Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
bc9fcbf9 13#include "blk.h"
1d156646 14#include "blk-cgroup-rwstat.h"
e4a19f72 15#include "blk-stat.h"
a7b36ee6 16#include "blk-throttle.h"
e43473b7
VG
17
18/* Max dispatch from a group in 1 round */
e675df2a 19#define THROTL_GRP_QUANTUM 8
e43473b7
VG
20
21/* Total max dispatch from all groups in one round */
e675df2a 22#define THROTL_QUANTUM 32
e43473b7 23
d61fcfa4
SL
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 27#define MAX_THROTL_SLICE (HZ)
9e234eea 28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
b4f428ef
SL
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
e43473b7
VG
44#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
45
b9147dd1
SL
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
51 int samples;
52};
53
54struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
56 bool valid;
57};
58
e43473b7
VG
59struct throtl_data
60{
e43473b7 61 /* service tree for active throtl groups */
c9e0332e 62 struct throtl_service_queue service_queue;
e43473b7 63
e43473b7
VG
64 struct request_queue *queue;
65
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
68
297e3d85
SL
69 unsigned int throtl_slice;
70
e43473b7 71 /* Work for dispatching throttled bios */
69df0ab0 72 struct work_struct dispatch_work;
9f626e37
SL
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
75
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
7394e31f
SL
78
79 unsigned int scale;
b9147dd1 80
b889bf66
JQ
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 84 unsigned long last_calculate_time;
6679a90c 85 unsigned long filtered_latency;
b9147dd1
SL
86
87 bool track_bio_latency;
e43473b7
VG
88};
89
e99e88a9 90static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 91
3c798398 92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 93{
f95a04af 94 return pd_to_blkg(&tg->pd);
0381411e
TH
95}
96
fda6f272
TH
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
108 else
109 return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
b43daedc 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121 struct throtl_grp *tg = sq_to_tg(sq);
122
123 if (tg)
124 return tg->td;
125 else
126 return container_of(sq, struct throtl_data, service_queue);
127}
128
7394e31f
SL
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
009df341 132 * Scale up: linearly scale up according to elapsed time since upgrade. For
7394e31f
SL
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144 return low + (low >> 1) * td->scale;
145}
146
9f626e37
SL
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
b22c417c 149 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 150 struct throtl_data *td;
b22c417c
SL
151 uint64_t ret;
152
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154 return U64_MAX;
7394e31f
SL
155
156 td = tg->td;
157 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
162 return U64_MAX;
163 else
164 return MIN_THROTL_BPS;
165 }
7394e31f
SL
166
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169 uint64_t adjusted;
170
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173 }
b22c417c 174 return ret;
9f626e37
SL
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
b22c417c 179 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 180 struct throtl_data *td;
b22c417c
SL
181 unsigned int ret;
182
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184 return UINT_MAX;
9bb67aeb 185
7394e31f
SL
186 td = tg->td;
187 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
192 return UINT_MAX;
193 else
194 return MIN_THROTL_IOPS;
195 }
7394e31f
SL
196
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199 uint64_t adjusted;
200
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
203 adjusted = UINT_MAX;
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205 }
b22c417c 206 return ret;
9f626e37
SL
207}
208
b9147dd1
SL
209#define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
fda6f272
TH
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
220 */
221#define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
224 \
225 (void)__td; \
59fa0224
SL
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
227 break; \
fda6f272 228 if ((__tg)) { \
35fe6d76 229 blk_add_cgroup_trace_msg(__td->queue, \
f4a6a61c 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
fda6f272
TH
231 } else { \
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 } \
54e7ed12 234} while (0)
e43473b7 235
ea0ea2bc
SL
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240 return 512;
241 return bio->bi_iter.bi_size;
242}
243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
b7b609de 277 struct throtl_qnode *qn;
c5cc2070
TH
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
b7b609de 283 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
284 bio = bio_list_peek(&qn->bios);
285 WARN_ON_ONCE(!bio);
286 return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
305{
b7b609de 306 struct throtl_qnode *qn;
c5cc2070
TH
307 struct bio *bio;
308
309 if (list_empty(queued))
310 return NULL;
311
b7b609de 312 qn = list_first_entry(queued, struct throtl_qnode, node);
c5cc2070
TH
313 bio = bio_list_pop(&qn->bios);
314 WARN_ON_ONCE(!bio);
315
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
318 if (tg_to_put)
319 *tg_to_put = qn->tg;
320 else
321 blkg_put(tg_to_blkg(qn->tg));
322 } else {
323 list_move_tail(&qn->node, queued);
324 }
325
326 return bio;
327}
328
49a2f1e3 329/* init a service_queue, assumes the caller zeroed it */
b2ce2643 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 331{
7e9c5c54
YK
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
9ff01255 334 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
336}
337
0a0b4f79
CH
338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
001bea73 340{
4fb72036 341 struct throtl_grp *tg;
24bdb8ef 342 int rw;
4fb72036 343
0a0b4f79 344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
4fb72036 345 if (!tg)
77ea7338 346 return NULL;
4fb72036 347
7ca46438
TH
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349 goto err_free_tg;
350
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
353
b2ce2643
TH
354 throtl_service_queue_init(&tg->service_queue);
355
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359 }
360
361 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
b2ce2643 371
ec80991d 372 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 373 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 376
4fb72036 377 return &tg->pd;
7ca46438
TH
378
379err_exit_stat_bytes:
380 blkg_rwstat_exit(&tg->stat_bytes);
381err_free_tg:
382 kfree(tg);
383 return NULL;
001bea73
TH
384}
385
a9520cd6 386static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 387{
a9520cd6
TH
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
a06377c5 390 struct throtl_data *td = blkg->q->td;
b2ce2643 391 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 392
9138125b 393 /*
aa6ec29b 394 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
f56019ae
KS
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
399 * device.
9138125b 400 *
aa6ec29b 401 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
406 */
b2ce2643 407 sq->parent_sq = &td->service_queue;
9e10a130 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 410 tg->td = td;
8a3d2615
TH
411}
412
693e751e
TH
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 421 struct throtl_data *td = tg->td;
693e751e
TH
422 int rw;
423
81c7a63a
YK
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
9f626e37 431 (td->limit_valid[td->limit_index] &&
81c7a63a
YK
432 (tg_bps_limit(tg, rw) != U64_MAX));
433 }
693e751e
TH
434}
435
a9520cd6 436static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 437{
aec24246 438 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
439 /*
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
442 */
aec24246 443 tg_update_has_rules(tg);
693e751e
TH
444}
445
acaf523a 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
cd5ab1b0
SL
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
452
453 rcu_read_lock();
1231039d 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
cd5ab1b0
SL
455 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 459 low_valid = true;
43ada787
LB
460 break;
461 }
cd5ab1b0
SL
462 }
463 rcu_read_unlock();
464
465 td->limit_valid[LIMIT_LOW] = low_valid;
466}
acaf523a
YK
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
cd5ab1b0 472
c79892c5 473static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476 struct throtl_grp *tg = pd_to_tg(pd);
477
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
482
483 blk_throtl_update_limit_valid(tg->td);
484
c79892c5
SL
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
487}
488
001bea73
TH
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
4fb72036
TH
491 struct throtl_grp *tg = pd_to_tg(pd);
492
b2ce2643 493 del_timer_sync(&tg->service_queue.pending_timer);
7ca46438
TH
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
4fb72036 496 kfree(tg);
001bea73
TH
497}
498
0049af73
TH
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 501{
9ff01255 502 struct rb_node *n;
e43473b7 503
9ff01255
LB
504 n = rb_first_cached(&parent_sq->pending_tree);
505 WARN_ON_ONCE(!n);
506 if (!n)
507 return NULL;
508 return rb_entry_tg(n);
e43473b7
VG
509}
510
0049af73
TH
511static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
e43473b7 513{
9ff01255
LB
514 rb_erase_cached(n, &parent_sq->pending_tree);
515 RB_CLEAR_NODE(n);
e43473b7
VG
516}
517
0049af73 518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
519{
520 struct throtl_grp *tg;
521
0049af73 522 tg = throtl_rb_first(parent_sq);
e43473b7
VG
523 if (!tg)
524 return;
525
0049af73 526 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
527}
528
77216b04 529static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 530{
77216b04 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
9ff01255 536 bool leftmost = true;
e43473b7
VG
537
538 while (*node != NULL) {
539 parent = *node;
540 __tg = rb_entry_tg(parent);
541
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
544 else {
545 node = &parent->rb_right;
9ff01255 546 leftmost = false;
e43473b7
VG
547 }
548 }
549
e43473b7 550 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552 leftmost);
e43473b7
VG
553}
554
77216b04 555static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 556{
29379674
BW
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
561 }
e43473b7
VG
562}
563
77216b04 564static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 565{
29379674 566 if (tg->flags & THROTL_TG_PENDING) {
c013710e
YK
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
569
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
29379674
BW
572 tg->flags &= ~THROTL_TG_PENDING;
573 }
e43473b7
VG
574}
575
a9131a27 576/* Call with queue lock held */
69df0ab0
TH
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
a9131a27 579{
a41b816c 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
581
582 /*
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
588 */
589 if (time_after(expires, max_expire))
590 expires = max_expire;
69df0ab0
TH
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
a9131a27
TH
594}
595
7f52f98c
TH
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 bool force)
e43473b7 616{
6a525600 617 /* any pending children left? */
c9e0332e 618 if (!sq->nr_pending)
7f52f98c 619 return true;
e43473b7 620
c9e0332e 621 update_min_dispatch_time(sq);
e43473b7 622
69df0ab0 623 /* is the next dispatch time in the future? */
7f52f98c 624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 626 return true;
69df0ab0
TH
627 }
628
7f52f98c
TH
629 /* tell the caller to continue dispatching */
630 return false;
e43473b7
VG
631}
632
32ee5bc4
VG
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
635{
636 tg->bytes_disp[rw] = 0;
637 tg->io_disp[rw] = 0;
a880ae93
YK
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
32ee5bc4
VG
640
641 /*
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
645 * credit.
