X-Git-Url: https://git.kernel.dk/?p=fio.git;a=blobdiff_plain;f=fio.h;h=a74fb108c7f6f79827ea793d9cc099b28ea2777b;hp=1d3a9d470878a03e34c3a54e2ca2980537213259;hb=cc0df00ad5076d4adbc439899f24d9b0db26075d;hpb=f6bb5b88614073878cbbd2666a1553481720faee diff --git a/fio.h b/fio.h index 1d3a9d47..a74fb108 100644 --- a/fio.h +++ b/fio.h @@ -36,6 +36,7 @@ struct thread_data; #include "lib/getopt.h" #include "lib/rand.h" #include "server.h" +#include "stat.h" #ifdef FIO_HAVE_GUASI #include @@ -45,14 +46,6 @@ struct thread_data; #include #endif -struct group_run_stats { - uint64_t max_run[2], min_run[2]; - uint64_t max_bw[2], min_bw[2]; - uint64_t io_kb[2]; - uint64_t agg[2]; - uint32_t kb_base; -}; - /* * What type of allocation to use for io buffers */ @@ -72,164 +65,6 @@ enum { RW_SEQ_IDENT, }; -/* - * How many depth levels to log - */ -#define FIO_IO_U_MAP_NR 7 -#define FIO_IO_U_LAT_U_NR 10 -#define FIO_IO_U_LAT_M_NR 12 - -/* - * Aggregate clat samples to report percentile(s) of them. - * - * EXECUTIVE SUMMARY - * - * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the - * value of resulting percentiles. The error will be approximately - * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value. - * - * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum - * range being tracked for latency samples. The maximum value tracked - * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds. - * - * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory - * requirement of storing those aggregate counts. The memory used will - * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int) - * bytes. - * - * FIO_IO_U_PLAT_NR is the total number of buckets. - * - * DETAILS - * - * Suppose the clat varies from 0 to 999 (usec), the straightforward - * method is to keep an array of (999 + 1) buckets, in which a counter - * keeps the count of samples which fall in the bucket, e.g., - * {[0],[1],...,[999]}. However this consumes a huge amount of space, - * and can be avoided if an approximation is acceptable. - * - * One such method is to let the range of the bucket to be greater - * than one. This method has low accuracy when the value is small. For - * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and - * the represented value of each bucket be the mean of the range. Then - * a value 0 has an round-off error of 49.5. To improve on this, we - * use buckets with non-uniform ranges, while bounding the error of - * each bucket within a ratio of the sample value. A simple example - * would be when error_bound = 0.005, buckets are { - * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},.., - * {[900,909],[910,919]...} }. The total range is partitioned into - * groups with different ranges, then buckets with uniform ranges. An - * upper bound of the error is (range_of_bucket/2)/value_of_bucket - * - * For better efficiency, we implement this using base two. We group - * samples by their Most Significant Bit (MSB), extract the next M bit - * of them as an index within the group, and discard the rest of the - * bits. - * - * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0), - * and use M bit for indexing - * - * | n | M bits | bit (n-M-1) ... bit 0 | - * - * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most - * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off - * error - * - * 2^(n-M)-1 2^(n-M) 1 - * e <= --------- <= ------- = --- - * 2^n 2^n 2^M - * - * Furthermore, we use "mean" of the range to represent the bucket, - * the error e can be lowered by half to 1 / 2^(M+1). By using M bits - * as the index, each group must contains 2^M buckets. - * - * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6 - * Error bound is 1/2^(6+1) = 0.0078125 (< 1%) - * - * Group MSB #discarded range of #buckets - * error_bits value - * ---------------------------------------------------------------- - * 0* 0~5 0 [0,63] 64 - * 1* 6 0 [64,127] 64 - * 2 7 1 [128,255] 64 - * 3 8 2 [256,511] 64 - * 4 9 3 [512,1023] 64 - * ... ... ... [...,...] ... - * 18 23 17 [8838608,+inf]** 64 - * - * * Special cases: when n < (M-1) or when n == (M-1), in both cases, - * the value cannot be rounded off. Use all bits of the sample as - * index. - * - * ** If a sample's MSB is greater than 23, it will be counted as 23. - */ - -#define FIO_IO_U_PLAT_BITS 6 -#define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS) -#define FIO_IO_U_PLAT_GROUP_NR 19 -#define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL) -#define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified - list of percentiles */ - -#define MAX_PATTERN_SIZE 512 -#define FIO_JOBNAME_SIZE 128 -#define FIO_VERROR_SIZE 128 - -struct thread_stat { - char name[FIO_JOBNAME_SIZE]; - char verror[FIO_VERROR_SIZE]; - int32_t error; - int32_t groupid; - uint32_t pid; - char description[FIO_JOBNAME_SIZE]; - uint32_t members; - - /* - * bandwidth and latency stats - */ - struct io_stat clat_stat[2]; /* completion latency */ - struct io_stat slat_stat[2]; /* submission latency */ - struct io_stat lat_stat[2]; /* total latency */ - struct io_stat bw_stat[2]; /* bandwidth stats */ - - /* - * fio system usage accounting - */ - uint64_t usr_time; - uint64_t sys_time; - uint64_t ctx; - uint64_t minf, majf; - - /* - * IO depth and latency stats - */ - uint64_t clat_percentiles; - double *percentile_list; - - uint32_t io_u_map[FIO_IO_U_MAP_NR]; - uint32_t io_u_submit[FIO_IO_U_MAP_NR]; - uint32_t io_u_complete[FIO_IO_U_MAP_NR]; - uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR]; - uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR]; - uint32_t io_u_plat[2][FIO_IO_U_PLAT_NR]; - uint64_t total_io_u[3]; - uint64_t short_io_u[3]; - uint64_t total_submit; - uint64_t total_complete; - - uint64_t io_bytes[2]; - uint64_t runtime[2]; - uint64_t total_run_time; - - /* - * IO Error related stats - */ - uint16_t continue_on_error; - uint64_t total_err_count; - int32_t first_error; - - uint32_t kb_base; -}; - struct bssplit { unsigned int bs; unsigned char perc; @@ -740,6 +575,8 @@ enum { }; extern void td_set_runstate(struct thread_data *, int); +#define TERMINATE_ALL (-1) +extern void fio_terminate_threads(int); /* * Memory helpers