block: fix memleak of bio integrity data
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
1da177e4 20
55782138 21#include <trace/events/block.h>
9e234eea 22#include "blk.h"
67b42d0b 23#include "blk-rq-qos.h"
0bfc2455 24
392ddc32
JA
25/*
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
28 */
29#define BIO_INLINE_VECS 4
30
1da177e4
LT
31/*
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
34 * unsigned short
35 */
bd5c4fac 36#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 37static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
39};
40#undef BV
41
1da177e4
LT
42/*
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
45 */
f4f8154a 46struct bio_set fs_bio_set;
3f86a82a 47EXPORT_SYMBOL(fs_bio_set);
1da177e4 48
bb799ca0
JA
49/*
50 * Our slab pool management
51 */
52struct bio_slab {
53 struct kmem_cache *slab;
54 unsigned int slab_ref;
55 unsigned int slab_size;
56 char name[8];
57};
58static DEFINE_MUTEX(bio_slab_lock);
59static struct bio_slab *bio_slabs;
60static unsigned int bio_slab_nr, bio_slab_max;
61
62static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63{
64 unsigned int sz = sizeof(struct bio) + extra_size;
65 struct kmem_cache *slab = NULL;
389d7b26 66 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 67 unsigned int new_bio_slab_max;
bb799ca0
JA
68 unsigned int i, entry = -1;
69
70 mutex_lock(&bio_slab_lock);
71
72 i = 0;
73 while (i < bio_slab_nr) {
f06f135d 74 bslab = &bio_slabs[i];
bb799ca0
JA
75
76 if (!bslab->slab && entry == -1)
77 entry = i;
78 else if (bslab->slab_size == sz) {
79 slab = bslab->slab;
80 bslab->slab_ref++;
81 break;
82 }
83 i++;
84 }
85
86 if (slab)
87 goto out_unlock;
88
89 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 90 new_bio_slab_max = bio_slab_max << 1;
389d7b26 91 new_bio_slabs = krealloc(bio_slabs,
386bc35a 92 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
93 GFP_KERNEL);
94 if (!new_bio_slabs)
bb799ca0 95 goto out_unlock;
386bc35a 96 bio_slab_max = new_bio_slab_max;
389d7b26 97 bio_slabs = new_bio_slabs;
bb799ca0
JA
98 }
99 if (entry == -1)
100 entry = bio_slab_nr++;
101
102 bslab = &bio_slabs[entry];
103
104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
107 if (!slab)
108 goto out_unlock;
109
bb799ca0
JA
110 bslab->slab = slab;
111 bslab->slab_ref = 1;
112 bslab->slab_size = sz;
113out_unlock:
114 mutex_unlock(&bio_slab_lock);
115 return slab;
116}
117
118static void bio_put_slab(struct bio_set *bs)
119{
120 struct bio_slab *bslab = NULL;
121 unsigned int i;
122
123 mutex_lock(&bio_slab_lock);
124
125 for (i = 0; i < bio_slab_nr; i++) {
126 if (bs->bio_slab == bio_slabs[i].slab) {
127 bslab = &bio_slabs[i];
128 break;
129 }
130 }
131
132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 goto out;
134
135 WARN_ON(!bslab->slab_ref);
136
137 if (--bslab->slab_ref)
138 goto out;
139
140 kmem_cache_destroy(bslab->slab);
141 bslab->slab = NULL;
142
143out:
144 mutex_unlock(&bio_slab_lock);
145}
146
7ba1ba12
MP
147unsigned int bvec_nr_vecs(unsigned short idx)
148{
d6c02a9b 149 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
150}
151
9f060e22 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 153{
ed996a52
CH
154 if (!idx)
155 return;
156 idx--;
157
158 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 159
ed996a52 160 if (idx == BVEC_POOL_MAX) {
9f060e22 161 mempool_free(bv, pool);
ed996a52 162 } else {
bb799ca0
JA
163 struct biovec_slab *bvs = bvec_slabs + idx;
164
165 kmem_cache_free(bvs->slab, bv);
166 }
167}
168
9f060e22
KO
169struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 mempool_t *pool)
1da177e4
LT
171{
172 struct bio_vec *bvl;
1da177e4 173
7ff9345f
JA
174 /*
175 * see comment near bvec_array define!
176 */
177 switch (nr) {
178 case 1:
179 *idx = 0;
180 break;
181 case 2 ... 4:
182 *idx = 1;
183 break;
184 case 5 ... 16:
185 *idx = 2;
186 break;
187 case 17 ... 64:
188 *idx = 3;
189 break;
190 case 65 ... 128:
191 *idx = 4;
192 break;
193 case 129 ... BIO_MAX_PAGES:
194 *idx = 5;
195 break;
196 default:
197 return NULL;
198 }
199
200 /*
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
203 */
ed996a52 204 if (*idx == BVEC_POOL_MAX) {
7ff9345f 205fallback:
9f060e22 206 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
207 } else {
208 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 210
0a0d96b0 211 /*
7ff9345f
JA
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
0a0d96b0 215 */
7ff9345f 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 217
0a0d96b0 218 /*
d0164adc 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 220 * is set, retry with the 1-entry mempool
0a0d96b0 221 */
7ff9345f 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 224 *idx = BVEC_POOL_MAX;
7ff9345f
JA
225 goto fallback;
226 }
227 }
228
ed996a52 229 (*idx)++;
1da177e4
LT
230 return bvl;
231}
232
9ae3b3f5 233void bio_uninit(struct bio *bio)
1da177e4 234{
6f70fb66 235 bio_disassociate_blkg(bio);
ece841ab
JT
236
237 if (bio_integrity(bio))
238 bio_integrity_free(bio);
4254bba1 239}
9ae3b3f5 240EXPORT_SYMBOL(bio_uninit);
7ba1ba12 241
4254bba1
KO
242static void bio_free(struct bio *bio)
243{
244 struct bio_set *bs = bio->bi_pool;
245 void *p;
246
9ae3b3f5 247 bio_uninit(bio);
4254bba1
KO
248
249 if (bs) {
8aa6ba2f 250 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
251
252 /*
253 * If we have front padding, adjust the bio pointer before freeing
254 */
255 p = bio;
bb799ca0
JA
256 p -= bs->front_pad;
257
8aa6ba2f 258 mempool_free(p, &bs->bio_pool);
4254bba1
KO
259 } else {
260 /* Bio was allocated by bio_kmalloc() */
261 kfree(bio);
262 }
3676347a
PO
263}
264
9ae3b3f5
JA
265/*
266 * Users of this function have their own bio allocation. Subsequently,
267 * they must remember to pair any call to bio_init() with bio_uninit()
268 * when IO has completed, or when the bio is released.
269 */
3a83f467
ML
270void bio_init(struct bio *bio, struct bio_vec *table,
271 unsigned short max_vecs)
1da177e4 272{
2b94de55 273 memset(bio, 0, sizeof(*bio));
c4cf5261 274 atomic_set(&bio->__bi_remaining, 1);
dac56212 275 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
276
277 bio->bi_io_vec = table;
278 bio->bi_max_vecs = max_vecs;
1da177e4 279}
a112a71d 280EXPORT_SYMBOL(bio_init);
1da177e4 281
f44b48c7
KO
282/**
283 * bio_reset - reinitialize a bio
284 * @bio: bio to reset
285 *
286 * Description:
287 * After calling bio_reset(), @bio will be in the same state as a freshly
288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
289 * preserved are the ones that are initialized by bio_alloc_bioset(). See
290 * comment in struct bio.