646 */
eea3e8b7 647 if (time_after(start, tg->slice_start[rw]))
32ee5bc4
VG
648 tg->slice_start[rw] = start;
649
297e3d85 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
655}
656
a880ae93
YK
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
e43473b7
VG
659{
660 tg->bytes_disp[rw] = 0;
8e89d13f 661 tg->io_disp[rw] = 0;
e43473b7 662 tg->slice_start[rw] = jiffies;
297e3d85 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
a880ae93
YK
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
667 }
4f1e9630 668
fda6f272
TH
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
e43473b7
VG
673}
674
0f3457f6
TH
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
d1ae8ffd 677{
297e3d85 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
679}
680
0f3457f6
TH
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
e43473b7 683{
1da30f95 684 throtl_set_slice_end(tg, rw, jiffy_end);
fda6f272
TH
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
e43473b7
VG
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
693{
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 695 return false;
e43473b7 696
0b6bad7d 697 return true;
e43473b7
VG
698}
699
700/* Trim the used slices and adjust slice start accordingly */
0f3457f6 701static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 702{
3aad5d3e
VG
703 unsigned long nr_slices, time_elapsed, io_trim;
704 u64 bytes_trim, tmp;
e43473b7
VG
705
706 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
707
708 /*
709 * If bps are unlimited (-1), then time slice don't get
710 * renewed. Don't try to trim the slice if slice is used. A new
711 * slice will start when appropriate.
712 */
0f3457f6 713 if (throtl_slice_used(tg, rw))
e43473b7
VG
714 return;
715
d1ae8ffd
VG
716 /*
717 * A bio has been dispatched. Also adjust slice_end. It might happen
718 * that initially cgroup limit was very low resulting in high
b53b072c 719 * slice_end, but later limit was bumped up and bio was dispatched
d1ae8ffd
VG
720 * sooner, then we need to reduce slice_end. A high bogus slice_end
721 * is bad because it does not allow new slice to start.
722 */
723
297e3d85 724 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 725
e43473b7
VG
726 time_elapsed = jiffies - tg->slice_start[rw];
727
297e3d85 728 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
729
730 if (!nr_slices)
731 return;
297e3d85 732 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
733 do_div(tmp, HZ);
734 bytes_trim = tmp;
e43473b7 735
297e3d85
SL
736 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
737 HZ;
e43473b7 738
8e89d13f 739 if (!bytes_trim && !io_trim)
e43473b7
VG
740 return;
741
742 if (tg->bytes_disp[rw] >= bytes_trim)
743 tg->bytes_disp[rw] -= bytes_trim;
744 else
745 tg->bytes_disp[rw] = 0;
746
8e89d13f
VG
747 if (tg->io_disp[rw] >= io_trim)
748 tg->io_disp[rw] -= io_trim;
749 else
750 tg->io_disp[rw] = 0;
751
297e3d85 752 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 753
fda6f272
TH
754 throtl_log(&tg->service_queue,
755 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
756 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
757 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
758}
759
681cd46f
YK
760static unsigned int calculate_io_allowed(u32 iops_limit,
761 unsigned long jiffy_elapsed)
e43473b7 762{
8e89d13f 763 unsigned int io_allowed;
c49c06e4 764 u64 tmp;
e43473b7 765
c49c06e4 766 /*
681cd46f 767 * jiffy_elapsed should not be a big value as minimum iops can be
c49c06e4
VG
768 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
769 * will allow dispatch after 1 second and after that slice should
770 * have been trimmed.
771 */
772
681cd46f 773 tmp = (u64)iops_limit * jiffy_elapsed;
c49c06e4
VG
774 do_div(tmp, HZ);
775
776 if (tmp > UINT_MAX)
777 io_allowed = UINT_MAX;
778 else
779 io_allowed = tmp;
8e89d13f 780
681cd46f
YK
781 return io_allowed;
782}
783
784static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
785{
786 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
787}
788
a880ae93
YK
789static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
790{
791 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
792 u64 bps_limit = tg_bps_limit(tg, rw);
793 u32 iops_limit = tg_iops_limit(tg, rw);
794
795 /*
796 * If config is updated while bios are still throttled, calculate and
797 * accumulate how many bytes/ios are waited across changes. And
798 * carryover_bytes/ios will be used to calculate new wait time under new
799 * configuration.
800 */
801 if (bps_limit != U64_MAX)
802 tg->carryover_bytes[rw] +=
803 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
804 tg->bytes_disp[rw];
805 if (iops_limit != UINT_MAX)
806 tg->carryover_ios[rw] +=
807 calculate_io_allowed(iops_limit, jiffy_elapsed) -
808 tg->io_disp[rw];
809}
810
811static void tg_update_carryover(struct throtl_grp *tg)
812{
813 if (tg->service_queue.nr_queued[READ])
814 __tg_update_carryover(tg, READ);
815 if (tg->service_queue.nr_queued[WRITE])
816 __tg_update_carryover(tg, WRITE);
817
818 /* see comments in struct throtl_grp for meaning of these fields. */
819 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
820 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
821 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
822}
823
183daeb1
KS
824static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
825 u32 iops_limit)
681cd46f
YK
826{
827 bool rw = bio_data_dir(bio);
828 unsigned int io_allowed;
829 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830
831 if (iops_limit == UINT_MAX) {
183daeb1 832 return 0;
681cd46f
YK
833 }
834
835 jiffy_elapsed = jiffies - tg->slice_start[rw];
836
837 /* Round up to the next throttle slice, wait time must be nonzero */
838 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
a880ae93
YK
839 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
840 tg->carryover_ios[rw];
8e89d13f 841 if (tg->io_disp[rw] + 1 <= io_allowed) {
183daeb1 842 return 0;
e43473b7
VG
843 }
844
8e89d13f 845 /* Calc approx time to dispatch */
991f61fe 846 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
183daeb1 847 return jiffy_wait;
8e89d13f
VG
848}
849
183daeb1
KS
850static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
851 u64 bps_limit)
8e89d13f
VG
852{
853 bool rw = bio_data_dir(bio);
8d6bbaad 854 u64 bytes_allowed, extra_bytes;
8e89d13f 855 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 856 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7 857
9f5ede3c 858 /* no need to throttle if this bio's bytes have been accounted */
320fb0f9 859 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
183daeb1 860 return 0;
87fbeb88
BW
861 }
862
e43473b7
VG
863 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
864
865 /* Slice has just started. Consider one slice interval */
866 if (!jiffy_elapsed)
297e3d85 867 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 868
297e3d85 869 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
a880ae93
YK
870 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
871 tg->carryover_bytes[rw];
ea0ea2bc 872 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
183daeb1 873 return 0;
e43473b7
VG
874 }
875
876 /* Calc approx time to dispatch */
ea0ea2bc 877 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
4599ea49 878 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
e43473b7
VG
879
880 if (!jiffy_wait)
881 jiffy_wait = 1;
882
883 /*
884 * This wait time is without taking into consideration the rounding
885 * up we did. Add that time also.
886 */
887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
183daeb1 888 return jiffy_wait;
8e89d13f
VG
889}
890
891/*
892 * Returns whether one can dispatch a bio or not. Also returns approx number
893 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
894 */
0f3457f6
TH
895static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
896 unsigned long *wait)
8e89d13f
VG
897{
898 bool rw = bio_data_dir(bio);
899 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
4599ea49
BW
900 u64 bps_limit = tg_bps_limit(tg, rw);
901 u32 iops_limit = tg_iops_limit(tg, rw);
8e89d13f
VG
902
903 /*
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
907 * queued.
