os/os-android.h: fix shared memory support
[fio.git] / steadystate.c
1 #include <stdlib.h>
2
3 #include "fio.h"
4 #include "steadystate.h"
5 #include "helper_thread.h"
6
7 bool steadystate_enabled = false;
8
9 static void steadystate_alloc(struct thread_data *td)
10 {
11         td->ss.bw_data = calloc(td->ss.dur, sizeof(uint64_t));
12         td->ss.iops_data = calloc(td->ss.dur, sizeof(uint64_t));
13
14         td->ss.state |= __FIO_SS_DATA;
15 }
16
17 void steadystate_setup(void)
18 {
19         int i, prev_groupid;
20         struct thread_data *td, *prev_td;
21
22         if (!steadystate_enabled)
23                 return;
24
25         /*
26          * if group reporting is enabled, identify the last td
27          * for each group and use it for storing steady state
28          * data
29          */
30         prev_groupid = -1;
31         prev_td = NULL;
32         for_each_td(td, i) {
33                 if (!td->ss.dur)
34                         continue;
35
36                 if (!td->o.group_reporting) {
37                         steadystate_alloc(td);
38                         continue;
39                 }
40
41                 if (prev_groupid != td->groupid) {
42                         if (prev_td != NULL) {
43                                 steadystate_alloc(prev_td);
44                         }
45                         prev_groupid = td->groupid;
46                 }
47                 prev_td = td;
48         }
49
50         if (prev_td != NULL && prev_td->o.group_reporting) {
51                 steadystate_alloc(prev_td);
52         }
53 }
54
55 static bool steadystate_slope(uint64_t iops, uint64_t bw,
56                               struct thread_data *td)
57 {
58         int i, j;
59         double result;
60         struct steadystate_data *ss = &td->ss;
61         uint64_t new_val;
62
63         ss->bw_data[ss->tail] = bw;
64         ss->iops_data[ss->tail] = iops;
65
66         if (ss->state & __FIO_SS_IOPS)
67                 new_val = iops;
68         else
69                 new_val = bw;
70
71         if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
72                 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
73                         /* first time through */
74                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++) {
75                                 if (ss->state & __FIO_SS_IOPS)
76                                         ss->sum_y += ss->iops_data[i];
77                                 else
78                                         ss->sum_y += ss->bw_data[i];
79                                 j = (ss->head + i) % ss->dur;
80                                 if (ss->state & __FIO_SS_IOPS)
81                                         ss->sum_xy += i * ss->iops_data[j];
82                                 else
83                                         ss->sum_xy += i * ss->bw_data[j];
84                         }
85                         ss->state |= __FIO_SS_BUFFER_FULL;
86                 } else {                /* easy to update the sums */
87                         ss->sum_y -= ss->oldest_y;
88                         ss->sum_y += new_val;
89                         ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
90                 }
91
92                 if (ss->state & __FIO_SS_IOPS)
93                         ss->oldest_y = ss->iops_data[ss->head];
94                 else
95                         ss->oldest_y = ss->bw_data[ss->head];
96
97                 /*
98                  * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
99                  * - (sum_x)^2 / n) This code assumes that all x values are
100                  * equally spaced when they are often off by a few milliseconds.
101                  * This assumption greatly simplifies the calculations.