291 */
292void bio_reset(struct bio *bio)
293{
294 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295
9ae3b3f5 296 bio_uninit(bio);
f44b48c7
KO
297
298 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 299 bio->bi_flags = flags;
c4cf5261 300 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
301}
302EXPORT_SYMBOL(bio_reset);
303
38f8baae 304static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 305{
4246a0b6
CH
306 struct bio *parent = bio->bi_private;
307
4e4cbee9
CH
308 if (!parent->bi_status)
309 parent->bi_status = bio->bi_status;
196d38bc 310 bio_put(bio);
38f8baae
CH
311 return parent;
312}
313
314static void bio_chain_endio(struct bio *bio)
315{
316 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
317}
318
319/**
320 * bio_chain - chain bio completions
1051a902
RD
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
196d38bc
KO
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330void bio_chain(struct bio *bio, struct bio *parent)
331{
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
c4cf5261 336 bio_inc_remaining(parent);
196d38bc
KO
337}
338EXPORT_SYMBOL(bio_chain);
339
df2cb6da
KO
340static void bio_alloc_rescue(struct work_struct *work)
341{
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355}
356
357static void punt_bios_to_rescuer(struct bio_set *bs)
358{
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
47e0fb46
N
362 if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 return;
df2cb6da
KO
364 /*
365 * In order to guarantee forward progress we must punt only bios that
366 * were allocated from this bio_set; otherwise, if there was a bio on
367 * there for a stacking driver higher up in the stack, processing it
368 * could require allocating bios from this bio_set, and doing that from
369 * our own rescuer would be bad.
370 *
371 * Since bio lists are singly linked, pop them all instead of trying to
372 * remove from the middle of the list:
373 */
374
375 bio_list_init(&punt);
376 bio_list_init(&nopunt);
377
f5fe1b51 378 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 380 current->bio_list[0] = nopunt;
df2cb6da 381
f5fe1b51
N
382 bio_list_init(&nopunt);
383 while ((bio = bio_list_pop(&current->bio_list[1])))
384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 current->bio_list[1] = nopunt;
df2cb6da
KO
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392}
393
1da177e4
LT
394/**
395 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 396 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 397 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 398 * @bs: the bio_set to allocate from.
1da177e4
LT
399 *
400 * Description:
3f86a82a
KO
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
d0164adc
MG
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 410 *
df2cb6da
KO
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
3f86a82a
KO
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
7a88fa19
DC
429struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 struct bio_set *bs)
1da177e4 431{
df2cb6da 432 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
433 unsigned front_pad;
434 unsigned inline_vecs;
34053979 435 struct bio_vec *bvl = NULL;
451a9ebf
TH
436 struct bio *bio;
437 void *p;
438
3f86a82a
KO
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
d8f429e1 449 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
450 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 nr_iovecs > 0))
d8f429e1 452 return NULL;
df2cb6da
KO
453 /*
454 * generic_make_request() converts recursion to iteration; this
455 * means if we're running beneath it, any bios we allocate and
456 * submit will not be submitted (and thus freed) until after we
457 * return.
458 *
459 * This exposes us to a potential deadlock if we allocate
460 * multiple bios from the same bio_set() while running
461 * underneath generic_make_request(). If we were to allocate
462 * multiple bios (say a stacking block driver that was splitting
463 * bios), we would deadlock if we exhausted the mempool's
464 * reserve.
465 *
466 * We solve this, and guarantee forward progress, with a rescuer
467 * workqueue per bio_set. If we go to allocate and there are
468 * bios on current->bio_list, we first try the allocation
d0164adc
MG
469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 * bios we would be blocking to the rescuer workqueue before
471 * we retry with the original gfp_flags.
df2cb6da
KO
472 */
473
f5fe1b51
N
474 if (current->bio_list &&
475 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
476 !bio_list_empty(&current->bio_list[1])) &&
477 bs->rescue_workqueue)
d0164adc 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 479
8aa6ba2f 480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
481 if (!p && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
8aa6ba2f 484 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
485 }
486
3f86a82a
KO
487 front_pad = bs->front_pad;
488 inline_vecs = BIO_INLINE_VECS;
489 }
490
451a9ebf
TH
491 if (unlikely(!p))
492 return NULL;
1da177e4 493
3f86a82a 494 bio = p + front_pad;
3a83f467 495 bio_init(bio, NULL, 0);
34053979 496
3f86a82a 497 if (nr_iovecs > inline_vecs) {
ed996a52
CH
498 unsigned long idx = 0;
499
8aa6ba2f 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
8aa6ba2f 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
505 }
506
34053979
IM
507 if (unlikely(!bvl))
508 goto err_free;
a38352e0 509
ed996a52 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
511 } else if (nr_iovecs) {
512 bvl = bio->bi_inline_vecs;
1da177e4 513 }
3f86a82a
KO
514
515 bio->bi_pool = bs;
34053979 516 bio->bi_max_vecs = nr_iovecs;
34053979 517 bio->bi_io_vec = bvl;
1da177e4 518 return bio;
34053979
IM
519
520err_free:
8aa6ba2f 521 mempool_free(p, &bs->bio_pool);
34053979 522 return NULL;
1da177e4 523}
a112a71d 524EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 525
38a72dac 526void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
527{
528 unsigned long flags;
7988613b
KO
529 struct bio_vec bv;
530 struct bvec_iter iter;
1da177e4 531
38a72dac 532 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
533 char *data = bvec_kmap_irq(&bv, &flags);
534 memset(data, 0, bv.bv_len);
535 flush_dcache_page(bv.bv_page);
1da177e4
LT
536 bvec_kunmap_irq(data, &flags);
537 }
538}
38a72dac 539EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
540
541/**
542 * bio_put - release a reference to a bio
543 * @bio: bio to release reference to
544 *
545 * Description:
546 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 547 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
548 **/
549void bio_put(struct bio *bio)
550{
dac56212 551 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 552 bio_free(bio);
dac56212
JA
553 else {
554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555
556 /*
557 * last put frees it
558 */
559 if (atomic_dec_and_test(&bio->__bi_cnt))
560 bio_free(bio);
561 }
1da177e4 562}
a112a71d 563EXPORT_SYMBOL(bio_put);
1da177e4 564
59d276fe
KO
565/**
566 * __bio_clone_fast - clone a bio that shares the original bio's biovec
567 * @bio: destination bio
568 * @bio_src: bio to clone
569 *
570 * Clone a &bio. Caller will own the returned bio, but not
571 * the actual data it points to. Reference count of returned
572 * bio will be one.
573 *
574 * Caller must ensure that @bio_src is not freed before @bio.
575 */
576void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
577{
ed996a52 578 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
579
580 /*
74d46992 581 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
582 * so we don't set nor calculate new physical/hw segment counts here
583 */
74d46992 584 bio->bi_disk = bio_src->bi_disk;
62530ed8 585 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 586 bio_set_flag(bio, BIO_CLONED);
111be883
SL
587 if (bio_flagged(bio_src, BIO_THROTTLED))
588 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 589 bio->bi_opf = bio_src->bi_opf;
ca474b73 590 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 591 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
592 bio->bi_iter = bio_src->bi_iter;
593 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 594
db6638d7 595 bio_clone_blkg_association(bio, bio_src);
e439bedf 596 blkcg_bio_issue_init(bio);
59d276fe
KO
597}
598EXPORT_SYMBOL(__bio_clone_fast);
599
600/**
601 * bio_clone_fast - clone a bio that shares the original bio's biovec
602 * @bio: bio to clone
603 * @gfp_mask: allocation priority
604 * @bs: bio_set to allocate from
605 *
606 * Like __bio_clone_fast, only also allocates the returned bio
607 */
608struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
609{
610 struct bio *b;
611
612 b = bio_alloc_bioset(gfp_mask, 0, bs);
613 if (!b)
614 return NULL;
615
616 __bio_clone_fast(b, bio);
617
618 if (bio_integrity(bio)) {
619 int ret;
620
621 ret = bio_integrity_clone(b, bio, gfp_mask);
622
623 if (ret < 0) {
624 bio_put(b);
625 return NULL;
626 }
627 }
628
629 return b;
630}
631EXPORT_SYMBOL(bio_clone_fast);
632
5919482e
ML
633static inline bool page_is_mergeable(const struct bio_vec *bv,
634 struct page *page, unsigned int len, unsigned int off,
ff896738 635 bool *same_page)
5919482e
ML
636{
637 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
638 bv->bv_offset + bv->bv_len - 1;
639 phys_addr_t page_addr = page_to_phys(page);
640
641 if (vec_end_addr + 1 != page_addr + off)
642 return false;
643 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
644 return false;
52d52d1c 645
ff896738
CH
646 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
647 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
648 return false;
5919482e
ML
649 return true;
650}
651
384209cd
CH
652static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
653 struct page *page, unsigned len, unsigned offset,
654 bool *same_page)
489fbbcb 655{
384209cd 656 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
657 unsigned long mask = queue_segment_boundary(q);
658 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
659 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
660
661 if ((addr1 | mask) != (addr2 | mask))
662 return false;
489fbbcb
ML
663 if (bv->bv_len + len > queue_max_segment_size(q))
664 return false;
384209cd 665 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
666}
667
1da177e4 668/**
19047087 669 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
670 * @q: the target queue
671 * @bio: destination bio
672 * @page: page to add
673 * @len: vec entry length
674 * @offset: vec entry offset
d1916c86 675 * @same_page: return if the merge happen inside the same page
1da177e4 676 *
c66a14d0
KO
677 * Attempt to add a page to the bio_vec maplist. This can fail for a
678 * number of reasons, such as the bio being full or target block device
679 * limitations. The target block device must allow bio's up to PAGE_SIZE,
680 * so it is always possible to add a single page to an empty bio.