908 */
73f0d49a 909 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 911
8e89d13f 912 /* If tg->bps = -1, then BW is unlimited */
8f9e7b65
YK
913 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
914 tg->flags & THROTL_TG_CANCELING) {
8e89d13f
VG
915 if (wait)
916 *wait = 0;
5cf8c227 917 return true;
8e89d13f
VG
918 }
919
920 /*
921 * If previous slice expired, start a new one otherwise renew/extend
922 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
923 * long since now. New slice is started only for empty throttle group.
924 * If there is queued bio, that means there should be an active
925 * slice and it should be extended instead.
8e89d13f 926 */
164c80ed 927 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
a880ae93 928 throtl_start_new_slice(tg, rw, true);
8e89d13f 929 else {
297e3d85
SL
930 if (time_before(tg->slice_end[rw],
931 jiffies + tg->td->throtl_slice))
932 throtl_extend_slice(tg, rw,
933 jiffies + tg->td->throtl_slice);
8e89d13f
VG
934 }
935
183daeb1
KS
936 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
937 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
938 if (bps_wait + iops_wait == 0) {
8e89d13f
VG
939 if (wait)
940 *wait = 0;
0b6bad7d 941 return true;
8e89d13f
VG
942 }
943
944 max_wait = max(bps_wait, iops_wait);
945
946 if (wait)
947 *wait = max_wait;
948
949 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 950 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 951
0b6bad7d 952 return false;
e43473b7
VG
953}
954
955static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
956{
957 bool rw = bio_data_dir(bio);
ea0ea2bc 958 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
959
960 /* Charge the bio to the group */
320fb0f9 961 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
9f5ede3c
ML
962 tg->bytes_disp[rw] += bio_size;
963 tg->last_bytes_disp[rw] += bio_size;
964 }
965
8e89d13f 966 tg->io_disp[rw]++;
3f0abd80 967 tg->last_io_disp[rw]++;
e43473b7
VG
968}
969
c5cc2070
TH
970/**
971 * throtl_add_bio_tg - add a bio to the specified throtl_grp
972 * @bio: bio to add
973 * @qn: qnode to use
974 * @tg: the target throtl_grp
975 *
976 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
977 * tg->qnode_on_self[] is used.
978 */
979static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
980 struct throtl_grp *tg)
e43473b7 981{
73f0d49a 982 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
983 bool rw = bio_data_dir(bio);
984
c5cc2070
TH
985 if (!qn)
986 qn = &tg->qnode_on_self[rw];
987
0e9f4164
TH
988 /*
989 * If @tg doesn't currently have any bios queued in the same
990 * direction, queueing @bio can change when @tg should be
991 * dispatched. Mark that @tg was empty. This is automatically
b53b072c 992 * cleared on the next tg_update_disptime().
0e9f4164
TH
993 */
994 if (!sq->nr_queued[rw])
995 tg->flags |= THROTL_TG_WAS_EMPTY;
996
c5cc2070
TH
997 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
998
73f0d49a 999 sq->nr_queued[rw]++;
77216b04 1000 throtl_enqueue_tg(tg);
e43473b7
VG
1001}
1002
77216b04 1003static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1004{
73f0d49a 1005 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1006 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1007 struct bio *bio;
1008
d609af3a
ME
1009 bio = throtl_peek_queued(&sq->queued[READ]);
1010 if (bio)
0f3457f6 1011 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1012
d609af3a
ME
1013 bio = throtl_peek_queued(&sq->queued[WRITE]);
1014 if (bio)
0f3457f6 1015 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1016
1017 min_wait = min(read_wait, write_wait);
1018 disptime = jiffies + min_wait;
1019
e43473b7 1020 /* Update dispatch time */
c013710e 1021 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
e43473b7 1022 tg->disptime = disptime;
c013710e 1023 tg_service_queue_add(tg);
0e9f4164
TH
1024
1025 /* see throtl_add_bio_tg() */
1026 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1027}
1028
32ee5bc4
VG
1029static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1030 struct throtl_grp *parent_tg, bool rw)
1031{
1032 if (throtl_slice_used(parent_tg, rw)) {
1033 throtl_start_new_slice_with_credit(parent_tg, rw,
1034 child_tg->slice_start[rw]);
1035 }
1036
1037}
1038
77216b04 1039static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1040{
73f0d49a 1041 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1042 struct throtl_service_queue *parent_sq = sq->parent_sq;
1043 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1044 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1045 struct bio *bio;
1046
c5cc2070
TH
1047 /*
1048 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1049 * from @tg may put its reference and @parent_sq might end up
1050 * getting released prematurely. Remember the tg to put and put it
1051 * after @bio is transferred to @parent_sq.
1052 */
1053 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1054 sq->nr_queued[rw]--;
e43473b7
VG
1055
1056 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1057
1058 /*
1059 * If our parent is another tg, we just need to transfer @bio to
1060 * the parent using throtl_add_bio_tg(). If our parent is
1061 * @td->service_queue, @bio is ready to be issued. Put it on its
1062 * bio_lists[] and decrease total number queued. The caller is
1063 * responsible for issuing these bios.
1064 */
1065 if (parent_tg) {
c5cc2070 1066 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1067 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1068 } else {
84aca0a7 1069 bio_set_flag(bio, BIO_BPS_THROTTLED);
c5cc2070
TH
1070 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1071 &parent_sq->queued[rw]);
6bc9c2b4
TH
1072 BUG_ON(tg->td->nr_queued[rw] <= 0);
1073 tg->td->nr_queued[rw]--;
1074 }
e43473b7 1075
0f3457f6 1076 throtl_trim_slice(tg, rw);
6bc9c2b4 1077
c5cc2070
TH
1078 if (tg_to_put)
1079 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1080}
1081
77216b04 1082static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1083{
73f0d49a 1084 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7 1085 unsigned int nr_reads = 0, nr_writes = 0;
e675df2a
BW
1086 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1087 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
e43473b7
VG
1088 struct bio *bio;
1089
1090 /* Try to dispatch 75% READS and 25% WRITES */
1091
c5cc2070 1092 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1093 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1094
77216b04 1095 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1096 nr_reads++;
1097
1098 if (nr_reads >= max_nr_reads)
1099 break;
1100 }
1101
c5cc2070 1102 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1103 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1104
77216b04 1105 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1106 nr_writes++;
1107
1108 if (nr_writes >= max_nr_writes)
1109 break;
1110 }
1111
1112 return nr_reads + nr_writes;
1113}
1114
651930bc 1115static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1116{
1117 unsigned int nr_disp = 0;
e43473b7
VG
1118
1119 while (1) {
2397611a 1120 struct throtl_grp *tg;
2ab74cd2 1121 struct throtl_service_queue *sq;
e43473b7 1122
2397611a
BW
1123 if (!parent_sq->nr_pending)
1124 break;
1125
1126 tg = throtl_rb_first(parent_sq);
e43473b7
VG
1127 if (!tg)
1128 break;
1129
1130 if (time_before(jiffies, tg->disptime))
1131 break;
1132
77216b04 1133 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1134
2ab74cd2 1135 sq = &tg->service_queue;
7e9c5c54 1136 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
77216b04 1137 tg_update_disptime(tg);
8c25ed0c
YK
1138 else
1139 throtl_dequeue_tg(tg);
e43473b7 1140
e675df2a 1141 if (nr_disp >= THROTL_QUANTUM)
e43473b7
VG
1142 break;
1143 }
1144
1145 return nr_disp;
1146}
1147
c79892c5
SL
1148static bool throtl_can_upgrade(struct throtl_data *td,
1149 struct throtl_grp *this_tg);
6e1a5704
TH
1150/**
1151 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1152 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1153 *
1154 * This timer is armed when a child throtl_grp with active bio's become
1155 * pending and queued on the service_queue's pending_tree and expires when
1156 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1157 * dispatches bio's from the children throtl_grps to the parent
1158 * service_queue.
1159 *
1160 * If the parent's parent is another throtl_grp, dispatching is propagated
1161 * by either arming its pending_timer or repeating dispatch directly. If
1162 * the top-level service_tree is reached, throtl_data->dispatch_work is
1163 * kicked so that the ready bio's are issued.
