steadystate: rename __FIO_SS_LAST to __FIO_SS_DATA
[fio.git] / steadystate.c
1 #include <stdlib.h>
2
3 #include "fio.h"
4 #include "steadystate.h"
5 #include "helper_thread.h"
6
7 bool steadystate_enabled = false;
8
9 static void steadystate_alloc(struct thread_data *td)
10 {
11         int i;
12
13         td->ss.bw_data = malloc(td->ss.dur * sizeof(unsigned long));
14         td->ss.iops_data = malloc(td->ss.dur * sizeof(unsigned long));
15         /* initialize so that it is obvious if the cache is not full in the output */
16         for (i = 0; i < td->ss.dur; i++)
17                 td->ss.iops_data[i] = td->ss.bw_data[i] = 0;
18 }
19
20 void steadystate_setup(void)
21 {
22         int i, prev_groupid;
23         struct thread_data *td, *prev_td;
24
25         if (!steadystate_enabled)
26                 return;
27
28         /*
29          * if group reporting is enabled, identify the last td
30          * for each group and use it for storing steady state
31          * data
32          */
33         prev_groupid = -1;
34         prev_td = NULL;
35         for_each_td(td, i) {
36                 if (td->ts.ss == NULL)
37                         continue;
38
39                 if (!td->o.group_reporting) {
40                         steadystate_alloc(td);
41                         continue;
42                 }
43
44                 if (prev_groupid != td->groupid) {
45                         if (prev_td != NULL) {
46                                 prev_td->ss.state |= __FIO_SS_DATA;
47                                 steadystate_alloc(prev_td);
48                         }
49                         prev_groupid = td->groupid;
50                 }
51                 prev_td = td;
52         }
53
54         if (prev_td != NULL && prev_td->o.group_reporting) {
55                 prev_td->ss.state |= __FIO_SS_DATA;
56                 steadystate_alloc(prev_td);
57         }
58 }
59
60 static bool steadystate_slope(unsigned long iops, unsigned long bw,
61                               struct thread_data *td)
62 {
63         int i, j;
64         double result;
65         struct steadystate_data *ss = &td->ss;
66         unsigned long new_val;
67
68         ss->bw_data[ss->tail] = bw;
69         ss->iops_data[ss->tail] = iops;
70
71         if (ss->state & __FIO_SS_IOPS)
72                 new_val = iops;
73         else
74                 new_val = bw;
75
76         if (ss->tail < ss->head || (ss->tail - ss->head == ss->dur - 1)) {
77                 if (ss->sum_y == 0) {   /* first time through */
78                         for(i = 0; i < ss->dur; i++) {
79                                 if (ss->state & __FIO_SS_IOPS)
80                                         ss->sum_y += ss->iops_data[i];
81                                 else
82                                         ss->sum_y += ss->bw_data[i];
83                                 j = ss->head + i;
84                                 if (j >= ss->dur)
85                                         j -= ss->dur;
86                                 if (ss->state & __FIO_SS_IOPS)
87                                         ss->sum_xy += i * ss->iops_data[j];
88                                 else
89                                         ss->sum_xy += i * ss->bw_data[j];
90                         }
91                 } else {                /* easy to update the sums */
92                         ss->sum_y -= ss->oldest_y;
93                         ss->sum_y += new_val;
94                         ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
95                 }
96
97                 if (ss->state & __FIO_SS_IOPS)
98                         ss->oldest_y = ss->iops_data[ss->head];
99                 else
100                         ss->oldest_y = ss->bw_data[ss->head];
101
102                 /*
103                  * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
104                  * - (sum_x)^2 / n) This code assumes that all x values are
105                  * equally spaced when they are often off by a few milliseconds.
106                  * This assumption greatly simplifies the calculations.