681 *
5a8ce240 682 * This should only be used by passthrough bios.
1da177e4 683 */
4713839d 684static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087 685 struct page *page, unsigned int len, unsigned int offset,
d1916c86 686 bool *same_page)
1da177e4 687{
1da177e4
LT
688 struct bio_vec *bvec;
689
690 /*
691 * cloned bio must not modify vec list
692 */
693 if (unlikely(bio_flagged(bio, BIO_CLONED)))
694 return 0;
695
c66a14d0 696 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
697 return 0;
698
80cfd548 699 if (bio->bi_vcnt > 0) {
d1916c86 700 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
384209cd 701 return len;
320ea869
CH
702
703 /*
704 * If the queue doesn't support SG gaps and adding this segment
705 * would create a gap, disallow it.
706 */
384209cd 707 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
708 if (bvec_gap_to_prev(q, bvec, offset))
709 return 0;
80cfd548
JA
710 }
711
79d08f89 712 if (bio_full(bio, len))
1da177e4
LT
713 return 0;
714
14ccb66b 715 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
716 return 0;
717
fcbf6a08
ML
718 bvec = &bio->bi_io_vec[bio->bi_vcnt];
719 bvec->bv_page = page;
720 bvec->bv_len = len;
721 bvec->bv_offset = offset;
722 bio->bi_vcnt++;
dcdca753 723 bio->bi_iter.bi_size += len;
1da177e4
LT
724 return len;
725}
19047087
ML
726
727int bio_add_pc_page(struct request_queue *q, struct bio *bio,
728 struct page *page, unsigned int len, unsigned int offset)
729{
d1916c86
CH
730 bool same_page = false;
731 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
19047087 732}
a112a71d 733EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 734
1da177e4 735/**
0aa69fd3
CH
736 * __bio_try_merge_page - try appending data to an existing bvec.
737 * @bio: destination bio
551879a4 738 * @page: start page to add
0aa69fd3 739 * @len: length of the data to add
551879a4 740 * @off: offset of the data relative to @page
ff896738 741 * @same_page: return if the segment has been merged inside the same page
1da177e4 742 *
0aa69fd3
CH
743 * Try to add the data at @page + @off to the last bvec of @bio. This is a
744 * a useful optimisation for file systems with a block size smaller than the
745 * page size.
746 *
551879a4
ML
747 * Warn if (@len, @off) crosses pages in case that @same_page is true.
748 *
0aa69fd3 749 * Return %true on success or %false on failure.
1da177e4 750 */
0aa69fd3 751bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 752 unsigned int len, unsigned int off, bool *same_page)
1da177e4 753{
c66a14d0 754 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 755 return false;
762380ad 756
e3a5d8e3 757 if (bio->bi_vcnt > 0 && !bio_full(bio, len)) {
0aa69fd3 758 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
759
760 if (page_is_mergeable(bv, page, len, off, same_page)) {
761 bv->bv_len += len;
762 bio->bi_iter.bi_size += len;
763 return true;
764 }
c66a14d0 765 }
0aa69fd3
CH
766 return false;
767}
768EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 769
0aa69fd3 770/**
551879a4 771 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 772 * @bio: destination bio
551879a4
ML
773 * @page: start page to add
774 * @len: length of the data to add, may cross pages
775 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
776 *
777 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
778 * that @bio has space for another bvec.
779 */
780void __bio_add_page(struct bio *bio, struct page *page,
781 unsigned int len, unsigned int off)
782{
783 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 784
0aa69fd3 785 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 786 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
787
788 bv->bv_page = page;
789 bv->bv_offset = off;
790 bv->bv_len = len;
c66a14d0 791
c66a14d0 792 bio->bi_iter.bi_size += len;
0aa69fd3 793 bio->bi_vcnt++;
b8e24a93
JW
794
795 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
796 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
797}
798EXPORT_SYMBOL_GPL(__bio_add_page);
799
800/**
551879a4 801 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 802 * @bio: destination bio
551879a4
ML
803 * @page: start page to add
804 * @len: vec entry length, may cross pages
805 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 806 *
551879a4 807 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
808 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
809 */
810int bio_add_page(struct bio *bio, struct page *page,
811 unsigned int len, unsigned int offset)
812{
ff896738
CH
813 bool same_page = false;
814
815 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 816 if (bio_full(bio, len))
0aa69fd3
CH
817 return 0;
818 __bio_add_page(bio, page, len, offset);
819 }
c66a14d0 820 return len;
1da177e4 821}
a112a71d 822EXPORT_SYMBOL(bio_add_page);
1da177e4 823
d241a95f 824void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
825{
826 struct bvec_iter_all iter_all;
827 struct bio_vec *bvec;
7321ecbf 828
b2d0d991
CH
829 if (bio_flagged(bio, BIO_NO_PAGE_REF))
830 return;
831
d241a95f
CH
832 bio_for_each_segment_all(bvec, bio, iter_all) {
833 if (mark_dirty && !PageCompound(bvec->bv_page))
834 set_page_dirty_lock(bvec->bv_page);
7321ecbf 835 put_page(bvec->bv_page);
d241a95f 836 }
7321ecbf
CH
837}
838
6d0c48ae
JA
839static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
840{
841 const struct bio_vec *bv = iter->bvec;
842 unsigned int len;
843 size_t size;
844
845 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
846 return -EINVAL;
847
848 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
849 size = bio_add_page(bio, bv->bv_page, len,
850 bv->bv_offset + iter->iov_offset);
a10584c3
CH
851 if (unlikely(size != len))
852 return -EINVAL;
a10584c3
CH
853 iov_iter_advance(iter, size);
854 return 0;
6d0c48ae
JA
855}
856
576ed913
CH
857#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
858
2cefe4db 859/**
17d51b10 860 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
861 * @bio: bio to add pages to
862 * @iter: iov iterator describing the region to be mapped
863 *
17d51b10 864 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 865 * pages will have to be released using put_page() when done.
17d51b10
MW
866 * For multi-segment *iter, this function only adds pages from the
867 * the next non-empty segment of the iov iterator.
2cefe4db 868 */
17d51b10 869static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 870{
576ed913
CH
871 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
872 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
873 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
874 struct page **pages = (struct page **)bv;
45691804 875 bool same_page = false;
576ed913
CH
876 ssize_t size, left;
877 unsigned len, i;
b403ea24 878 size_t offset;
576ed913
CH
879
880 /*
881 * Move page array up in the allocated memory for the bio vecs as far as
882 * possible so that we can start filling biovecs from the beginning
883 * without overwriting the temporary page array.
884 */
885 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
886 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
887
888 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
889 if (unlikely(size <= 0))
890 return size ? size : -EFAULT;
2cefe4db 891
576ed913
CH
892 for (left = size, i = 0; left > 0; left -= len, i++) {
893 struct page *page = pages[i];
2cefe4db 894
576ed913 895 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
896
897 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
898 if (same_page)
899 put_page(page);
900 } else {
79d08f89 901 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
902 return -EINVAL;
903 __bio_add_page(bio, page, len, offset);
904 }
576ed913 905 offset = 0;
2cefe4db
KO
906 }
907
2cefe4db
KO
908 iov_iter_advance(iter, size);
909 return 0;
910}
17d51b10
MW
911
912/**
6d0c48ae 913 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 914 * @bio: bio to add pages to
6d0c48ae
JA
915 * @iter: iov iterator describing the region to be added
916 *
917 * This takes either an iterator pointing to user memory, or one pointing to
918 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
919 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
920 * pages. If we're adding kernel pages, and the caller told us it's safe to
921 * do so, we just have to add the pages to the bio directly. We don't grab an
922 * extra reference to those pages (the user should already have that), and we
923 * don't put the page on IO completion. The caller needs to check if the bio is
924 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
925 * released.