6e1a5704 1164 */
e99e88a9 1165static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1166{
e99e88a9 1167 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1168 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1169 struct throtl_data *td = sq_to_td(sq);
2e48a530 1170 struct throtl_service_queue *parent_sq;
ee37eddb 1171 struct request_queue *q;
2e48a530 1172 bool dispatched;
6e1a5704 1173 int ret;
e43473b7 1174
ee37eddb
ML
1175 /* throtl_data may be gone, so figure out request queue by blkg */
1176 if (tg)
a06377c5 1177 q = tg->pd.blkg->q;
ee37eddb
ML
1178 else
1179 q = td->queue;
1180
0d945c1f 1181 spin_lock_irq(&q->queue_lock);
ee37eddb 1182
1231039d 1183 if (!q->root_blkg)
ee37eddb
ML
1184 goto out_unlock;
1185
c79892c5
SL
1186 if (throtl_can_upgrade(td, NULL))
1187 throtl_upgrade_state(td);
1188
2e48a530
TH
1189again:
1190 parent_sq = sq->parent_sq;
1191 dispatched = false;
e43473b7 1192
7f52f98c
TH
1193 while (true) {
1194 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1195 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1196 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1197
1198 ret = throtl_select_dispatch(sq);
1199 if (ret) {
7f52f98c
TH
1200 throtl_log(sq, "bios disp=%u", ret);
1201 dispatched = true;
1202 }
e43473b7 1203
7f52f98c
TH
1204 if (throtl_schedule_next_dispatch(sq, false))
1205 break;
e43473b7 1206
7f52f98c 1207 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1208 spin_unlock_irq(&q->queue_lock);
7f52f98c 1209 cpu_relax();
0d945c1f 1210 spin_lock_irq(&q->queue_lock);
651930bc 1211 }
e43473b7 1212
2e48a530
TH
1213 if (!dispatched)
1214 goto out_unlock;
6e1a5704 1215
2e48a530
TH
1216 if (parent_sq) {
1217 /* @parent_sq is another throl_grp, propagate dispatch */
1218 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1219 tg_update_disptime(tg);
1220 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1221 /* window is already open, repeat dispatching */
1222 sq = parent_sq;
1223 tg = sq_to_tg(sq);
1224 goto again;
1225 }
1226 }
1227 } else {
b53b072c 1228 /* reached the top-level, queue issuing */
2e48a530
TH
1229 queue_work(kthrotld_workqueue, &td->dispatch_work);
1230 }
1231out_unlock:
0d945c1f 1232 spin_unlock_irq(&q->queue_lock);
6e1a5704 1233}
e43473b7 1234
6e1a5704
TH
1235/**
1236 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1237 * @work: work item being executed
1238 *
b53b072c
BW
1239 * This function is queued for execution when bios reach the bio_lists[]
1240 * of throtl_data->service_queue. Those bios are ready and issued by this
6e1a5704
TH
1241 * function.
1242 */
8876e140 1243static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1244{
1245 struct throtl_data *td = container_of(work, struct throtl_data,
1246 dispatch_work);
1247 struct throtl_service_queue *td_sq = &td->service_queue;
1248 struct request_queue *q = td->queue;
1249 struct bio_list bio_list_on_stack;
1250 struct bio *bio;
1251 struct blk_plug plug;
1252 int rw;
1253
1254 bio_list_init(&bio_list_on_stack);
1255
0d945c1f 1256 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1257 for (rw = READ; rw <= WRITE; rw++)
1258 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1259 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1260 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1261
1262 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1263 blk_start_plug(&plug);
ed00aabd 1264 while ((bio = bio_list_pop(&bio_list_on_stack)))
3f98c753 1265 submit_bio_noacct_nocheck(bio);
69d60eb9 1266 blk_finish_plug(&plug);
e43473b7 1267 }
e43473b7
VG
1268}
1269
f95a04af
TH
1270static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1271 int off)
60c2bc2d 1272{
f95a04af
TH
1273 struct throtl_grp *tg = pd_to_tg(pd);
1274 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1275
2ab5492d 1276 if (v == U64_MAX)
60c2bc2d 1277 return 0;
f95a04af 1278 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1279}
1280
f95a04af
TH
1281static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1282 int off)
e43473b7 1283{
f95a04af
TH
1284 struct throtl_grp *tg = pd_to_tg(pd);
1285 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1286
2ab5492d 1287 if (v == UINT_MAX)
af133ceb 1288 return 0;
f95a04af 1289 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1290}
1291
2da8ca82 1292static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1293{
2da8ca82
TH
1294 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1295 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1296 return 0;
8e89d13f
VG
1297}
1298
2da8ca82 1299static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1300{
2da8ca82
TH
1301 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1302 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1303 return 0;
60c2bc2d
TH
1304}
1305
9bb67aeb 1306static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1307{
69948b07 1308 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1309 struct cgroup_subsys_state *pos_css;
69948b07 1310 struct blkcg_gq *blkg;
af133ceb 1311
fda6f272
TH
1312 throtl_log(&tg->service_queue,
1313 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1314 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1315 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1316
693e751e
TH
1317 /*
1318 * Update has_rules[] flags for the updated tg's subtree. A tg is
1319 * considered to have rules if either the tg itself or any of its
1320 * ancestors has rules. This identifies groups without any
1321 * restrictions in the whole hierarchy and allows them to bypass
1322 * blk-throttle.
1323 */
9bb67aeb 1324 blkg_for_each_descendant_pre(blkg, pos_css,
1231039d 1325 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1326 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1327 struct throtl_grp *parent_tg;
1328
1329 tg_update_has_rules(this_tg);
1330 /* ignore root/second level */
1331 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1332 !blkg->parent->parent)
1333 continue;
1334 parent_tg = blkg_to_tg(blkg->parent);
1335 /*
1336 * make sure all children has lower idle time threshold and
1337 * higher latency target
1338 */
1339 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1340 parent_tg->idletime_threshold);
1341 this_tg->latency_target = max(this_tg->latency_target,
1342 parent_tg->latency_target);
1343 }
693e751e 1344
632b4493
TH
1345 /*
1346 * We're already holding queue_lock and know @tg is valid. Let's
1347 * apply the new config directly.
1348 *
1349 * Restart the slices for both READ and WRITES. It might happen
1350 * that a group's limit are dropped suddenly and we don't want to
1351 * account recently dispatched IO with new low rate.
1352 */
a880ae93
YK
1353 throtl_start_new_slice(tg, READ, false);
1354 throtl_start_new_slice(tg, WRITE, false);
632b4493 1355
5b2c16aa 1356 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1357 tg_update_disptime(tg);
7f52f98c 1358 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1359 }
69948b07
TH
1360}
1361
1362static ssize_t tg_set_conf(struct kernfs_open_file *of,
1363 char *buf, size_t nbytes, loff_t off, bool is_u64)
1364{
1365 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366 struct blkg_conf_ctx ctx;
1367 struct throtl_grp *tg;
1368 int ret;
1369 u64 v;
1370
faffaab2
TH
1371 blkg_conf_init(&ctx, buf);
1372
1373 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
69948b07 1374 if (ret)
faffaab2 1375 goto out_finish;
69948b07
TH
1376
1377 ret = -EINVAL;
1378 if (sscanf(ctx.body, "%llu", &v) != 1)
1379 goto out_finish;
1380 if (!v)
2ab5492d 1381 v = U64_MAX;
69948b07
TH
1382
1383 tg = blkg_to_tg(ctx.blkg);
a880ae93 1384 tg_update_carryover(tg);
69948b07
TH
1385
1386 if (is_u64)
1387 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1388 else
1389 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1390
9bb67aeb 1391 tg_conf_updated(tg, false);
36aa9e5f
TH
1392 ret = 0;
1393out_finish:
faffaab2 1394 blkg_conf_exit(&ctx);
36aa9e5f 1395 return ret ?: nbytes;
8e89d13f
VG
1396}
1397
451af504
TH
1398static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1399 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1400{
451af504 1401 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1402}
1403
451af504
TH
1404static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1405 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1406{
451af504 1407 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1408}
1409
7ca46438
TH
1410static int tg_print_rwstat(struct seq_file *sf, void *v)
1411{
1412 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1413 blkg_prfill_rwstat, &blkcg_policy_throtl,
1414 seq_cft(sf)->private, true);
1415 return 0;
1416}
1417
1418static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1419 struct blkg_policy_data *pd, int off)
1420{
1421 struct blkg_rwstat_sample sum;
1422
1423 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1424 &sum);
1425 return __blkg_prfill_rwstat(sf, pd, &sum);
1426}
1427
1428static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1429{
1430 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1431 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1432 seq_cft(sf)->private, true);
1433 return 0;
1434}
1435
880f50e2 1436static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1437 {
1438 .name = "throttle.read_bps_device",
9f626e37 1439 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1440 .seq_show = tg_print_conf_u64,
451af504 1441 .write = tg_set_conf_u64,
60c2bc2d
TH
1442 },
1443 {
1444 .name = "throttle.write_bps_device",