107                  */
108                 ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
109                                 (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
110                 if (ss->pct)
111                         ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
112                 else
113                         ss->criterion = ss->slope;
114
115                 dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
116                                         "criterion: %f, limit: %f\n",
117                                         ss->sum_y, ss->sum_xy, ss->slope,
118                                         ss->criterion, ss->limit);
119
120                 result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
121                 if (result < ss->limit)
122                         return true;
123         }
124
125         ss->tail = (ss->tail + 1) % ss->dur;
126         if (ss->tail <= ss->head)
127                 ss->head = (ss->head + 1) % ss->dur;
128
129         return false;
130 }
131
132 static bool steadystate_deviation(unsigned long iops, unsigned long bw,
133                                   struct thread_data *td)
134 {
135         int i;
136         double diff;
137         double mean;
138
139         struct steadystate_data *ss = &td->ss;
140
141         ss->bw_data[ss->tail] = bw;
142         ss->iops_data[ss->tail] = iops;
143
144         if (ss->tail < ss->head || (ss->tail - ss->head == ss->dur - 1)) {
145                 if (ss->sum_y == 0) {   /* first time through */
146                         for(i = 0; i < ss->dur; i++)
147                                 if (ss->state & __FIO_SS_IOPS)
148                                         ss->sum_y += ss->iops_data[i];
149                                 else
150                                         ss->sum_y += ss->bw_data[i];
151                 } else {                /* easy to update the sum */
152                         ss->sum_y -= ss->oldest_y;
153                         if (ss->state & __FIO_SS_IOPS)
154                                 ss->sum_y += ss->iops_data[ss->tail];
155                         else
156                                 ss->sum_y += ss->bw_data[ss->tail];
157                 }
158
159                 if (ss->state & __FIO_SS_IOPS)
160                         ss->oldest_y = ss->iops_data[ss->head];
161                 else
162                         ss->oldest_y = ss->bw_data[ss->head];
163
164                 mean = (double) ss->sum_y / ss->dur;
165                 ss->deviation = 0.0;
166
167                 for (i = 0; i < ss->dur; i++) {
168                         if (ss->state & __FIO_SS_IOPS)
169                                 diff = ss->iops_data[i] - mean;
170                         else
171                                 diff = ss->bw_data[i] - mean;
172                         ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
173                 }
174
175                 if (ss->pct)
176                         ss->criterion = 100.0 * ss->deviation / mean;
177                 else
178                         ss->criterion = ss->deviation;
179
180                 dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
181                                         "objective: %f, limit: %f\n",
182                                         ss->sum_y, mean, ss->deviation,
183                                         ss->criterion, ss->limit);
184
185                 if (ss->criterion < ss->limit)
186                         return true;
187         }
188
189         ss->tail = (ss->tail + 1) % ss->dur;
190         if (ss->tail <= ss->head)
191                 ss->head = (ss->head + 1) % ss->dur;
192
193         return false;
194 }
195
196 void steadystate_check(void)
197 {
198         int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
199         unsigned long rate_time;
200         struct thread_data *td, *td2;
201         struct timeval now;
202         unsigned long group_bw = 0, group_iops = 0;
203         unsigned long long td_iops;
204         unsigned long long td_bytes;
205         bool ret;
206
207         prev_groupid = -1;
208         for_each_td(td, i) {
209                 struct steadystate_data *ss = &td->ss;
210
211                 if (!ss->dur || td->runstate <= TD_SETTING_UP ||
212                     td->runstate >= TD_EXITED || (ss->state & __FIO_SS_ATTAINED))
213                         continue;
214
215                 td_iops = 0;
216                 td_bytes = 0;
217                 if (!td->o.group_reporting ||
218                     (td->o.group_reporting && td->groupid != prev_groupid)) {
219                         group_bw = 0;
220                         group_iops = 0;
221                         group_ramp_time_over = 0;
222                 }
223                 prev_groupid = td->groupid;
224
225                 fio_gettime(&now, NULL);
226                 if (ss->ramp_time && !(ss->state & __FIO_SS_RAMP_OVER)) {
227                         /*
228                          * Begin recording data one second after ss->ramp_time
229                          * has elapsed
230                          */
231                         if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
232                                 ss->state |= __FIO_SS_RAMP_OVER;
233                 }
234
235                 td_io_u_lock(td);
236                 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
237                         td_iops += td->io_blocks[ddir];
238                         td_bytes += td->io_bytes[ddir];
239                 }
240                 td_io_u_unlock(td);
241
242                 rate_time = mtime_since(&ss->prev_time, &now);
243                 memcpy(&ss->prev_time, &now, sizeof(now));
244
245                 /*
246                  * Begin monitoring when job starts but don't actually use
247                  * data in checking stopping criterion until ss->ramp_time is
248                  * over. This ensures that we will have a sane value in
249                  * prev_iops/bw the first time through after ss->ramp_time
250                  * is done.