17d51b10 926 *
17d51b10 927 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
928 * fit into the bio, or are requested in *iter, whatever is smaller. If
929 * MM encounters an error pinning the requested pages, it stops. Error
930 * is returned only if 0 pages could be pinned.
17d51b10
MW
931 */
932int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
933{
6d0c48ae 934 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
935 int ret;
936
937 if (WARN_ON_ONCE(bio->bi_vcnt))
938 return -EINVAL;
17d51b10
MW
939
940 do {
6d0c48ae
JA
941 if (is_bvec)
942 ret = __bio_iov_bvec_add_pages(bio, iter);
943 else
944 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 945 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 946
b6207430 947 if (is_bvec)
7321ecbf 948 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 949 return bio->bi_vcnt ? 0 : ret;
17d51b10 950}
2cefe4db 951
4246a0b6 952static void submit_bio_wait_endio(struct bio *bio)
9e882242 953{
65e53aab 954 complete(bio->bi_private);
9e882242
KO
955}
956
957/**
958 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
959 * @bio: The &struct bio which describes the I/O
960 *
961 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
962 * bio_endio() on failure.
3d289d68
JK
963 *
964 * WARNING: Unlike to how submit_bio() is usually used, this function does not
965 * result in bio reference to be consumed. The caller must drop the reference
966 * on his own.
9e882242 967 */
4e49ea4a 968int submit_bio_wait(struct bio *bio)
9e882242 969{
e319e1fb 970 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 971
65e53aab 972 bio->bi_private = &done;
9e882242 973 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 974 bio->bi_opf |= REQ_SYNC;
4e49ea4a 975 submit_bio(bio);
65e53aab 976 wait_for_completion_io(&done);
9e882242 977
65e53aab 978 return blk_status_to_errno(bio->bi_status);
9e882242
KO
979}
980EXPORT_SYMBOL(submit_bio_wait);
981
054bdf64
KO
982/**
983 * bio_advance - increment/complete a bio by some number of bytes
984 * @bio: bio to advance
985 * @bytes: number of bytes to complete
986 *
987 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
988 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
989 * be updated on the last bvec as well.
990 *
991 * @bio will then represent the remaining, uncompleted portion of the io.
992 */
993void bio_advance(struct bio *bio, unsigned bytes)
994{
995 if (bio_integrity(bio))
996 bio_integrity_advance(bio, bytes);
997
4550dd6c 998 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
999}
1000EXPORT_SYMBOL(bio_advance);
1001
45db54d5
KO
1002void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1003 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1004{
1cb9dda4 1005 struct bio_vec src_bv, dst_bv;
16ac3d63 1006 void *src_p, *dst_p;
1cb9dda4 1007 unsigned bytes;
16ac3d63 1008
45db54d5
KO
1009 while (src_iter->bi_size && dst_iter->bi_size) {
1010 src_bv = bio_iter_iovec(src, *src_iter);
1011 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1012
1013 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1014
1cb9dda4
KO
1015 src_p = kmap_atomic(src_bv.bv_page);
1016 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1017
1cb9dda4
KO
1018 memcpy(dst_p + dst_bv.bv_offset,
1019 src_p + src_bv.bv_offset,
16ac3d63
KO
1020 bytes);
1021
1022 kunmap_atomic(dst_p);
1023 kunmap_atomic(src_p);
1024
6e6e811d
KO
1025 flush_dcache_page(dst_bv.bv_page);
1026
45db54d5
KO
1027 bio_advance_iter(src, src_iter, bytes);
1028 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1029 }
1030}
38a72dac
KO
1031EXPORT_SYMBOL(bio_copy_data_iter);
1032
1033/**
45db54d5
KO
1034 * bio_copy_data - copy contents of data buffers from one bio to another
1035 * @src: source bio
1036 * @dst: destination bio
38a72dac
KO
1037 *
1038 * Stops when it reaches the end of either @src or @dst - that is, copies
1039 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1040 */
1041void bio_copy_data(struct bio *dst, struct bio *src)
1042{
45db54d5
KO
1043 struct bvec_iter src_iter = src->bi_iter;
1044 struct bvec_iter dst_iter = dst->bi_iter;
1045
1046 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1047}
16ac3d63
KO
1048EXPORT_SYMBOL(bio_copy_data);
1049
45db54d5
KO
1050/**
1051 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1052 * another
1053 * @src: source bio list
1054 * @dst: destination bio list
1055 *
1056 * Stops when it reaches the end of either the @src list or @dst list - that is,
1057 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1058 * bios).
1059 */
1060void bio_list_copy_data(struct bio *dst, struct bio *src)
1061{
1062 struct bvec_iter src_iter = src->bi_iter;
1063 struct bvec_iter dst_iter = dst->bi_iter;
1064
1065 while (1) {
1066 if (!src_iter.bi_size) {
1067 src = src->bi_next;
1068 if (!src)
1069 break;
1070
1071 src_iter = src->bi_iter;
1072 }
1073
1074 if (!dst_iter.bi_size) {
1075 dst = dst->bi_next;
1076 if (!dst)
1077 break;
1078
1079 dst_iter = dst->bi_iter;
1080 }
1081
1082 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1083 }
1084}
1085EXPORT_SYMBOL(bio_list_copy_data);
1086
1da177e4 1087struct bio_map_data {
152e283f 1088 int is_our_pages;
26e49cfc
KO
1089 struct iov_iter iter;
1090 struct iovec iov[];
1da177e4
LT
1091};
1092
0e5b935d 1093static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1094 gfp_t gfp_mask)
1da177e4 1095{
0e5b935d
AV
1096 struct bio_map_data *bmd;
1097 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1098 return NULL;
1da177e4 1099
f1f8f292 1100 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
0e5b935d
AV
1101 if (!bmd)
1102 return NULL;
1103 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1104 bmd->iter = *data;
1105 bmd->iter.iov = bmd->iov;
1106 return bmd;
1da177e4
LT
1107}
1108
9124d3fe
DP
1109/**
1110 * bio_copy_from_iter - copy all pages from iov_iter to bio
1111 * @bio: The &struct bio which describes the I/O as destination
1112 * @iter: iov_iter as source
1113 *
1114 * Copy all pages from iov_iter to bio.
1115 * Returns 0 on success, or error on failure.
1116 */
98a09d61 1117static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1118{
c5dec1c3 1119 struct bio_vec *bvec;
6dc4f100 1120 struct bvec_iter_all iter_all;
c5dec1c3 1121
2b070cfe 1122 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1123 ssize_t ret;
c5dec1c3 1124
9124d3fe
DP
1125 ret = copy_page_from_iter(bvec->bv_page,
1126 bvec->bv_offset,
1127 bvec->bv_len,
98a09d61 1128 iter);
9124d3fe 1129
98a09d61 1130 if (!iov_iter_count(iter))
9124d3fe
DP
1131 break;
1132
1133 if (ret < bvec->bv_len)
1134 return -EFAULT;
c5dec1c3
FT
1135 }
1136
9124d3fe
DP
1137 return 0;
1138}
1139
1140/**
1141 * bio_copy_to_iter - copy all pages from bio to iov_iter
1142 * @bio: The &struct bio which describes the I/O as source
1143 * @iter: iov_iter as destination
1144 *
1145 * Copy all pages from bio to iov_iter.
1146 * Returns 0 on success, or error on failure.
1147 */
1148static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1149{
9124d3fe 1150 struct bio_vec *bvec;
6dc4f100 1151 struct bvec_iter_all iter_all;
9124d3fe 1152
2b070cfe 1153 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1154 ssize_t ret;
1155
1156 ret = copy_page_to_iter(bvec->bv_page,
1157 bvec->bv_offset,
1158 bvec->bv_len,
1159 &iter);
1160
1161 if (!iov_iter_count(&iter))
1162 break;
1163
1164 if (ret < bvec->bv_len)
1165 return -EFAULT;
1166 }
1167
1168 return 0;
c5dec1c3
FT
1169}
1170
491221f8 1171void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1172{
1173 struct bio_vec *bvec;
6dc4f100 1174 struct bvec_iter_all iter_all;
1dfa0f68 1175
2b070cfe 1176 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1177 __free_page(bvec->bv_page);
1178}
491221f8 1179EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1180
1da177e4
LT
1181/**
1182 * bio_uncopy_user - finish previously mapped bio
1183 * @bio: bio being terminated
1184 *
ddad8dd0 1185 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1186 * to user space in case of a read.