9f626e37 1445 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1446 .seq_show = tg_print_conf_u64,
451af504 1447 .write = tg_set_conf_u64,
60c2bc2d
TH
1448 },
1449 {
1450 .name = "throttle.read_iops_device",
9f626e37 1451 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1452 .seq_show = tg_print_conf_uint,
451af504 1453 .write = tg_set_conf_uint,
60c2bc2d
TH
1454 },
1455 {
1456 .name = "throttle.write_iops_device",
9f626e37 1457 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1458 .seq_show = tg_print_conf_uint,
451af504 1459 .write = tg_set_conf_uint,
60c2bc2d
TH
1460 },
1461 {
1462 .name = "throttle.io_service_bytes",
7ca46438
TH
1463 .private = offsetof(struct throtl_grp, stat_bytes),
1464 .seq_show = tg_print_rwstat,
60c2bc2d 1465 },
17534c6f 1466 {
1467 .name = "throttle.io_service_bytes_recursive",
7ca46438
TH
1468 .private = offsetof(struct throtl_grp, stat_bytes),
1469 .seq_show = tg_print_rwstat_recursive,
17534c6f 1470 },
60c2bc2d
TH
1471 {
1472 .name = "throttle.io_serviced",
7ca46438
TH
1473 .private = offsetof(struct throtl_grp, stat_ios),
1474 .seq_show = tg_print_rwstat,
60c2bc2d 1475 },
17534c6f 1476 {
1477 .name = "throttle.io_serviced_recursive",
7ca46438
TH
1478 .private = offsetof(struct throtl_grp, stat_ios),
1479 .seq_show = tg_print_rwstat_recursive,
17534c6f 1480 },
60c2bc2d
TH
1481 { } /* terminate */
1482};
1483
cd5ab1b0 1484static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1485 int off)
1486{
1487 struct throtl_grp *tg = pd_to_tg(pd);
1488 const char *dname = blkg_dev_name(pd->blkg);
1489 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1490 u64 bps_dft;
1491 unsigned int iops_dft;
ada75b6e 1492 char idle_time[26] = "";
ec80991d 1493 char latency_time[26] = "";
2ee867dc
TH
1494
1495 if (!dname)
1496 return 0;
9f626e37 1497
cd5ab1b0
SL
1498 if (off == LIMIT_LOW) {
1499 bps_dft = 0;
1500 iops_dft = 0;
1501 } else {
1502 bps_dft = U64_MAX;
1503 iops_dft = UINT_MAX;
1504 }
1505
1506 if (tg->bps_conf[READ][off] == bps_dft &&
1507 tg->bps_conf[WRITE][off] == bps_dft &&
1508 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1509 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1510 (off != LIMIT_LOW ||
b4f428ef 1511 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1512 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1513 return 0;
1514
9bb67aeb 1515 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1516 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1517 tg->bps_conf[READ][off]);
9bb67aeb 1518 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1519 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1520 tg->bps_conf[WRITE][off]);
9bb67aeb 1521 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1522 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1523 tg->iops_conf[READ][off]);
9bb67aeb 1524 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1525 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1526 tg->iops_conf[WRITE][off]);
ada75b6e 1527 if (off == LIMIT_LOW) {
5b81fc3c 1528 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1529 strcpy(idle_time, " idle=max");
1530 else
1531 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1532 tg->idletime_threshold_conf);
ec80991d 1533
5b81fc3c 1534 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1535 strcpy(latency_time, " latency=max");
1536 else
1537 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1538 " latency=%lu", tg->latency_target_conf);
ada75b6e 1539 }
2ee867dc 1540
ec80991d
SL
1541 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1542 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1543 latency_time);
2ee867dc
TH
1544 return 0;
1545}
1546
cd5ab1b0 1547static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1548{
cd5ab1b0 1549 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1550 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1551 return 0;
1552}
1553
cd5ab1b0 1554static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1555 char *buf, size_t nbytes, loff_t off)
1556{
1557 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1558 struct blkg_conf_ctx ctx;
1559 struct throtl_grp *tg;
1560 u64 v[4];
ada75b6e 1561 unsigned long idle_time;
ec80991d 1562 unsigned long latency_time;
2ee867dc 1563 int ret;
cd5ab1b0 1564 int index = of_cft(of)->private;
2ee867dc 1565
faffaab2
TH
1566 blkg_conf_init(&ctx, buf);
1567
1568 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
2ee867dc 1569 if (ret)
faffaab2 1570 goto out_finish;
2ee867dc
TH
1571
1572 tg = blkg_to_tg(ctx.blkg);
a880ae93 1573 tg_update_carryover(tg);
2ee867dc 1574
cd5ab1b0
SL
1575 v[0] = tg->bps_conf[READ][index];
1576 v[1] = tg->bps_conf[WRITE][index];
1577 v[2] = tg->iops_conf[READ][index];
1578 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1579
5b81fc3c
SL
1580 idle_time = tg->idletime_threshold_conf;
1581 latency_time = tg->latency_target_conf;
2ee867dc
TH
1582 while (true) {
1583 char tok[27]; /* wiops=18446744073709551616 */
1584 char *p;
2ab5492d 1585 u64 val = U64_MAX;
2ee867dc
TH
1586 int len;
1587
1588 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1589 break;
1590 if (tok[0] == '\0')
1591 break;
1592 ctx.body += len;
1593
1594 ret = -EINVAL;
1595 p = tok;
1596 strsep(&p, "=");
1597 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1598 goto out_finish;
1599
1600 ret = -ERANGE;
1601 if (!val)
1602 goto out_finish;
1603
1604 ret = -EINVAL;
5b7048b8 1605 if (!strcmp(tok, "rbps") && val > 1)
2ee867dc 1606 v[0] = val;
5b7048b8 1607 else if (!strcmp(tok, "wbps") && val > 1)
2ee867dc 1608 v[1] = val;
5b7048b8 1609 else if (!strcmp(tok, "riops") && val > 1)
2ee867dc 1610 v[2] = min_t(u64, val, UINT_MAX);
5b7048b8 1611 else if (!strcmp(tok, "wiops") && val > 1)
2ee867dc 1612 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1613 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1614 idle_time = val;
ec80991d
SL
1615 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1616 latency_time = val;
2ee867dc
TH
1617 else
1618 goto out_finish;
1619 }
1620
cd5ab1b0
SL
1621 tg->bps_conf[READ][index] = v[0];
1622 tg->bps_conf[WRITE][index] = v[1];
1623 tg->iops_conf[READ][index] = v[2];
1624 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1625
cd5ab1b0
SL
1626 if (index == LIMIT_MAX) {
1627 tg->bps[READ][index] = v[0];
1628 tg->bps[WRITE][index] = v[1];
1629 tg->iops[READ][index] = v[2];
1630 tg->iops[WRITE][index] = v[3];
1631 }
1632 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1633 tg->bps_conf[READ][LIMIT_MAX]);
1634 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1635 tg->bps_conf[WRITE][LIMIT_MAX]);
1636 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1637 tg->iops_conf[READ][LIMIT_MAX]);
1638 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1639 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1640 tg->idletime_threshold_conf = idle_time;
1641 tg->latency_target_conf = latency_time;
1642
1643 /* force user to configure all settings for low limit */
1644 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1645 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1646 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1647 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1648 tg->bps[READ][LIMIT_LOW] = 0;
1649 tg->bps[WRITE][LIMIT_LOW] = 0;
1650 tg->iops[READ][LIMIT_LOW] = 0;
1651 tg->iops[WRITE][LIMIT_LOW] = 0;
1652 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1653 tg->latency_target = DFL_LATENCY_TARGET;
1654 } else if (index == LIMIT_LOW) {
5b81fc3c 1655 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1656 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1657 }
b4f428ef
SL
1658
1659 blk_throtl_update_limit_valid(tg->td);
1660 if (tg->td->limit_valid[LIMIT_LOW]) {
1661 if (index == LIMIT_LOW)
1662 tg->td->limit_index = LIMIT_LOW;
1663 } else
1664 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1665 tg_conf_updated(tg, index == LIMIT_LOW &&
1666 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1667 ret = 0;
1668out_finish:
faffaab2 1669 blkg_conf_exit(&ctx);
2ee867dc
TH
1670 return ret ?: nbytes;
1671}
1672
1673static struct cftype throtl_files[] = {
cd5ab1b0
SL
1674#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1675 {
1676 .name = "low",
1677 .flags = CFTYPE_NOT_ON_ROOT,
1678 .seq_show = tg_print_limit,
1679 .write = tg_set_limit,
1680 .private = LIMIT_LOW,
1681 },
1682#endif
2ee867dc
TH
1683 {
1684 .name = "max",
1685 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_MAX,
2ee867dc
TH
1689 },
1690 { } /* terminate */
1691};
1692
da527770 1693static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1694{
1695 struct throtl_data *td = q->td;
1696
69df0ab0 1697 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1698}
1699
a7b36ee6 1700struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1701 .dfl_cftypes = throtl_files,
880f50e2 1702 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1703
001bea73 1704 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1705 .pd_init_fn = throtl_pd_init,
693e751e 1706 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1707 .pd_offline_fn = throtl_pd_offline,
001bea73 1708 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1709};
1710
cad9266a 1711void blk_throtl_cancel_bios(struct gendisk *disk)
2d8f7a3b 1712{
cad9266a 1713 struct request_queue *q = disk->queue;
2d8f7a3b
YK
1714 struct cgroup_subsys_state *pos_css;
1715 struct blkcg_gq *blkg;
1716
1717 spin_lock_irq(&q->queue_lock);
1718 /*
1719 * queue_lock is held, rcu lock is not needed here technically.
