Merge branch 'win_build' of https://github.com/sitsofe/fio
[fio.git] / steadystate.c
1 #include <stdlib.h>
2
3 #include "fio.h"
4 #include "steadystate.h"
5 #include "helper_thread.h"
6
7 bool steadystate_enabled = false;
8
9 void steadystate_free(struct thread_data *td)
10 {
11         free(td->ss.iops_data);
12         free(td->ss.bw_data);
13         td->ss.iops_data = NULL;
14         td->ss.bw_data = NULL;
15 }
16
17 static void steadystate_alloc(struct thread_data *td)
18 {
19         td->ss.bw_data = calloc(td->ss.dur, sizeof(uint64_t));
20         td->ss.iops_data = calloc(td->ss.dur, sizeof(uint64_t));
21
22         td->ss.state |= FIO_SS_DATA;
23 }
24
25 void steadystate_setup(void)
26 {
27         struct thread_data *td, *prev_td;
28         int i, prev_groupid;
29
30         if (!steadystate_enabled)
31                 return;
32
33         /*
34          * if group reporting is enabled, identify the last td
35          * for each group and use it for storing steady state
36          * data
37          */
38         prev_groupid = -1;
39         prev_td = NULL;
40         for_each_td(td, i) {
41                 if (!td->ss.dur)
42                         continue;
43
44                 if (!td->o.group_reporting) {
45                         steadystate_alloc(td);
46                         continue;
47                 }
48
49                 if (prev_groupid != td->groupid) {
50                         if (prev_td)
51                                 steadystate_alloc(prev_td);
52                         prev_groupid = td->groupid;
53                 }
54                 prev_td = td;
55         }
56
57         if (prev_td && prev_td->o.group_reporting)
58                 steadystate_alloc(prev_td);
59 }
60
61 static bool steadystate_slope(uint64_t iops, uint64_t bw,
62                               struct thread_data *td)
63 {
64         int i, j;
65         double result;
66         struct steadystate_data *ss = &td->ss;
67         uint64_t new_val;
68
69         ss->bw_data[ss->tail] = bw;
70         ss->iops_data[ss->tail] = iops;
71
72         if (ss->state & FIO_SS_IOPS)
73                 new_val = iops;
74         else
75                 new_val = bw;
76
77         if (ss->state & FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
78                 if (!(ss->state & FIO_SS_BUFFER_FULL)) {
79                         /* first time through */
80                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++) {
81                                 if (ss->state & FIO_SS_IOPS)
82                                         ss->sum_y += ss->iops_data[i];
83                                 else
84                                         ss->sum_y += ss->bw_data[i];
85                                 j = (ss->head + i) % ss->dur;
86                                 if (ss->state & FIO_SS_IOPS)
87                                         ss->sum_xy += i * ss->iops_data[j];
88                                 else
89                                         ss->sum_xy += i * ss->bw_data[j];
90                         }
91                         ss->state |= FIO_SS_BUFFER_FULL;
92                 } else {                /* easy to update the sums */
93                         ss->sum_y -= ss->oldest_y;
94                         ss->sum_y += new_val;
95                         ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
96                 }
97
98                 if (ss->state & FIO_SS_IOPS)
99                         ss->oldest_y = ss->iops_data[ss->head];
100                 else
101                         ss->oldest_y = ss->bw_data[ss->head];
102
103                 /*
104                  * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
105                  * - (sum_x)^2 / n) This code assumes that all x values are
106                  * equally spaced when they are often off by a few milliseconds.
107                  * This assumption greatly simplifies the calculations.
108                  */
109                 ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
110                                 (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
111                 if (ss->state & FIO_SS_PCT)
112                         ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
113                 else
114                         ss->criterion = ss->slope;
115
116                 dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
117                                         "criterion: %f, limit: %f\n",
118                                         (unsigned long long) ss->sum_y,
119                                         (unsigned long long) ss->sum_xy,
120                                         ss->slope, ss->criterion, ss->limit);
121
122                 result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
123                 if (result < ss->limit)
124                         return true;
125         }
126
127         ss->tail = (ss->tail + 1) % ss->dur;
128         if (ss->tail <= ss->head)
129                 ss->head = (ss->head + 1) % ss->dur;
130
131         return false;
132 }
133
134 static bool steadystate_deviation(uint64_t iops, uint64_t bw,
135                                   struct thread_data *td)
136 {
137         int i;
138         double diff;
139         double mean;
140
141         struct steadystate_data *ss = &td->ss;
142
143         ss->bw_data[ss->tail] = bw;
144         ss->iops_data[ss->tail] = iops;
145
146         if (ss->state & FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
147                 if (!(ss->state & FIO_SS_BUFFER_FULL)) {
148                         /* first time through */
149                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++)
150                                 if (ss->state & FIO_SS_IOPS)
151                                         ss->sum_y += ss->iops_data[i];
152                                 else
153                                         ss->sum_y += ss->bw_data[i];
154                         ss->state |= FIO_SS_BUFFER_FULL;
155                 } else {                /* easy to update the sum */
156                         ss->sum_y -= ss->oldest_y;
157                         if (ss->state & FIO_SS_IOPS)
158                                 ss->sum_y += ss->iops_data[ss->tail];
159                         else
160                                 ss->sum_y += ss->bw_data[ss->tail];
161                 }
162
163                 if (ss->state & FIO_SS_IOPS)
164                         ss->oldest_y = ss->iops_data[ss->head];
165                 else
166                         ss->oldest_y = ss->bw_data[ss->head];
167
168                 mean = (double) ss->sum_y / ss->dur;
169                 ss->deviation = 0.0;
170