1187 */
1188int bio_uncopy_user(struct bio *bio)
1189{
1190 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1191 int ret = 0;
1da177e4 1192
35dc2483
RD
1193 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1194 /*
1195 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1196 * don't copy into a random user address space, just free
1197 * and return -EINTR so user space doesn't expect any data.
35dc2483 1198 */
2d99b55d
HR
1199 if (!current->mm)
1200 ret = -EINTR;
1201 else if (bio_data_dir(bio) == READ)
9124d3fe 1202 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1203 if (bmd->is_our_pages)
1204 bio_free_pages(bio);
35dc2483 1205 }
c8db4448 1206 kfree(bmd);
1da177e4
LT
1207 bio_put(bio);
1208 return ret;
1209}
1210
1211/**
c5dec1c3 1212 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1213 * @q: destination block queue
1214 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1215 * @iter: iovec iterator
1216 * @gfp_mask: memory allocation flags
1da177e4
LT
1217 *
1218 * Prepares and returns a bio for indirect user io, bouncing data
1219 * to/from kernel pages as necessary. Must be paired with
1220 * call bio_uncopy_user() on io completion.
1221 */
152e283f
FT
1222struct bio *bio_copy_user_iov(struct request_queue *q,
1223 struct rq_map_data *map_data,
e81cef5d 1224 struct iov_iter *iter,
26e49cfc 1225 gfp_t gfp_mask)
1da177e4 1226{
1da177e4 1227 struct bio_map_data *bmd;
1da177e4
LT
1228 struct page *page;
1229 struct bio *bio;
d16d44eb
AV
1230 int i = 0, ret;
1231 int nr_pages;
26e49cfc 1232 unsigned int len = iter->count;
bd5cecea 1233 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1234
0e5b935d 1235 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1236 if (!bmd)
1237 return ERR_PTR(-ENOMEM);
1238
26e49cfc
KO
1239 /*
1240 * We need to do a deep copy of the iov_iter including the iovecs.
1241 * The caller provided iov might point to an on-stack or otherwise
1242 * shortlived one.
1243 */
1244 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1245
d16d44eb
AV
1246 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1247 if (nr_pages > BIO_MAX_PAGES)
1248 nr_pages = BIO_MAX_PAGES;
26e49cfc 1249
1da177e4 1250 ret = -ENOMEM;
a9e9dc24 1251 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1252 if (!bio)
1253 goto out_bmd;
1254
1da177e4 1255 ret = 0;
56c451f4
FT
1256
1257 if (map_data) {
e623ddb4 1258 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1259 i = map_data->offset / PAGE_SIZE;
1260 }
1da177e4 1261 while (len) {
e623ddb4 1262 unsigned int bytes = PAGE_SIZE;
1da177e4 1263
56c451f4
FT
1264 bytes -= offset;
1265
1da177e4
LT
1266 if (bytes > len)
1267 bytes = len;
1268
152e283f 1269 if (map_data) {
e623ddb4 1270 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1271 ret = -ENOMEM;
1272 break;
1273 }
e623ddb4
FT
1274
1275 page = map_data->pages[i / nr_pages];
1276 page += (i % nr_pages);
1277
1278 i++;
1279 } else {
152e283f 1280 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1281 if (!page) {
1282 ret = -ENOMEM;
1283 break;
1284 }
1da177e4
LT
1285 }
1286
a3761c3c
JG
1287 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1288 if (!map_data)
1289 __free_page(page);
1da177e4 1290 break;
a3761c3c 1291 }
1da177e4
LT
1292
1293 len -= bytes;
56c451f4 1294 offset = 0;
1da177e4
LT
1295 }
1296
1297 if (ret)
1298 goto cleanup;
1299
2884d0be
AV
1300 if (map_data)
1301 map_data->offset += bio->bi_iter.bi_size;
1302
1da177e4
LT
1303 /*
1304 * success
1305 */
00e23707 1306 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1307 (map_data && map_data->from_user)) {
98a09d61 1308 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1309 if (ret)
1310 goto cleanup;
98a09d61 1311 } else {
f55adad6
KB
1312 if (bmd->is_our_pages)
1313 zero_fill_bio(bio);
98a09d61 1314 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1315 }
1316
26e49cfc 1317 bio->bi_private = bmd;
2884d0be
AV
1318 if (map_data && map_data->null_mapped)
1319 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1320 return bio;
1321cleanup:
152e283f 1322 if (!map_data)
1dfa0f68 1323 bio_free_pages(bio);
1da177e4
LT
1324 bio_put(bio);
1325out_bmd:
c8db4448 1326 kfree(bmd);
1da177e4
LT
1327 return ERR_PTR(ret);
1328}
1329
37f19e57
CH
1330/**
1331 * bio_map_user_iov - map user iovec into bio
1332 * @q: the struct request_queue for the bio
1333 * @iter: iovec iterator
1334 * @gfp_mask: memory allocation flags
1335 *
1336 * Map the user space address into a bio suitable for io to a block
1337 * device. Returns an error pointer in case of error.
1338 */
1339struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1340 struct iov_iter *iter,
37f19e57 1341 gfp_t gfp_mask)
1da177e4 1342{
26e49cfc 1343 int j;
1da177e4 1344 struct bio *bio;
076098e5 1345 int ret;
1da177e4 1346
b282cc76 1347 if (!iov_iter_count(iter))
1da177e4
LT
1348 return ERR_PTR(-EINVAL);
1349
b282cc76 1350 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1351 if (!bio)
1352 return ERR_PTR(-ENOMEM);
1353
0a0f1513 1354 while (iov_iter_count(iter)) {
629e42bc 1355 struct page **pages;
076098e5
AV
1356 ssize_t bytes;
1357 size_t offs, added = 0;
1358 int npages;
1da177e4 1359
0a0f1513 1360 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1361 if (unlikely(bytes <= 0)) {
1362 ret = bytes ? bytes : -EFAULT;
f1970baf 1363 goto out_unmap;
99172157 1364 }
f1970baf 1365
076098e5 1366 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1367
98f0bc99
AV
1368 if (unlikely(offs & queue_dma_alignment(q))) {
1369 ret = -EINVAL;
1370 j = 0;
1371 } else {
1372 for (j = 0; j < npages; j++) {
1373 struct page *page = pages[j];
1374 unsigned int n = PAGE_SIZE - offs;
d1916c86 1375 bool same_page = false;
f1970baf 1376
98f0bc99
AV
1377 if (n > bytes)
1378 n = bytes;
95d78c28 1379
19047087 1380 if (!__bio_add_pc_page(q, bio, page, n, offs,
d1916c86
CH
1381 &same_page)) {
1382 if (same_page)
1383 put_page(page);
98f0bc99 1384 break;
d1916c86 1385 }
1da177e4 1386
98f0bc99
AV
1387 added += n;
1388 bytes -= n;
1389 offs = 0;
1390 }
0a0f1513 1391 iov_iter_advance(iter, added);
f1970baf 1392 }
1da177e4 1393 /*
f1970baf 1394 * release the pages we didn't map into the bio, if any
1da177e4 1395 */
629e42bc 1396 while (j < npages)
09cbfeaf 1397 put_page(pages[j++]);
629e42bc 1398 kvfree(pages);
e2e115d1
AV
1399 /* couldn't stuff something into bio? */
1400 if (bytes)
1401 break;
1da177e4
LT
1402 }
1403
b7c44ed9 1404 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1405
1406 /*
5fad1b64 1407 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1408 * it would normally disappear when its bi_end_io is run.
1409 * however, we need it for the unmap, so grab an extra
1410 * reference to it
1411 */
1412 bio_get(bio);
1da177e4 1413 return bio;
f1970baf
JB
1414
1415 out_unmap:
506e0798 1416 bio_release_pages(bio, false);
1da177e4
LT
1417 bio_put(bio);
1418 return ERR_PTR(ret);
1419}
1420
1da177e4
LT
1421/**
1422 * bio_unmap_user - unmap a bio
1423 * @bio: the bio being unmapped
1424 *
5fad1b64
BVA
1425 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1426 * process context.