1720 * However, rcu lock is still held to emphasize that following
1721 * path need RCU protection and to prevent warning from lockdep.
1722 */
1723 rcu_read_lock();
1231039d 1724 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2d8f7a3b
YK
1725 struct throtl_grp *tg = blkg_to_tg(blkg);
1726 struct throtl_service_queue *sq = &tg->service_queue;
1727
1728 /*
1729 * Set the flag to make sure throtl_pending_timer_fn() won't
1730 * stop until all throttled bios are dispatched.
1731 */
eb184791
KS
1732 tg->flags |= THROTL_TG_CANCELING;
1733
1734 /*
1735 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1736 * will be inserted to service queue without THROTL_TG_PENDING
1737 * set in tg_update_disptime below. Then IO dispatched from
1738 * child in tg_dispatch_one_bio will trigger double insertion
1739 * and corrupt the tree.
1740 */
1741 if (!(tg->flags & THROTL_TG_PENDING))
1742 continue;
1743
2d8f7a3b
YK
1744 /*
1745 * Update disptime after setting the above flag to make sure
1746 * throtl_select_dispatch() won't exit without dispatching.
1747 */
1748 tg_update_disptime(tg);
1749
1750 throtl_schedule_pending_timer(sq, jiffies + 1);
1751 }
1752 rcu_read_unlock();
1753 spin_unlock_irq(&q->queue_lock);
1754}
1755
1756#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
3f0abd80
SL
1757static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1758{
1759 unsigned long rtime = jiffies, wtime = jiffies;
1760
1761 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1762 rtime = tg->last_low_overflow_time[READ];
1763 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1764 wtime = tg->last_low_overflow_time[WRITE];
1765 return min(rtime, wtime);
1766}
1767
3f0abd80
SL
1768static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1769{
1770 struct throtl_service_queue *parent_sq;
1771 struct throtl_grp *parent = tg;
1772 unsigned long ret = __tg_last_low_overflow_time(tg);
1773
1774 while (true) {
1775 parent_sq = parent->service_queue.parent_sq;
1776 parent = sq_to_tg(parent_sq);
1777 if (!parent)
1778 break;
1779
1780 /*
1781 * The parent doesn't have low limit, it always reaches low
1782 * limit. Its overflow time is useless for children
1783 */
1784 if (!parent->bps[READ][LIMIT_LOW] &&
1785 !parent->iops[READ][LIMIT_LOW] &&
1786 !parent->bps[WRITE][LIMIT_LOW] &&
1787 !parent->iops[WRITE][LIMIT_LOW])
1788 continue;
1789 if (time_after(__tg_last_low_overflow_time(parent), ret))
1790 ret = __tg_last_low_overflow_time(parent);
1791 }
1792 return ret;
1793}
1794
9e234eea
SL
1795static bool throtl_tg_is_idle(struct throtl_grp *tg)
1796{
1797 /*
1798 * cgroup is idle if:
1799 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1800 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1801 * - average think time is more than threshold
53696b8d 1802 * - IO latency is largely below threshold
9e234eea 1803 */
b4f428ef 1804 unsigned long time;
4cff729f 1805 bool ret;
9e234eea 1806
b4f428ef
SL
1807 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1808 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1809 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1810 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1811 tg->avg_idletime > tg->idletime_threshold ||
1812 (tg->latency_target && tg->bio_cnt &&
53696b8d 1813 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1814 throtl_log(&tg->service_queue,
1815 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1816 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1817 tg->bio_cnt, ret, tg->td->scale);
1818 return ret;
9e234eea
SL
1819}
1820
a4d508e3 1821static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
c79892c5
SL
1822{
1823 struct throtl_service_queue *sq = &tg->service_queue;
a4d508e3 1824 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
c79892c5
SL
1825
1826 /*
a4d508e3
KS
1827 * if low limit is zero, low limit is always reached.
1828 * if low limit is non-zero, we can check if there is any request
1829 * is queued to determine if low limit is reached as we throttle
1830 * request according to limit.
c79892c5 1831 */
a4d508e3
KS
1832 return !limit || sq->nr_queued[rw];
1833}
1834
1835static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1836{
1837 /*
1838 * cgroup reaches low limit when low limit of READ and WRITE are
1839 * both reached, it's ok to upgrade to next limit if cgroup reaches
1840 * low limit
1841 */
1842 if (throtl_low_limit_reached(tg, READ) &&
1843 throtl_low_limit_reached(tg, WRITE))
c79892c5 1844 return true;
aec24246
SL
1845
1846 if (time_after_eq(jiffies,
fa6fb5aa
SL
1847 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1848 throtl_tg_is_idle(tg))
aec24246 1849 return true;
c79892c5
SL
1850 return false;
1851}
1852
1853static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1854{
1855 while (true) {
1856 if (throtl_tg_can_upgrade(tg))
1857 return true;
1858 tg = sq_to_tg(tg->service_queue.parent_sq);
1859 if (!tg || !tg_to_blkg(tg)->parent)
1860 return false;
1861 }
1862 return false;
1863}
1864
1865static bool throtl_can_upgrade(struct throtl_data *td,
1866 struct throtl_grp *this_tg)
1867{
1868 struct cgroup_subsys_state *pos_css;
1869 struct blkcg_gq *blkg;
1870
1871 if (td->limit_index != LIMIT_LOW)
1872 return false;
1873
297e3d85 1874 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1875 return false;
1876
c79892c5 1877 rcu_read_lock();
1231039d 1878 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1879 struct throtl_grp *tg = blkg_to_tg(blkg);
1880
1881 if (tg == this_tg)
1882 continue;
1883 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1884 continue;
1885 if (!throtl_hierarchy_can_upgrade(tg)) {
1886 rcu_read_unlock();
1887 return false;
1888 }
1889 }
1890 rcu_read_unlock();
1891 return true;
1892}
1893
fa6fb5aa
SL
1894static void throtl_upgrade_check(struct throtl_grp *tg)
1895{
1896 unsigned long now = jiffies;
1897
1898 if (tg->td->limit_index != LIMIT_LOW)
1899 return;
1900
1901 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1902 return;
1903
1904 tg->last_check_time = now;
1905
1906 if (!time_after_eq(now,
1907 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1908 return;
1909
1910 if (throtl_can_upgrade(tg->td, NULL))
1911 throtl_upgrade_state(tg->td);
1912}
1913
c79892c5
SL
1914static void throtl_upgrade_state(struct throtl_data *td)
1915{
1916 struct cgroup_subsys_state *pos_css;
1917 struct blkcg_gq *blkg;
1918
4cff729f 1919 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1920 td->limit_index = LIMIT_MAX;
3f0abd80 1921 td->low_upgrade_time = jiffies;
7394e31f 1922 td->scale = 0;
c79892c5 1923 rcu_read_lock();
1231039d 1924 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
c79892c5
SL
1925 struct throtl_grp *tg = blkg_to_tg(blkg);
1926 struct throtl_service_queue *sq = &tg->service_queue;
1927
1928 tg->disptime = jiffies - 1;
1929 throtl_select_dispatch(sq);
4f02fb76 1930 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1931 }
1932 rcu_read_unlock();
1933 throtl_select_dispatch(&td->service_queue);
4f02fb76 1934 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1935 queue_work(kthrotld_workqueue, &td->dispatch_work);
1936}
1937
4247d9c8 1938static void throtl_downgrade_state(struct throtl_data *td)
3f0abd80 1939{
7394e31f
SL
1940 td->scale /= 2;
1941
4cff729f 1942 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1943 if (td->scale) {
1944 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1945 return;
1946 }
1947
4247d9c8 1948 td->limit_index = LIMIT_LOW;
3f0abd80
SL
1949 td->low_downgrade_time = jiffies;
1950}
1951
1952static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1953{
1954 struct throtl_data *td = tg->td;
1955 unsigned long now = jiffies;
1956
1957 /*
1958 * If cgroup is below low limit, consider downgrade and throttle other
1959 * cgroups
1960 */
9c9f209d 1961 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1962 td->throtl_slice) &&
1963 (!throtl_tg_is_idle(tg) ||
1964 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1965 return true;
1966 return false;
1967}
1968
1969static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1970{
9c9f209d
KS
