
This document describes use and implementation of a new fio histogram-based latency
percentile measurement tool.

History
Why the old tool wasn’t good enough

Design and implementation
Histogram log parsing

Histogram buckets
Histogram time alignment
Histogram addition
Percentile calculation from a histogram

References

History

As a result of the need to measure I/O latency percentiles for a cluster with hundreds or even
thousands of storage users, Karl Cronberg and I worked on the fiologparser_hist.py tool 2 years
ago [1]. First he added the capability into fio to emit periodic latency histograms, which it
already had been maintaining in memory, to a log file. Once he wrote the tool to postprocess
this data, we then had a new ability to calculate latency percentiles as a function of time for a
large distributed-storage cluster, so that we could understand how cluster events, such as node
failures, impact response time of real applications. The results were pretty shocking - max
latencies as high as hundreds of seconds during an OSD node failure. If you looked at fio’s
traditional latency percentile output, you might not see this because fio averages across entire
time of test run and can’t combine percentiles from multiple processes. This, plus
customer-experience inputs to the Ceph team, helped to convince the Ceph team to introduce
features that could help reduce these high latencies. We now are about to see if Ceph
Luminous upstream release (RHCS 3) has better behavior in this area than Ceph Jewel (RHCS
2) upstream release did.

Why the old tool wasn’t good enough

I got frustrated with ​fiologparser_hist.py​, the tool for calculating fio latency percentiles as a
function of time, because of:

https://github.com/parallel-fs-utils/fio/blob/fio-histo-log-pctiles/tools/hist/fiologparser_hist.py

- its dependency on ​python pandas module​, which pulls in a LOT of packages
- its slowness (can take as long as an hour to process a set of histogram logs)
- hard to understand what it's doing
- hard to prove that it is generating the right results

I'm not aware of any other tool that does the same thing. So I rewrote it as
fio-histo-log-pctiles.py​. Differences between this implementation and the old one are:

- No dependency on numpy or pandas.
- about 50-100x faster
- It is ~263 LOC when you subtract comments, white space, and unit tests.
- unit tests exercise important subroutines within it and verify outputs.

AFAICT it is working well enough. When checked against fio's native percentile output, it seems
to be giving very similar answers. It is also giving similar answers to fiologparser_hist.py.

To see the syntax, just run “python fio-histo-log-pctiles.py --help”, it is fairly self-explanatory with
the exception of the ​--time-quantum​ parameter, which is explained below.

https://pandas.pydata.org/
https://github.com/parallel-fs-utils/fio/blob/fio-histo-log-pctiles/tools/hist/fio-histo-log-pctiles.py

Design and implementation

In summary, all input histogram logs are normalized to a fixed set of aligned time intervals (assumes good time
synchronization across hosts), so that histograms can then be added directly to obtain cluster-wide histogram,
and then latency percentiles are computed from that by summation.

Histogram log parsing

A fio histogram log consists of 3 columns of metadata followed by a fixed number of columns of histogram
buckets. The 3 metadata columns are:

● time_ms​ - timestamp in milliseconds from start of test when this histogram’s time interval began
● direction​ - 0 if the histogram is for reads, 1 if for writes.
● bs​ -- “block size”, really I/O transfer size for test

direction​ : (read/write) is only useful at present for finding the end time of the histogram time interval (present
in the next histogram record). The tool merges read and write histograms together at present. However, we
need to keep this field because someday the tool might support separate read and write perf latency
percentiles (yes they can be really different).

time_ms​ : Separate histogram records are emitted for reads and for writes on the same time interval. And they
can be emitted in any order (read,write) or (write,read). Consequently, if we want to find the subsequent
histogram record for that I/O direction (read or write) in order to get the end_time for the current record, we may
have to read as many as 3 records farther to get it. For example, here’s an excerpt from a real histogram log:

10203, 1, 4096, …

10203, 0, 4096, …

10601, 0, 4096, …

10601, 1, 4096, …

So the time interval for the write (1) and read (0) records is ​[10203,10601]​, identical in this case but they don’t
have to be identical.

When we encounter the last histogram record (for an I/O direction) in the log, we can no longer get the end
time from the next histogram record, since there isn’t one, so we instead estimate the end time as the test end
time in millisec.

bs​ - this field is really not used at all. There are 2 cases: either we are using a fixed I/O transfer size or a
variable one. If the I/O transfer size is fixed, then it is in the command or job file used to run fio and is not
needed in the result. If the I/O transfer size is variable, which fio supports, then the bs field is meaningless
since a variety of I/O transfer sizes would have been used in a single histogram interval. So either way we can
just ignore it.

Histogram buckets

The fio benchmark program already had histograms in memory -- these are described in ​stat.h line 38​. The
histogram is represented as an array of counters. The length of the array is the number of bucket groups times
the number of buckets per group.