1da177e4
LT
1427 *
1428 * bio_unmap_user() may sleep.
1429 */
1430void bio_unmap_user(struct bio *bio)
1431{
163cc2d3
CH
1432 bio_release_pages(bio, bio_data_dir(bio) == READ);
1433 bio_put(bio);
1da177e4
LT
1434 bio_put(bio);
1435}
1436
b4c5875d
DLM
1437static void bio_invalidate_vmalloc_pages(struct bio *bio)
1438{
1439#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1440 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1441 unsigned long i, len = 0;
1442
1443 for (i = 0; i < bio->bi_vcnt; i++)
1444 len += bio->bi_io_vec[i].bv_len;
1445 invalidate_kernel_vmap_range(bio->bi_private, len);
1446 }
1447#endif
1448}
1449
4246a0b6 1450static void bio_map_kern_endio(struct bio *bio)
b823825e 1451{
b4c5875d 1452 bio_invalidate_vmalloc_pages(bio);
b823825e 1453 bio_put(bio);
b823825e
JA
1454}
1455
75c72b83
CH
1456/**
1457 * bio_map_kern - map kernel address into bio
1458 * @q: the struct request_queue for the bio
1459 * @data: pointer to buffer to map
1460 * @len: length in bytes
1461 * @gfp_mask: allocation flags for bio allocation
1462 *
1463 * Map the kernel address into a bio suitable for io to a block
1464 * device. Returns an error pointer in case of error.
1465 */
1466struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1467 gfp_t gfp_mask)
df46b9a4
MC
1468{
1469 unsigned long kaddr = (unsigned long)data;
1470 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 unsigned long start = kaddr >> PAGE_SHIFT;
1472 const int nr_pages = end - start;
b4c5875d
DLM
1473 bool is_vmalloc = is_vmalloc_addr(data);
1474 struct page *page;
df46b9a4
MC
1475 int offset, i;
1476 struct bio *bio;
1477
a9e9dc24 1478 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1479 if (!bio)
1480 return ERR_PTR(-ENOMEM);
1481
b4c5875d
DLM
1482 if (is_vmalloc) {
1483 flush_kernel_vmap_range(data, len);
1484 bio->bi_private = data;
1485 }
1486
df46b9a4
MC
1487 offset = offset_in_page(kaddr);
1488 for (i = 0; i < nr_pages; i++) {
1489 unsigned int bytes = PAGE_SIZE - offset;
1490
1491 if (len <= 0)
1492 break;
1493
1494 if (bytes > len)
1495 bytes = len;
1496
b4c5875d
DLM
1497 if (!is_vmalloc)
1498 page = virt_to_page(data);
1499 else
1500 page = vmalloc_to_page(data);
1501 if (bio_add_pc_page(q, bio, page, bytes,
75c72b83
CH
1502 offset) < bytes) {
1503 /* we don't support partial mappings */
1504 bio_put(bio);
1505 return ERR_PTR(-EINVAL);
1506 }
df46b9a4
MC
1507
1508 data += bytes;
1509 len -= bytes;
1510 offset = 0;
1511 }
1512
b823825e 1513 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1514 return bio;
1515}
df46b9a4 1516
4246a0b6 1517static void bio_copy_kern_endio(struct bio *bio)
68154e90 1518{
1dfa0f68
CH
1519 bio_free_pages(bio);
1520 bio_put(bio);
1521}
1522
4246a0b6 1523static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1524{
42d2683a 1525 char *p = bio->bi_private;
1dfa0f68 1526 struct bio_vec *bvec;
6dc4f100 1527 struct bvec_iter_all iter_all;
68154e90 1528
2b070cfe 1529 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1530 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1531 p += bvec->bv_len;
68154e90
FT
1532 }
1533
4246a0b6 1534 bio_copy_kern_endio(bio);
68154e90
FT
1535}
1536
1537/**
1538 * bio_copy_kern - copy kernel address into bio
1539 * @q: the struct request_queue for the bio
1540 * @data: pointer to buffer to copy
1541 * @len: length in bytes
1542 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1543 * @reading: data direction is READ
68154e90
FT
1544 *
1545 * copy the kernel address into a bio suitable for io to a block
1546 * device. Returns an error pointer in case of error.
1547 */
1548struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1549 gfp_t gfp_mask, int reading)
1550{
42d2683a
CH
1551 unsigned long kaddr = (unsigned long)data;
1552 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1553 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1554 struct bio *bio;
1555 void *p = data;
1dfa0f68 1556 int nr_pages = 0;
68154e90 1557
42d2683a
CH
1558 /*
1559 * Overflow, abort
1560 */
1561 if (end < start)
1562 return ERR_PTR(-EINVAL);
68154e90 1563
42d2683a
CH
1564 nr_pages = end - start;
1565 bio = bio_kmalloc(gfp_mask, nr_pages);
1566 if (!bio)
1567 return ERR_PTR(-ENOMEM);
68154e90 1568
42d2683a
CH
1569 while (len) {
1570 struct page *page;
1571 unsigned int bytes = PAGE_SIZE;
68154e90 1572
42d2683a
CH
1573 if (bytes > len)
1574 bytes = len;
1575
1576 page = alloc_page(q->bounce_gfp | gfp_mask);
1577 if (!page)
1578 goto cleanup;
1579
1580 if (!reading)
1581 memcpy(page_address(page), p, bytes);
1582
1583 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1584 break;
1585
1586 len -= bytes;
1587 p += bytes;
68154e90
FT
1588 }
1589
1dfa0f68
CH
1590 if (reading) {
1591 bio->bi_end_io = bio_copy_kern_endio_read;
1592 bio->bi_private = data;
1593 } else {
1594 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1595 }
76029ff3 1596
68154e90 1597 return bio;
42d2683a
CH
1598
1599cleanup:
1dfa0f68 1600 bio_free_pages(bio);
42d2683a
CH
1601 bio_put(bio);
1602 return ERR_PTR(-ENOMEM);
68154e90
FT
1603}
1604
1da177e4
LT
1605/*
1606 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1607 * for performing direct-IO in BIOs.
1608 *
1609 * The problem is that we cannot run set_page_dirty() from interrupt context
1610 * because the required locks are not interrupt-safe. So what we can do is to
1611 * mark the pages dirty _before_ performing IO. And in interrupt context,
1612 * check that the pages are still dirty. If so, fine. If not, redirty them
1613 * in process context.
1614 *
1615 * We special-case compound pages here: normally this means reads into hugetlb
1616 * pages. The logic in here doesn't really work right for compound pages
1617 * because the VM does not uniformly chase down the head page in all cases.
1618 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1619 * handle them at all. So we skip compound pages here at an early stage.
1620 *
1621 * Note that this code is very hard to test under normal circumstances because
1622 * direct-io pins the pages with get_user_pages(). This makes
1623 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1624 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1625 * pagecache.
1626 *
1627 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1628 * deferred bio dirtying paths.
1629 */
1630
1631/*
1632 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1633 */
1634void bio_set_pages_dirty(struct bio *bio)
1635{
cb34e057 1636 struct bio_vec *bvec;
6dc4f100 1637 struct bvec_iter_all iter_all;
1da177e4 1638
2b070cfe 1639 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1640 if (!PageCompound(bvec->bv_page))
1641 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1642 }
1643}
1644
1da177e4
LT
1645/*
1646 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1647 * If they are, then fine. If, however, some pages are clean then they must
1648 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1649 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1650 *
1651 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1652 * here on. It will run one put_page() against each page and will run one
1653 * bio_put() against the BIO.