1971 struct throtl_data *td = tg->td;
1972
1973 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1974 return false;
1975
3f0abd80
SL
1976 while (true) {
1977 if (!throtl_tg_can_downgrade(tg))
1978 return false;
1979 tg = sq_to_tg(tg->service_queue.parent_sq);
1980 if (!tg || !tg_to_blkg(tg)->parent)
1981 break;
1982 }
1983 return true;
1984}
1985
1986static void throtl_downgrade_check(struct throtl_grp *tg)
1987{
1988 uint64_t bps;
1989 unsigned int iops;
1990 unsigned long elapsed_time;
1991 unsigned long now = jiffies;
1992
1993 if (tg->td->limit_index != LIMIT_MAX ||
1994 !tg->td->limit_valid[LIMIT_LOW])
1995 return;
1996 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1997 return;
297e3d85 1998 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1999 return;
2000
2001 elapsed_time = now - tg->last_check_time;
2002 tg->last_check_time = now;
2003
297e3d85
SL
2004 if (time_before(now, tg_last_low_overflow_time(tg) +
2005 tg->td->throtl_slice))
3f0abd80
SL
2006 return;
2007
2008 if (tg->bps[READ][LIMIT_LOW]) {
2009 bps = tg->last_bytes_disp[READ] * HZ;
2010 do_div(bps, elapsed_time);
2011 if (bps >= tg->bps[READ][LIMIT_LOW])
2012 tg->last_low_overflow_time[READ] = now;
2013 }
2014
2015 if (tg->bps[WRITE][LIMIT_LOW]) {
2016 bps = tg->last_bytes_disp[WRITE] * HZ;
2017 do_div(bps, elapsed_time);
2018 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2019 tg->last_low_overflow_time[WRITE] = now;
2020 }
2021
2022 if (tg->iops[READ][LIMIT_LOW]) {
2023 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2024 if (iops >= tg->iops[READ][LIMIT_LOW])
2025 tg->last_low_overflow_time[READ] = now;
2026 }
2027
2028 if (tg->iops[WRITE][LIMIT_LOW]) {
2029 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2030 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2031 tg->last_low_overflow_time[WRITE] = now;
2032 }
2033
2034 /*
2035 * If cgroup is below low limit, consider downgrade and throttle other
2036 * cgroups
2037 */
2038 if (throtl_hierarchy_can_downgrade(tg))
4247d9c8 2039 throtl_downgrade_state(tg->td);
3f0abd80
SL
2040
2041 tg->last_bytes_disp[READ] = 0;
2042 tg->last_bytes_disp[WRITE] = 0;
2043 tg->last_io_disp[READ] = 0;
2044 tg->last_io_disp[WRITE] = 0;
2045}
2046
9e234eea
SL
2047static void blk_throtl_update_idletime(struct throtl_grp *tg)
2048{
7901601a 2049 unsigned long now;
9e234eea
SL
2050 unsigned long last_finish_time = tg->last_finish_time;
2051
7901601a
BW
2052 if (last_finish_time == 0)
2053 return;
2054
2055 now = ktime_get_ns() >> 10;
2056 if (now <= last_finish_time ||
9e234eea
SL
2057 last_finish_time == tg->checked_last_finish_time)
2058 return;
2059
2060 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2061 tg->checked_last_finish_time = last_finish_time;
2062}
2063
b9147dd1
SL
2064static void throtl_update_latency_buckets(struct throtl_data *td)
2065{
b889bf66
JQ
2066 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2067 int i, cpu, rw;
2068 unsigned long last_latency[2] = { 0 };
2069 unsigned long latency[2];
b9147dd1 2070
b185efa7 2071 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
b9147dd1
SL
2072 return;
2073 if (time_before(jiffies, td->last_calculate_time + HZ))
2074 return;
2075 td->last_calculate_time = jiffies;
2076
2077 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2078 for (rw = READ; rw <= WRITE; rw++) {
2079 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2080 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2081
2082 for_each_possible_cpu(cpu) {
2083 struct latency_bucket *bucket;
2084
2085 /* this isn't race free, but ok in practice */
2086 bucket = per_cpu_ptr(td->latency_buckets[rw],
2087 cpu);
2088 tmp->total_latency += bucket[i].total_latency;
2089 tmp->samples += bucket[i].samples;
2090 bucket[i].total_latency = 0;
2091 bucket[i].samples = 0;
2092 }
b9147dd1 2093
b889bf66
JQ
2094 if (tmp->samples >= 32) {
2095 int samples = tmp->samples;
b9147dd1 2096
b889bf66 2097 latency[rw] = tmp->total_latency;
b9147dd1 2098
b889bf66
JQ
2099 tmp->total_latency = 0;
2100 tmp->samples = 0;
2101 latency[rw] /= samples;
2102 if (latency[rw] == 0)
2103 continue;
2104 avg_latency[rw][i].latency = latency[rw];
2105 }
b9147dd1
SL
2106 }
2107 }
2108
b889bf66
JQ
2109 for (rw = READ; rw <= WRITE; rw++) {
2110 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2111 if (!avg_latency[rw][i].latency) {
2112 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2113 td->avg_buckets[rw][i].latency =
2114 last_latency[rw];
2115 continue;
2116 }
b9147dd1 2117
b889bf66
JQ
2118 if (!td->avg_buckets[rw][i].valid)
2119 latency[rw] = avg_latency[rw][i].latency;
2120 else
2121 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2122 avg_latency[rw][i].latency) >> 3;
b9147dd1 2123
b889bf66
JQ
2124 td->avg_buckets[rw][i].latency = max(latency[rw],
2125 last_latency[rw]);
2126 td->avg_buckets[rw][i].valid = true;
2127 last_latency[rw] = td->avg_buckets[rw][i].latency;
2128 }
b9147dd1 2129 }
4cff729f
SL
2130
2131 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2132 throtl_log(&td->service_queue,
b889bf66
JQ
2133 "Latency bucket %d: read latency=%ld, read valid=%d, "
2134 "write latency=%ld, write valid=%d", i,
2135 td->avg_buckets[READ][i].latency,
2136 td->avg_buckets[READ][i].valid,
2137 td->avg_buckets[WRITE][i].latency,
2138 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2139}
2140#else
2141static inline void throtl_update_latency_buckets(struct throtl_data *td)
2142{
2143}
2d8f7a3b
YK
2144
2145static void blk_throtl_update_idletime(struct throtl_grp *tg)
2146{
2147}
2148
2149static void throtl_downgrade_check(struct throtl_grp *tg)
2150{
2151}
2152
2153static void throtl_upgrade_check(struct throtl_grp *tg)
2154{
2155}
2156
2157static bool throtl_can_upgrade(struct throtl_data *td,
2158 struct throtl_grp *this_tg)
2159{
2160 return false;
2161}
2162
2163static void throtl_upgrade_state(struct throtl_data *td)
2164{
2165}
b9147dd1
SL
2166#endif
2167
a7b36ee6 2168bool __blk_throtl_bio(struct bio *bio)
e43473b7 2169{
ed6cddef 2170 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
db18a53e 2171 struct blkcg_gq *blkg = bio->bi_blkg;
c5cc2070 2172 struct throtl_qnode *qn = NULL;
a2e83ef9 2173 struct throtl_grp *tg = blkg_to_tg(blkg);
73f0d49a 2174 struct throtl_service_queue *sq;
0e9f4164 2175 bool rw = bio_data_dir(bio);
bc16a4f9 2176 bool throttled = false;
b9147dd1 2177 struct throtl_data *td = tg->td;
e43473b7 2178
93b80638 2179 rcu_read_lock();
ae118896 2180
7ca46438
TH
2181 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2182 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2183 bio->bi_iter.bi_size);
2184 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2185 }
2186
0d945c1f 2187 spin_lock_irq(&q->queue_lock);
c9589f03 2188
b9147dd1
SL
2189 throtl_update_latency_buckets(td);
2190
9e234eea
SL
2191 blk_throtl_update_idletime(tg);
2192
73f0d49a
TH
2193 sq = &tg->service_queue;
2194
c79892c5 2195again:
9e660acf 2196 while (true) {
3f0abd80
SL
2197 if (tg->last_low_overflow_time[rw] == 0)
2198 tg->last_low_overflow_time[rw] = jiffies;
2199 throtl_downgrade_check(tg);
fa6fb5aa 2200 throtl_upgrade_check(tg);
9e660acf
TH
2201 /* throtl is FIFO - if bios are already queued, should queue */
2202 if (sq->nr_queued[rw])
2203 break;
de701c74 2204
9e660acf 2205 /* if above limits, break to queue */
c79892c5 2206 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2207 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2208 if (throtl_can_upgrade(td, tg)) {
2209 throtl_upgrade_state(td);
c79892c5
SL
2210 goto again;
2211 }
9e660acf 2212 break;
c79892c5 2213 }
9e660acf
TH
2214
2215 /* within limits, let's charge and dispatch directly */
e43473b7 2216 throtl_charge_bio(tg, bio);
04521db0
VG
2217
2218 /*
2219 * We need to trim slice even when bios are not being queued
2220 * otherwise it might happen that a bio is not queued for
2221 * a long time and slice keeps on extending and trim is not
2222 * called for a long time. Now if limits are reduced suddenly
2223 * we take into account all the IO dispatched so far at new
2224 * low rate and * newly queued IO gets a really long dispatch
2225 * time.