Histogram buckets are divided into groups. The size of a bucket group is given by ​FIO_IO_U_PLAT_BITS​ , the
number of bits for identifying bucket index within the group. The default compile-time value is 6 bits, which
means that we have 2^6 = 64 buckets per group. Each bucket within the group has the same time interval
“width”. Bucket groups 0 and 1 contain buckets with 1-nanosec time intervals (1-microsec for fio version 2),
and each subsequent bucket groups double the time interval width. So for example bucket group 2 has a
2-nsec time width, bucket group 3 has a 4-nsec time interval, and so on.

The number of bucket groups is given by ​FIO_IO_U_PLAT_GROUP_NR​ , and the default is 29 for fio version 3 (19
for fio version 2). Hence the number of buckets in a histogram log record is 29*64 = 1856 (19*64 = 1216 for
fio version 2).

This is a lot of data so typically we do not generate histogram log records every second, but more like every 10
or even 60 seconds, depending on the length of the test. This is still much more frequent than normal fio
behavior of generating one histogram for the entire test run (used to generate percentiles in fio output).

Bucket
group

Bucket 1
max latency
(nsec)

Bucket 2
max latency
(nsec)

... Bucket 64
max latency
(nsec)

1 1 2 64

2 65 66 128

3 130 132 256

4 260 264 512

...

29 17179869184

Note that the highest max latency for any bucket is 17.2 seconds = (64 * 2^28)/1000.0 . Any latency higher
than that will be added to the bucket in the lower right corner. This is unfortunate for distributed systems where
latencies can sometimes be much higher than 17 seconds due to network timeouts, etc.

https://github.com/axboe/fio/blob/master/stat.h#L38

Histogram time alignment
The key to this tool is the ability to add histograms from different fio processes together to obtain a system-wide
or cluster-wide histogram that represents application latency. We should be able to do this because each
histogram bucket is just a counter representing the number of I/O requests that fell within a latency range for
that bucket.

However, unless these histograms are representing latencies from the ​exact same​ time interval, there is some
degree of error in adding these raw histograms together.

This tool tries to minimize this error. based on the assumption that the​ time_ms​ field above is absolutely
accurate (questionable in a distributed system or virtual machine environment). Even in a non-distributed fio
run with multiple fio job processes, it is impossible for fio to precisely synchronize histogram log record writes
down to the millisecond from all these jobs, although it tries to accomplish this. So this tool tries to compensate
for this lack of synchronization. It does so by defining idealized “time quanta”, fixed intervals of Q seconds

starting at time 0. It then takes the raw unsynchronized histograms described above, and fits them into these
time quanta. If the raw histogram fits entirely within 1 time quantum, then it is just added to the histogram for
that quantum. If the raw histogram overlaps multiple time quanta, then each bucket is weighted by the overlap
with that time quantum and the raw histogram interval, using floating point arithmetic.

This time quantum alignment is done for each fio thread’s histogram in the ​align_histo_log​ function. While
this seems expensive to do, it drastically simplifies the merging of histograms from individual threads to
aggregate histograms (could be node level or cluster level, whatever subset is of interest). The underlying
assumption here is that I/O requests were done at a uniform rate within the time interval for that histogram log,
so the weighted additions reflect what would have happened if we used a lower time resolution. We have no
way to know that, so this is just an approximation.

Histogram addition
Once we have generated time-quantum-aligned histogram logs from the original raw logs, histogram k in each
log is precisely time-aligned with histogram k in any other log, so it’s ok to add them together to get an
aggregate log, and this takes very little time. If python profiling shows that this is time consuming, we could use
numpy to do vector addition of these arrays without much difficulty, avoiding python interpreter overhead.

Percentile calculation from a histogram
Now that we have a time-quantum-aligned histogram log for the entire cluster, the ​get_pctiles​ function
computes percentiles in the usual way. Conceptually it is treating the histogram as if it was a probability
distribution function, calculating the CDF (cumulative distribution function) by numerical integration, and then
inverting this function to obtain the percentiles. This can be done to a good approximation by simple
summation of the aggregate histogram, provided that we have enough histogram buckets. This is complicated
slightly by the fact that fio bucket groups have different time interval widths, but we calculate the time intervals
that go with each bucket in the histogram one time as described above, in the ​time_ranges​ function, and then
just look up the time interval for each bucket by index. The algorithm, in an over-simplified form:

CDF[k] = sum(buckets[0:k])

CDF[-1] = 0.0

percentile_values = {}

For p in percentiles_wanted:

find smallest j such that CDF[j] >= p

offset_frac = (p - CDF[j-1])/(CDF[j] - CDF[j-1])

interpolation = time_ranges[k].min +

(offset_frac * (time_ranges[j].max - time_ranges[j].min))

percentile_values[p] = interpolation

References

[1] ​initial research​ by Cronberg and England from 2016 available upon request.