1da177e4
LT
1654 */
1655
65f27f38 1656static void bio_dirty_fn(struct work_struct *work);
1da177e4 1657
65f27f38 1658static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1659static DEFINE_SPINLOCK(bio_dirty_lock);
1660static struct bio *bio_dirty_list;
1661
1662/*
1663 * This runs in process context
1664 */
65f27f38 1665static void bio_dirty_fn(struct work_struct *work)
1da177e4 1666{
24d5493f 1667 struct bio *bio, *next;
1da177e4 1668
24d5493f
CH
1669 spin_lock_irq(&bio_dirty_lock);
1670 next = bio_dirty_list;
1da177e4 1671 bio_dirty_list = NULL;
24d5493f 1672 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1673
24d5493f
CH
1674 while ((bio = next) != NULL) {
1675 next = bio->bi_private;
1da177e4 1676
d241a95f 1677 bio_release_pages(bio, true);
1da177e4 1678 bio_put(bio);
1da177e4
LT
1679 }
1680}
1681
1682void bio_check_pages_dirty(struct bio *bio)
1683{
cb34e057 1684 struct bio_vec *bvec;
24d5493f 1685 unsigned long flags;
6dc4f100 1686 struct bvec_iter_all iter_all;
1da177e4 1687
2b070cfe 1688 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1689 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1690 goto defer;
1da177e4
LT
1691 }
1692
d241a95f 1693 bio_release_pages(bio, false);
24d5493f
CH
1694 bio_put(bio);
1695 return;
1696defer:
1697 spin_lock_irqsave(&bio_dirty_lock, flags);
1698 bio->bi_private = bio_dirty_list;
1699 bio_dirty_list = bio;
1700 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701 schedule_work(&bio_dirty_work);
1da177e4
LT
1702}
1703
5b18b5a7
MP
1704void update_io_ticks(struct hd_struct *part, unsigned long now)
1705{
1706 unsigned long stamp;
1707again:
1708 stamp = READ_ONCE(part->stamp);
1709 if (unlikely(stamp != now)) {
1710 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1711 __part_stat_add(part, io_ticks, 1);
1712 }
1713 }
1714 if (part->partno) {
1715 part = &part_to_disk(part)->part0;
1716 goto again;
1717 }
1718}
1da177e4 1719
ddcf35d3 1720void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1721 unsigned long sectors, struct hd_struct *part)
394ffa50 1722{
ddcf35d3 1723 const int sgrp = op_stat_group(op);
394ffa50 1724
112f158f
MS
1725 part_stat_lock();
1726
5b18b5a7 1727 update_io_ticks(part, jiffies);
112f158f
MS
1728 part_stat_inc(part, ios[sgrp]);
1729 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1730 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1731
1732 part_stat_unlock();
1733}
1734EXPORT_SYMBOL(generic_start_io_acct);
1735
ddcf35d3 1736void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1737 struct hd_struct *part, unsigned long start_time)
394ffa50 1738{
5b18b5a7
MP
1739 unsigned long now = jiffies;
1740 unsigned long duration = now - start_time;
ddcf35d3 1741 const int sgrp = op_stat_group(req_op);
394ffa50 1742
112f158f
MS
1743 part_stat_lock();
1744
5b18b5a7 1745 update_io_ticks(part, now);
112f158f 1746 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1747 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1748 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1749
1750 part_stat_unlock();
1751}
1752EXPORT_SYMBOL(generic_end_io_acct);
1753
c4cf5261
JA
1754static inline bool bio_remaining_done(struct bio *bio)
1755{
1756 /*
1757 * If we're not chaining, then ->__bi_remaining is always 1 and
1758 * we always end io on the first invocation.
1759 */
1760 if (!bio_flagged(bio, BIO_CHAIN))
1761 return true;
1762
1763 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1764
326e1dbb 1765 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1766 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1767 return true;
326e1dbb 1768 }
c4cf5261
JA
1769
1770 return false;
1771}
1772
1da177e4
LT
1773/**
1774 * bio_endio - end I/O on a bio
1775 * @bio: bio
1da177e4
LT
1776 *
1777 * Description:
4246a0b6
CH
1778 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1779 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1780 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1781 *
1782 * bio_endio() can be called several times on a bio that has been chained
1783 * using bio_chain(). The ->bi_end_io() function will only be called the
1784 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1785 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1786 **/
4246a0b6 1787void bio_endio(struct bio *bio)
1da177e4 1788{
ba8c6967 1789again:
2b885517 1790 if (!bio_remaining_done(bio))
ba8c6967 1791 return;
7c20f116
CH
1792 if (!bio_integrity_endio(bio))
1793 return;
1da177e4 1794
67b42d0b
JB
1795 if (bio->bi_disk)
1796 rq_qos_done_bio(bio->bi_disk->queue, bio);
1797
ba8c6967
CH
1798 /*
1799 * Need to have a real endio function for chained bios, otherwise
1800 * various corner cases will break (like stacking block devices that
1801 * save/restore bi_end_io) - however, we want to avoid unbounded
1802 * recursion and blowing the stack. Tail call optimization would
1803 * handle this, but compiling with frame pointers also disables
1804 * gcc's sibling call optimization.
1805 */
1806 if (bio->bi_end_io == bio_chain_endio) {
1807 bio = __bio_chain_endio(bio);
1808 goto again;
196d38bc 1809 }
ba8c6967 1810
74d46992
CH
1811 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1812 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1813 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1814 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1815 }
1816
9e234eea 1817 blk_throtl_bio_endio(bio);
b222dd2f
SL
1818 /* release cgroup info */
1819 bio_uninit(bio);
ba8c6967
CH
1820 if (bio->bi_end_io)
1821 bio->bi_end_io(bio);
1da177e4 1822}
a112a71d 1823EXPORT_SYMBOL(bio_endio);
1da177e4 1824
20d0189b
KO
1825/**
1826 * bio_split - split a bio
1827 * @bio: bio to split
1828 * @sectors: number of sectors to split from the front of @bio
1829 * @gfp: gfp mask
1830 * @bs: bio set to allocate from
1831 *
1832 * Allocates and returns a new bio which represents @sectors from the start of
1833 * @bio, and updates @bio to represent the remaining sectors.
1834 *
f3f5da62 1835 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1836 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1837 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1838 */
1839struct bio *bio_split(struct bio *bio, int sectors,
1840 gfp_t gfp, struct bio_set *bs)
1841{
f341a4d3 1842 struct bio *split;
20d0189b
KO
1843
1844 BUG_ON(sectors <= 0);
1845 BUG_ON(sectors >= bio_sectors(bio));
1846
f9d03f96 1847 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1848 if (!split)
1849 return NULL;
1850
1851 split->bi_iter.bi_size = sectors << 9;
1852
1853 if (bio_integrity(split))
fbd08e76 1854 bio_integrity_trim(split);
20d0189b
KO
1855
1856 bio_advance(bio, split->bi_iter.bi_size);
1857
fbbaf700 1858 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1859 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1860
20d0189b
KO
1861 return split;
1862}
1863EXPORT_SYMBOL(bio_split);
1864
6678d83f
KO
1865/**
1866 * bio_trim - trim a bio
1867 * @bio: bio to trim
1868 * @offset: number of sectors to trim from the front of @bio
1869 * @size: size we want to trim @bio to, in sectors
1870 */
1871void bio_trim(struct bio *bio, int offset, int size)
1872{
1873 /* 'bio' is a cloned bio which we need to trim to match
1874 * the given offset and size.
6678d83f 1875 */
6678d83f
KO
1876
1877 size <<= 9;
4f024f37 1878 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1879 return;
1880
6678d83f 1881 bio_advance(bio, offset << 9);
4f024f37 1882 bio->bi_iter.bi_size = size;
376a78ab
DM
1883
1884 if (bio_integrity(bio))
fbd08e76 1885 bio_integrity_trim(bio);
376a78ab 1886
6678d83f
KO
1887}
1888EXPORT_SYMBOL_GPL(bio_trim);
1889
1da177e4
LT
1890/*
1891 * create memory pools for biovec's in a bio_set.
1892 * use the global biovec slabs created for general use.
1893 */
8aa6ba2f 1894int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1895{
ed996a52 1896 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1897
8aa6ba2f 1898 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1899}
1900
917a38c7
KO
1901/*
1902 * bioset_exit - exit a bioset initialized with bioset_init()
1903 *
1904 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1905 * kzalloc()).