2226 *
2227 * So keep on trimming slice even if bio is not queued.
2228 */
0f3457f6 2229 throtl_trim_slice(tg, rw);
9e660acf
TH
2230
2231 /*
2232 * @bio passed through this layer without being throttled.
b53b072c 2233 * Climb up the ladder. If we're already at the top, it
9e660acf
TH
2234 * can be executed directly.
2235 */
c5cc2070 2236 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2237 sq = sq->parent_sq;
2238 tg = sq_to_tg(sq);
320fb0f9
YK
2239 if (!tg) {
2240 bio_set_flag(bio, BIO_BPS_THROTTLED);
9e660acf 2241 goto out_unlock;
320fb0f9 2242 }
e43473b7
VG
2243 }
2244
9e660acf 2245 /* out-of-limit, queue to @tg */
fda6f272
TH
2246 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2247 rw == READ ? 'R' : 'W',
9f626e37
SL
2248 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2249 tg_bps_limit(tg, rw),
2250 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2251 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2252
3f0abd80
SL
2253 tg->last_low_overflow_time[rw] = jiffies;
2254
b9147dd1 2255 td->nr_queued[rw]++;
c5cc2070 2256 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2257 throttled = true;
e43473b7 2258
7f52f98c
TH
2259 /*
2260 * Update @tg's dispatch time and force schedule dispatch if @tg
2261 * was empty before @bio. The forced scheduling isn't likely to
2262 * cause undue delay as @bio is likely to be dispatched directly if
2263 * its @tg's disptime is not in the future.
2264 */
0e9f4164 2265 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2266 tg_update_disptime(tg);
7f52f98c 2267 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2268 }
2269
bc16a4f9 2270out_unlock:
b9147dd1
SL
2271#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2272 if (throttled || !td->track_bio_latency)
5238dcf4 2273 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2274#endif
5a011f88
LQ
2275 spin_unlock_irq(&q->queue_lock);
2276
93b80638 2277 rcu_read_unlock();
bc16a4f9 2278 return throttled;
e43473b7
VG
2279}
2280
9e234eea 2281#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1 2282static void throtl_track_latency(struct throtl_data *td, sector_t size,
77e7ffd7 2283 enum req_op op, unsigned long time)
b9147dd1 2284{
77e7ffd7 2285 const bool rw = op_is_write(op);
b9147dd1
SL
2286 struct latency_bucket *latency;
2287 int index;
2288
b889bf66
JQ
2289 if (!td || td->limit_index != LIMIT_LOW ||
2290 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2291 !blk_queue_nonrot(td->queue))
2292 return;
2293
2294 index = request_bucket_index(size);
2295
77e7ffd7 2296 latency = get_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2297 latency[index].total_latency += time;
2298 latency[index].samples++;
77e7ffd7 2299 put_cpu_ptr(td->latency_buckets[rw]);
b9147dd1
SL
2300}
2301
2302void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2303{
2304 struct request_queue *q = rq->q;
2305 struct throtl_data *td = q->td;
2306
3d244306
HT
2307 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2308 time_ns >> 10);
b9147dd1
SL
2309}
2310
9e234eea
SL
2311void blk_throtl_bio_endio(struct bio *bio)
2312{
08e18eab 2313 struct blkcg_gq *blkg;
9e234eea 2314 struct throtl_grp *tg;
b9147dd1
SL
2315 u64 finish_time_ns;
2316 unsigned long finish_time;
2317 unsigned long start_time;
2318 unsigned long lat;
b889bf66 2319 int rw = bio_data_dir(bio);
9e234eea 2320
08e18eab
JB
2321 blkg = bio->bi_blkg;
2322 if (!blkg)
9e234eea 2323 return;
08e18eab 2324 tg = blkg_to_tg(blkg);
b185efa7
BW
2325 if (!tg->td->limit_valid[LIMIT_LOW])
2326 return;
9e234eea 2327
b9147dd1
SL
2328 finish_time_ns = ktime_get_ns();
2329 tg->last_finish_time = finish_time_ns >> 10;
2330
5238dcf4
OS
2331 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2332 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2333 if (!start_time || finish_time <= start_time)
53696b8d
SL
2334 return;
2335
2336 lat = finish_time - start_time;
b9147dd1 2337 /* this is only for bio based driver */
5238dcf4
OS
2338 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2339 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2340 bio_op(bio), lat);
53696b8d 2341
6679a90c 2342 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2343 int bucket;
2344 unsigned int threshold;
2345
5238dcf4 2346 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2347 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2348 tg->latency_target;
2349 if (lat > threshold)
2350 tg->bad_bio_cnt++;
2351 /*
2352 * Not race free, could get wrong count, which means cgroups
2353 * will be throttled
2354 */
2355 tg->bio_cnt++;
2356 }
2357
2358 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2359 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2360 tg->bio_cnt /= 2;
2361 tg->bad_bio_cnt /= 2;
b9147dd1 2362 }
9e234eea
SL
2363}
2364#endif
2365
e13793ba 2366int blk_throtl_init(struct gendisk *disk)
e43473b7 2367{
e13793ba 2368 struct request_queue *q = disk->queue;
e43473b7 2369 struct throtl_data *td;
a2b1693b 2370 int ret;
e43473b7
VG
2371
2372 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2373 if (!td)
2374 return -ENOMEM;
b889bf66 2375 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2376 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2377 if (!td->latency_buckets[READ]) {
2378 kfree(td);
2379 return -ENOMEM;
2380 }
2381 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2382 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2383 if (!td->latency_buckets[WRITE]) {
2384 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2385 kfree(td);
2386 return -ENOMEM;
2387 }
e43473b7 2388
69df0ab0 2389 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2390 throtl_service_queue_init(&td->service_queue);
e43473b7 2391
cd1604fa 2392 q->td = td;
29b12589 2393 td->queue = q;
02977e4a 2394
9f626e37 2395 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2396 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2397 td->low_upgrade_time = jiffies;
2398 td->low_downgrade_time = jiffies;
9e234eea 2399
a2b1693b 2400 /* activate policy */
40e4996e 2401 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
b9147dd1 2402 if (ret) {
b889bf66
JQ
2403 free_percpu(td->latency_buckets[READ]);
2404 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2405 kfree(td);
b9147dd1 2406 }
a2b1693b 2407 return ret;
e43473b7
VG
2408}
2409
e13793ba 2410void blk_throtl_exit(struct gendisk *disk)
e43473b7 2411{
e13793ba
CH
2412 struct request_queue *q = disk->queue;
2413
b4e94f9c 2414 BUG_ON(!q->td);
884f0e84 2415 del_timer_sync(&q->td->service_queue.pending_timer);
da527770 2416 throtl_shutdown_wq(q);
40e4996e 2417 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
b889bf66
JQ
2418 free_percpu(q->td->latency_buckets[READ]);
2419 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2420 kfree(q->td);
e43473b7
VG
2421}
2422
5f6dc752 2423void blk_throtl_register(struct gendisk *disk)
d61fcfa4 2424{
5f6dc752 2425 struct request_queue *q = disk->queue;
d61fcfa4 2426 struct throtl_data *td;
6679a90c 2427 int i;
d61fcfa4
SL
2428
2429 td = q->td;
2430 BUG_ON(!td);
2431
6679a90c 2432 if (blk_queue_nonrot(q)) {
d61fcfa4 2433 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2434 td->filtered_latency = LATENCY_FILTERED_SSD;
2435 } else {
d61fcfa4 2436 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2437 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 }
6679a90c 2442 }
d61fcfa4
SL
2443#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 /* if no low limit, use previous default */
2445 td->throtl_slice = DFL_THROTL_SLICE_HD;
9e234eea 2446
8e15dfbd 2447#else
344e9ffc 2448 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2449 if (!td->track_bio_latency)
2450 blk_stat_enable_accounting(q);
8e15dfbd 2451#endif
d61fcfa4
SL
2452}
2453
297e3d85
SL
2454#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2455ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2456{
2457 if (!q->td)
2458 return -EINVAL;
2459 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2460}
2461
2462ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2463 const char *page, size_t count)
2464{
2465 unsigned long v;
2466 unsigned long t;
2467
2468 if (!q->td)
2469 return -EINVAL;
2470 if (kstrtoul(page, 10, &v))
2471 return -EINVAL;
2472 t = msecs_to_jiffies(v);
2473 if (t == 0 || t > MAX_THROTL_SLICE)
2474 return -EINVAL;
2475 q->td->throtl_slice = t;
2476 return count;
2477}
2478#endif
2479
e43473b7
VG
2480static int __init throtl_init(void)
2481{
450adcbe
VG
2482 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2483 if (!kthrotld_workqueue)
2484 panic("Failed to create kthrotld\n");
2485
3c798398 2486 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2487}
2488
2489module_init(throtl_init);