102                  */
103                 ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
104                                 (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
105                 if (ss->state & __FIO_SS_PCT)
106                         ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
107                 else
108                         ss->criterion = ss->slope;
109
110                 dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
111                                         "criterion: %f, limit: %f\n",
112                                         (unsigned long long) ss->sum_y,
113                                         (unsigned long long) ss->sum_xy,
114                                         ss->slope, ss->criterion, ss->limit);
115
116                 result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
117                 if (result < ss->limit)
118                         return true;
119         }
120
121         ss->tail = (ss->tail + 1) % ss->dur;
122         if (ss->tail <= ss->head)
123                 ss->head = (ss->head + 1) % ss->dur;
124
125         return false;
126 }
127
128 static bool steadystate_deviation(uint64_t iops, uint64_t bw,
129                                   struct thread_data *td)
130 {
131         int i;
132         double diff;
133         double mean;
134
135         struct steadystate_data *ss = &td->ss;
136
137         ss->bw_data[ss->tail] = bw;
138         ss->iops_data[ss->tail] = iops;
139
140         if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
141                 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
142                         /* first time through */
143                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++)
144                                 if (ss->state & __FIO_SS_IOPS)
145                                         ss->sum_y += ss->iops_data[i];
146                                 else
147                                         ss->sum_y += ss->bw_data[i];
148                         ss->state |= __FIO_SS_BUFFER_FULL;
149                 } else {                /* easy to update the sum */
150                         ss->sum_y -= ss->oldest_y;
151                         if (ss->state & __FIO_SS_IOPS)
152                                 ss->sum_y += ss->iops_data[ss->tail];
153                         else
154                                 ss->sum_y += ss->bw_data[ss->tail];
155                 }
156
157                 if (ss->state & __FIO_SS_IOPS)
158                         ss->oldest_y = ss->iops_data[ss->head];
159                 else
160                         ss->oldest_y = ss->bw_data[ss->head];
161
162                 mean = (double) ss->sum_y / ss->dur;
163                 ss->deviation = 0.0;
164
165                 for (i = 0; i < ss->dur; i++) {
166                         if (ss->state & __FIO_SS_IOPS)
167                                 diff = ss->iops_data[i] - mean;
168                         else
169                                 diff = ss->bw_data[i] - mean;
170                         ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
171                 }
172
173                 if (ss->state & __FIO_SS_PCT)
174                         ss->criterion = 100.0 * ss->deviation / mean;
175                 else
176                         ss->criterion = ss->deviation;
177
178                 dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
179                                         "objective: %f, limit: %f\n",
180                                         (unsigned long long) ss->sum_y, mean,
181                                         ss->deviation, ss->criterion, ss->limit);
182
183                 if (ss->criterion < ss->limit)
184                         return true;
185         }
186
187         ss->tail = (ss->tail + 1) % ss->dur;
188         if (ss->tail <= ss->head)
189                 ss->head = (ss->head + 1) % ss->dur;
190
191         return false;
192 }
193
194 void steadystate_check(void)
195 {
196         int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
197         unsigned long rate_time;
198         struct thread_data *td, *td2;
199         struct timeval now;
200         uint64_t group_bw = 0, group_iops = 0;
201         uint64_t td_iops, td_bytes;
202         bool ret;
203
204         prev_groupid = -1;
205         for_each_td(td, i) {
206                 struct steadystate_data *ss = &td->ss;
207
208                 if (!ss->dur || td->runstate <= TD_SETTING_UP ||
209                     td->runstate >= TD_EXITED || !ss->state ||
210                     ss->state & __FIO_SS_ATTAINED)
211                         continue;
212
213                 td_iops = 0;
214                 td_bytes = 0;
215                 if (!td->o.group_reporting ||
216                     (td->o.group_reporting && td->groupid != prev_groupid)) {
217                         group_bw = 0;
218                         group_iops = 0;
219                         group_ramp_time_over = 0;
220                 }
221                 prev_groupid = td->groupid;
222
223                 fio_gettime(&now, NULL);
224                 if (ss->ramp_time && !(ss->state & __FIO_SS_RAMP_OVER)) {
225                         /*
226                          * Begin recording data one second after ss->ramp_time
227                          * has elapsed
228                          */
229                         if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
230                                 ss->state |= __FIO_SS_RAMP_OVER;
231                 }
232
233                 td_io_u_lock(td);
234                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
235                         td_iops += td->io_blocks[ddir];
236                         td_bytes += td->io_bytes[ddir];
237                 }
238                 td_io_u_unlock(td);
239
240                 rate_time = mtime_since(&ss->prev_time, &now);
241                 memcpy(&ss->prev_time, &now, sizeof(now));
242
243                 /*
244                  * Begin monitoring when job starts but don't actually use
245                  * data in checking stopping criterion until ss->ramp_time is
246                  * over. This ensures that we will have a sane value in
247                  * prev_iops/bw the first time through after ss->ramp_time
248                  * is done.