1906 */
1907void bioset_exit(struct bio_set *bs)
1da177e4 1908{
df2cb6da
KO
1909 if (bs->rescue_workqueue)
1910 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1911 bs->rescue_workqueue = NULL;
df2cb6da 1912
8aa6ba2f
KO
1913 mempool_exit(&bs->bio_pool);
1914 mempool_exit(&bs->bvec_pool);
9f060e22 1915
7878cba9 1916 bioset_integrity_free(bs);
917a38c7
KO
1917 if (bs->bio_slab)
1918 bio_put_slab(bs);
1919 bs->bio_slab = NULL;
1920}
1921EXPORT_SYMBOL(bioset_exit);
1da177e4 1922
917a38c7
KO
1923/**
1924 * bioset_init - Initialize a bio_set
dad08527 1925 * @bs: pool to initialize
917a38c7
KO
1926 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1927 * @front_pad: Number of bytes to allocate in front of the returned bio
1928 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1929 * and %BIOSET_NEED_RESCUER
1930 *
dad08527
KO
1931 * Description:
1932 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1933 * to ask for a number of bytes to be allocated in front of the bio.
1934 * Front pad allocation is useful for embedding the bio inside
1935 * another structure, to avoid allocating extra data to go with the bio.
1936 * Note that the bio must be embedded at the END of that structure always,
1937 * or things will break badly.
1938 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1939 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1940 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1941 * dispatch queued requests when the mempool runs out of space.
1942 *
917a38c7
KO
1943 */
1944int bioset_init(struct bio_set *bs,
1945 unsigned int pool_size,
1946 unsigned int front_pad,
1947 int flags)
1948{
1949 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1950
1951 bs->front_pad = front_pad;
1952
1953 spin_lock_init(&bs->rescue_lock);
1954 bio_list_init(&bs->rescue_list);
1955 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1956
1957 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1958 if (!bs->bio_slab)
1959 return -ENOMEM;
1960
1961 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1962 goto bad;
1963
1964 if ((flags & BIOSET_NEED_BVECS) &&
1965 biovec_init_pool(&bs->bvec_pool, pool_size))
1966 goto bad;
1967
1968 if (!(flags & BIOSET_NEED_RESCUER))
1969 return 0;
1970
1971 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1972 if (!bs->rescue_workqueue)
1973 goto bad;
1974
1975 return 0;
1976bad:
1977 bioset_exit(bs);
1978 return -ENOMEM;
1979}
1980EXPORT_SYMBOL(bioset_init);
1981
28e89fd9
JA
1982/*
1983 * Initialize and setup a new bio_set, based on the settings from
1984 * another bio_set.
1985 */
1986int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1987{
1988 int flags;
1989
1990 flags = 0;
1991 if (src->bvec_pool.min_nr)
1992 flags |= BIOSET_NEED_BVECS;
1993 if (src->rescue_workqueue)
1994 flags |= BIOSET_NEED_RESCUER;
1995
1996 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1997}
1998EXPORT_SYMBOL(bioset_init_from_src);
1999
852c788f 2000#ifdef CONFIG_BLK_CGROUP
1d933cf0 2001
74b7c02a 2002/**
2268c0fe 2003 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2004 * @bio: target bio
74b7c02a 2005 *
2268c0fe 2006 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2007 */
2268c0fe 2008void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2009{
2268c0fe
DZ
2010 if (bio->bi_blkg) {
2011 blkg_put(bio->bi_blkg);
2012 bio->bi_blkg = NULL;
2013 }
74b7c02a 2014}
892ad71f 2015EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2016
a7b39b4e 2017/**
2268c0fe 2018 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2019 * @bio: target bio
b5f2954d 2020 * @blkg: the blkg to associate
b5f2954d 2021 *
beea9da0
DZ
2022 * This tries to associate @bio with the specified @blkg. Association failure
2023 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2024 * be anything between @blkg and the root_blkg. This situation only happens
2025 * when a cgroup is dying and then the remaining bios will spill to the closest
2026 * alive blkg.
a7b39b4e 2027 *
beea9da0
DZ
2028 * A reference will be taken on the @blkg and will be released when @bio is
2029 * freed.
a7b39b4e 2030 */
2268c0fe 2031static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2032{
2268c0fe
DZ
2033 bio_disassociate_blkg(bio);
2034
7754f669 2035 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2036}
2037
d459d853 2038/**
fd42df30 2039 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2040 * @bio: target bio
fd42df30 2041 * @css: target css
d459d853 2042 *
fd42df30 2043 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2044 * request_queue of the @bio. This falls back to the queue's root_blkg if
2045 * the association fails with the css.
d459d853 2046 */
fd42df30
DZ
2047void bio_associate_blkg_from_css(struct bio *bio,
2048 struct cgroup_subsys_state *css)
d459d853 2049{
fc5a828b
DZ
2050 struct request_queue *q = bio->bi_disk->queue;
2051 struct blkcg_gq *blkg;
2052
2053 rcu_read_lock();
2054
2055 if (!css || !css->parent)
2056 blkg = q->root_blkg;
2057 else
2058 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2059
2060 __bio_associate_blkg(bio, blkg);
2061
2062 rcu_read_unlock();
d459d853 2063}
fd42df30 2064EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2065
6a7f6d86 2066#ifdef CONFIG_MEMCG
852c788f 2067/**
6a7f6d86 2068 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2069 * @bio: target bio
6a7f6d86
DZ
2070 * @page: the page to lookup the blkcg from
2071 *
2072 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2073 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2074 * root_blkg.
852c788f 2075 */
6a7f6d86 2076void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2077{
6a7f6d86
DZ
2078 struct cgroup_subsys_state *css;
2079
6a7f6d86
DZ
2080 if (!page->mem_cgroup)
2081 return;
2082
fc5a828b
DZ
2083 rcu_read_lock();
2084
2085 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2086 bio_associate_blkg_from_css(bio, css);
2087
2088 rcu_read_unlock();
6a7f6d86
DZ
2089}
2090#endif /* CONFIG_MEMCG */
2091
2268c0fe
DZ
2092/**
2093 * bio_associate_blkg - associate a bio with a blkg
2094 * @bio: target bio
2095 *
2096 * Associate @bio with the blkg found from the bio's css and request_queue.
2097 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2098 * already associated, the css is reused and association redone as the
2099 * request_queue may have changed.
2100 */
2101void bio_associate_blkg(struct bio *bio)
2102{
fc5a828b 2103 struct cgroup_subsys_state *css;
2268c0fe
DZ
2104
2105 rcu_read_lock();
2106
db6638d7 2107 if (bio->bi_blkg)
fc5a828b 2108 css = &bio_blkcg(bio)->css;
db6638d7 2109 else
fc5a828b 2110 css = blkcg_css();
2268c0fe 2111
fc5a828b 2112 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2113
2114 rcu_read_unlock();
852c788f 2115}
5cdf2e3f 2116EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2117
20bd723e 2118/**
db6638d7 2119 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2120 * @dst: destination bio
2121 * @src: source bio
2122 */
db6638d7 2123void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2124{
6ab21879
DZ
2125 rcu_read_lock();
2126
fc5a828b 2127 if (src->bi_blkg)
2268c0fe 2128 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2129
2130 rcu_read_unlock();
20bd723e 2131}
db6638d7 2132EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2133#endif /* CONFIG_BLK_CGROUP */
2134
1da177e4
LT
2135static void __init biovec_init_slabs(void)
2136{
2137 int i;
2138
ed996a52 2139 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2140 int size;
2141 struct biovec_slab *bvs = bvec_slabs + i;
2142
a7fcd37c
JA
2143 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2144 bvs->slab = NULL;
2145 continue;
2146 }
a7fcd37c 2147
1da177e4
LT
2148 size = bvs->nr_vecs * sizeof(struct bio_vec);
2149 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2150 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2151 }
2152}
2153
2154static int __init init_bio(void)
2155{
bb799ca0
JA
2156 bio_slab_max = 2;
2157 bio_slab_nr = 0;
6396bb22
KC
2158 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2159 GFP_KERNEL);
2b24e6f6
JT
2160
2161 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2162
bb799ca0
JA
2163 if (!bio_slabs)
2164 panic("bio: can't allocate bios\n");
1da177e4 2165
7878cba9 2166 bio_integrity_init();
1da177e4
LT
2167 biovec_init_slabs();
2168
f4f8154a 2169 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2170 panic("bio: can't allocate bios\n");
2171
f4f8154a 2172 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2173 panic("bio: can't create integrity pool\n");
2174
1da177e4
LT
2175 return 0;
2176}
1da177e4 2177subsys_initcall(init_bio);