251                  */
252                 if (ss->state & __FIO_SS_RAMP_OVER) {
253                         group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
254                         group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
255                         ++group_ramp_time_over;
256                 }
257                 ss->prev_iops = td_iops;
258                 ss->prev_bytes = td_bytes;
259
260                 if (td->o.group_reporting && !(ss->state & __FIO_SS_DATA))
261                         continue;
262
263                 /*
264                  * Don't begin checking criterion until ss->ramp_time is over
265                  * for at least one thread in group
266                  */
267                 if (!group_ramp_time_over)
268                         continue;
269
270                 dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
271                                         "groupid: %u, rate_msec: %ld, "
272                                         "iops: %lu, bw: %lu, head: %d, tail: %d\n",
273                                         i, td->groupid, rate_time, group_iops,
274                                         group_bw, ss->head, ss->tail);
275
276                 if (td->o.ss & __FIO_SS_SLOPE)
277                         ret = steadystate_slope(group_iops, group_bw, td);
278                 else
279                         ret = steadystate_deviation(group_iops, group_bw, td);
280
281                 if (ret) {
282                         if (td->o.group_reporting) {
283                                 for_each_td(td2, j) {
284                                         if (td2->groupid == td->groupid) {
285                                                 td2->ss.state |= __FIO_SS_ATTAINED;
286                                                 fio_mark_td_terminate(td2);
287                                         }
288                                 }
289                         } else {
290                                 ss->state |= __FIO_SS_ATTAINED;
291                                 fio_mark_td_terminate(td);
292                         }
293                 }
294         }
295 }
296
297 int td_steadystate_init(struct thread_data *td)
298 {
299         struct steadystate_data *ss = &td->ss;
300         struct thread_options *o = &td->o;
301         struct thread_data *td2;
302         int j;
303
304         memset(ss, 0, sizeof(*ss));
305
306         if (o->ss_dur) {
307                 steadystate_enabled = true;
308                 o->ss_dur /= 1000000L;
309
310                 /* put all steady state info in one place */
311                 ss->dur = o->ss_dur;
312                 ss->limit = o->ss_limit.u.f;
313                 ss->ramp_time = o->ss_ramp_time;
314                 ss->pct = o->ss_pct;
315
316                 ss->state = o->ss;
317                 if (!td->ss.ramp_time)
318                         ss->state |= __FIO_SS_RAMP_OVER;
319
320                 ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
321                 ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
322
323                 td->ts.ss = ss;
324         }
325
326         /* make sure that ss options are consistent within reporting group */
327         for_each_td(td2, j) {
328                 if (td2->groupid == td->groupid) {
329                         struct steadystate_data *ss2 = &td2->ss;
330
331                         if (ss2->dur != ss->dur ||
332                             ss2->limit != ss->limit ||
333                             ss2->ramp_time != ss->ramp_time ||
334                             ss2->pct != ss->pct ||
335                             ss2->state != ss->state ||
336                             ss2->sum_x != ss->sum_x ||
337                             ss2->sum_x_sq != ss->sum_x_sq) {
338                                 td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
339                                 return 1;
340                         }
341                 }
342         }
343
344         return 0;
345 }