249                  */
250                 if (ss->state & __FIO_SS_RAMP_OVER) {
251                         group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
252                         group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
253                         ++group_ramp_time_over;
254                 }
255                 ss->prev_iops = td_iops;
256                 ss->prev_bytes = td_bytes;
257
258                 if (td->o.group_reporting && !(ss->state & __FIO_SS_DATA))
259                         continue;
260
261                 /*
262                  * Don't begin checking criterion until ss->ramp_time is over
263                  * for at least one thread in group
264                  */
265                 if (!group_ramp_time_over)
266                         continue;
267
268                 dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
269                                         "groupid: %u, rate_msec: %ld, "
270                                         "iops: %llu, bw: %llu, head: %d, tail: %d\n",
271                                         i, td->groupid, rate_time,
272                                         (unsigned long long) group_iops,
273                                         (unsigned long long) group_bw,
274                                         ss->head, ss->tail);
275
276                 if (ss->state & __FIO_SS_SLOPE)
277                         ret = steadystate_slope(group_iops, group_bw, td);
278                 else
279                         ret = steadystate_deviation(group_iops, group_bw, td);
280
281                 if (ret) {
282                         if (td->o.group_reporting) {
283                                 for_each_td(td2, j) {
284                                         if (td2->groupid == td->groupid) {
285                                                 td2->ss.state |= __FIO_SS_ATTAINED;
286                                                 fio_mark_td_terminate(td2);
287                                         }
288                                 }
289                         } else {
290                                 ss->state |= __FIO_SS_ATTAINED;
291                                 fio_mark_td_terminate(td);
292                         }
293                 }
294         }
295 }
296
297 int td_steadystate_init(struct thread_data *td)
298 {
299         struct steadystate_data *ss = &td->ss;
300         struct thread_options *o = &td->o;
301         struct thread_data *td2;
302         int j;
303
304         memset(ss, 0, sizeof(*ss));
305
306         if (o->ss_dur) {
307                 steadystate_enabled = true;
308                 o->ss_dur /= 1000000L;
309
310                 /* put all steady state info in one place */
311                 ss->dur = o->ss_dur;
312                 ss->limit = o->ss_limit.u.f;
313                 ss->ramp_time = o->ss_ramp_time;
314
315                 ss->state = o->ss_state;
316                 if (!td->ss.ramp_time)
317                         ss->state |= __FIO_SS_RAMP_OVER;
318
319                 ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
320                 ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
321         }
322
323         /* make sure that ss options are consistent within reporting group */
324         for_each_td(td2, j) {
325                 if (td2->groupid == td->groupid) {
326                         struct steadystate_data *ss2 = &td2->ss;
327
328                         if (ss2->dur != ss->dur ||
329                             ss2->limit != ss->limit ||
330                             ss2->ramp_time != ss->ramp_time ||
331                             ss2->state != ss->state ||
332                             ss2->sum_x != ss->sum_x ||
333                             ss2->sum_x_sq != ss->sum_x_sq) {
334                                 td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
335                                 return 1;
336                         }
337                 }
338         }
339
340         return 0;
341 }
342
343 uint64_t steadystate_bw_mean(struct thread_stat *ts)
344 {
345         int i;
346         uint64_t sum;
347
348         for (i = 0, sum = 0; i < ts->ss_dur; i++)
349                 sum += ts->ss_bw_data[i];
350
351         return sum / ts->ss_dur;
352 }
353
354 uint64_t steadystate_iops_mean(struct thread_stat *ts)
355 {
356         int i;
357         uint64_t sum;
358
359         for (i = 0, sum = 0; i < ts->ss_dur; i++)
360                 sum += ts->ss_iops_data[i];
361
362         return sum / ts->ss_dur;
363 }