ef6a 251 lrw_xor_tweak_post(req);
700cb3f5
HX
252}
253
e456ef6a 254static int lrw_decrypt(struct skcipher_request *req)
700cb3f5 255{
e456ef6a 256 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
ac3c8f36
OM
257 struct skcipher_request *subreq = &rctx->subreq;
258
e456ef6a
EB
259 lrw_init_crypt(req);
260 return lrw_xor_tweak_pre(req) ?:
ac3c8f36 261 crypto_skcipher_decrypt(subreq) ?:
e456ef6a 262 lrw_xor_tweak_post(req);
64470f1b
RS
263}
264
e456ef6a 265static int lrw_init_tfm(struct crypto_skcipher *tfm)
64470f1b 266{
700cb3f5
HX
267 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
268 struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
e456ef6a 269 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
700cb3f5 270 struct crypto_skcipher *cipher;
64470f1b 271
700cb3f5 272 cipher = crypto_spawn_skcipher(spawn);
2e306ee0
HX
273 if (IS_ERR(cipher))
274 return PTR_ERR(cipher);
64470f1b 275
2e306ee0 276 ctx->child = cipher;
700cb3f5
HX
277
278 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
e456ef6a 279 sizeof(struct lrw_request_ctx));
700cb3f5 280
64470f1b
RS
281 return 0;
282}
283
e456ef6a 284static void lrw_exit_tfm(struct crypto_skcipher *tfm)
64470f1b 285{
e456ef6a 286 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
171c0204 287
217afccf
EB
288 if (ctx->table)
289 gf128mul_free_64k(ctx->table);
700cb3f5
HX
290 crypto_free_skcipher(ctx->child);
291}
292
e456ef6a 293static void lrw_free_instance(struct skcipher_instance *inst)
700cb3f5
HX
294{
295 crypto_drop_skcipher(skcipher_instance_ctx(inst));
296 kfree(inst);
64470f1b
RS
297}
298
e456ef6a 299static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
64470f1b 300{
700cb3f5
HX
301 struct crypto_skcipher_spawn *spawn;
302 struct skcipher_instance *inst;
700cb3f5
HX
303 struct skcipher_alg *alg;
304 const char *cipher_name;
305 char ecb_name[CRYPTO_MAX_ALG_NAME];
b9f76ddd 306 u32 mask;
ebc610e5
HX
307 int err;
308
7bcb2c99
EB
309 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
310 if (err)
311 return err;
b9f76ddd 312
700cb3f5
HX
313 cipher_name = crypto_attr_alg_name(tb[1]);
314 if (IS_ERR(cipher_name))
315 return PTR_ERR(cipher_name);
316
317 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318 if (!inst)
319 return -ENOMEM;
320
321 spawn = skcipher_instance_ctx(inst);
322
b9f76ddd
EB
323 err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
324 cipher_name, 0, mask);
700cb3f5
HX
325 if (err == -ENOENT) {
326 err = -ENAMETOOLONG;
327 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
328 cipher_name) >= CRYPTO_MAX_ALG_NAME)
329 goto err_free_inst;
330
b9f76ddd
EB
331 err = crypto_grab_skcipher(spawn,
332 skcipher_crypto_instance(inst),
333 ecb_name, 0, mask);
700cb3f5
HX
334 }
335
ebc610e5 336 if (err)
700cb3f5 337 goto err_free_inst;
64470f1b 338
700cb3f5 339 alg = crypto_skcipher_spawn_alg(spawn);
64470f1b 340
700cb3f5
HX
341 err = -EINVAL;
342 if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
d5706310 343 goto err_free_inst;
64470f1b 344
700cb3f5 345 if (crypto_skcipher_alg_ivsize(alg))
d5706310 346 goto err_free_inst;
64470f1b 347
700cb3f5
HX
348 err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
349 &alg->base);
350 if (err)
d5706310 351 goto err_free_inst;
64470f1b 352
700cb3f5
HX
353 err = -EINVAL;
354 cipher_name = alg->base.cra_name;
64470f1b 355
700cb3f5
HX
356 /* Alas we screwed up the naming so we have to mangle the
357 * cipher name.
358 */
359 if (!strncmp(cipher_name, "ecb(", 4)) {
360 unsigned len;
64470f1b 361
700cb3f5
HX
362 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
363 if (len < 2 || len >= sizeof(ecb_name))
d5706310 364 goto err_free_inst;
64470f1b 365
700cb3f5 366 if (ecb_name[len - 1] != ')')
d5706310 367 goto err_free_inst;
64470f1b 368
700cb3f5 369 ecb_name[len - 1] = 0;
64470f1b 370
700cb3f5 371 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
616129cc
CJ
372 "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
373 err = -ENAMETOOLONG;
d5706310 374 goto err_free_inst;
616129cc 375 }
d38efad2 376 } else
d5706310 377 goto err_free_inst;
700cb3f5 378
700cb3f5
HX
379 inst->alg.base.cra_priority = alg->base.cra_priority;
380 inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
381 inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
20a0f976 382 (__alignof__(be128) - 1);
700cb3f5
HX
383
384 inst->alg.ivsize = LRW_BLOCK_SIZE;
385 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
386 LRW_BLOCK_SIZE;
387 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
388 LRW_BLOCK_SIZE;
389
e456ef6a 390 inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
700cb3f5 391
e456ef6a
EB
392 inst->alg.init = lrw_init_tfm;
393 inst->alg.exit = lrw_exit_tfm;
700cb3f5 394
e456ef6a
EB
395 inst->alg.setkey = lrw_setkey;
396 inst->alg.encrypt = lrw_encrypt;
397 inst->alg.decrypt = lrw_decrypt;
700cb3f5 398
e456ef6a 399 inst->free = lrw_free_instance;
700cb3f5
HX
400
401 err = skcipher_register_instance(tmpl, inst);
d5706310 402 if (err) {
700cb3f5 403err_free_inst:
e456ef6a 404 lrw_free_instance(inst);
d5706310
EB
405 }
406 return err;
64470f1b
RS
407}
408
e456ef6a 409static struct crypto_template lrw_tmpl = {
64470f1b 410 .name = "lrw",
e456ef6a 411 .create = lrw_create,
64470f1b
RS
412 .module = THIS_MODULE,
413};
414
e456ef6a 415static int __init lrw_module_init(void)
64470f1b 416{
e456ef6a 417 return crypto_register_template(&lrw_tmpl);
64470f1b
RS
418}
419
e456ef6a 420static void __exit lrw_module_exit(void)
64470f1b 421{
e456ef6a 422 crypto_unregister_template(&lrw_tmpl);
64470f1b
RS
423}
424
e456ef6a
EB
425subsys_initcall(lrw_module_init);
426module_exit(lrw_module_exit);
64470f1b
RS
427
428MODULE_LICENSE("GPL");
429MODULE_DESCRIPTION("LRW block cipher mode");
4943ba16 430MODULE_ALIAS_CRYPTO("lrw");
f60bbbbe 431MODULE_SOFTDEP("pre: ecb");