171                 for (i = 0; i < ss->dur; i++) {
172                         if (ss->state & FIO_SS_IOPS)
173                                 diff = ss->iops_data[i] - mean;
174                         else
175                                 diff = ss->bw_data[i] - mean;
176                         ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
177                 }
178
179                 if (ss->state & FIO_SS_PCT)
180                         ss->criterion = 100.0 * ss->deviation / mean;
181                 else
182                         ss->criterion = ss->deviation;
183
184                 dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
185                                         "objective: %f, limit: %f\n",
186                                         (unsigned long long) ss->sum_y, mean,
187                                         ss->deviation, ss->criterion, ss->limit);
188
189                 if (ss->criterion < ss->limit)
190                         return true;
191         }
192
193         ss->tail = (ss->tail + 1) % ss->dur;
194         if (ss->tail <= ss->head)
195                 ss->head = (ss->head + 1) % ss->dur;
196
197         return false;
198 }
199
200 void steadystate_check(void)
201 {
202         int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
203         unsigned long rate_time;
204         struct thread_data *td, *td2;
205         struct timespec now;
206         uint64_t group_bw = 0, group_iops = 0;
207         uint64_t td_iops, td_bytes;
208         bool ret;
209
210         prev_groupid = -1;
211         for_each_td(td, i) {
212                 struct steadystate_data *ss = &td->ss;
213
214                 if (!ss->dur || td->runstate <= TD_SETTING_UP ||
215                     td->runstate >= TD_EXITED || !ss->state ||
216                     ss->state & FIO_SS_ATTAINED)
217                         continue;
218
219                 td_iops = 0;
220                 td_bytes = 0;
221                 if (!td->o.group_reporting ||
222                     (td->o.group_reporting && td->groupid != prev_groupid)) {
223                         group_bw = 0;
224                         group_iops = 0;
225                         group_ramp_time_over = 0;
226                 }
227                 prev_groupid = td->groupid;
228
229                 fio_gettime(&now, NULL);
230                 if (ss->ramp_time && !(ss->state & FIO_SS_RAMP_OVER)) {
231                         /*
232                          * Begin recording data one second after ss->ramp_time
233                          * has elapsed
234                          */
235                         if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
236                                 ss->state |= FIO_SS_RAMP_OVER;
237                 }
238
239                 td_io_u_lock(td);
240                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
241                         td_iops += td->io_blocks[ddir];
242                         td_bytes += td->io_bytes[ddir];
243                 }
244                 td_io_u_unlock(td);
245
246                 rate_time = mtime_since(&ss->prev_time, &now);
247                 memcpy(&ss->prev_time, &now, sizeof(now));
248
249                 /*
250                  * Begin monitoring when job starts but don't actually use
251                  * data in checking stopping criterion until ss->ramp_time is
252                  * over. This ensures that we will have a sane value in
253                  * prev_iops/bw the first time through after ss->ramp_time
254                  * is done.
255                  */
256                 if (ss->state & FIO_SS_RAMP_OVER) {
257                         group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
258                         group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
259                         ++group_ramp_time_over;
260                 }
261                 ss->prev_iops = td_iops;
262                 ss->prev_bytes = td_bytes;
263
264                 if (td->o.group_reporting && !(ss->state & FIO_SS_DATA))
265                         continue;
266
267                 /*
268                  * Don't begin checking criterion until ss->ramp_time is over
269                  * for at least one thread in group
270                  */
271                 if (!group_ramp_time_over)
272                         continue;
273
274                 dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
275                                         "groupid: %u, rate_msec: %ld, "
276                                         "iops: %llu, bw: %llu, head: %d, tail: %d\n",
277                                         i, td->groupid, rate_time,
278                                         (unsigned long long) group_iops,
279                                         (unsigned long long) group_bw,
280                                         ss->head, ss->tail);
281
282                 if (ss->state & FIO_SS_SLOPE)
283                         ret = steadystate_slope(group_iops, group_bw, td);
284                 else
285                         ret = steadystate_deviation(group_iops, group_bw, td);
286
287                 if (ret) {
288                         if (td->o.group_reporting) {
289                                 for_each_td(td2, j) {
290                                         if (td2->groupid == td->groupid) {
291                                                 td2->ss.state |= FIO_SS_ATTAINED;
292                                                 fio_mark_td_terminate(td2);
293                                         }
294                                 }
295                         } else {
296                                 ss->state |= FIO_SS_ATTAINED;
297                                 fio_mark_td_terminate(td);
298                         }
299                 }
300         }
301 }
302
303 int td_steadystate_init(struct thread_data *td)
304 {
305         struct steadystate_data *ss = &td->ss;
306         struct thread_options *o = &td->o;
307         struct thread_data *td2;
308         int j;
309
310         memset(ss, 0, sizeof(*ss));
311
312         if (o->ss_dur) {
313                 steadystate_enabled = true;
314                 o->ss_dur /= 1000000L;
315
316                 /* put all steady state info in one place */
317                 ss->dur = o->ss_dur;
318                 ss->limit = o->ss_limit.u.f;
319                 ss->ramp_time = o->ss_ramp_time;
320
321                 ss->state = o->ss_state;
322                 if (!td->ss.ramp_time)
323                         ss->state |= FIO_SS_RAMP_OVER;
324
325                 ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
326                 ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
327         }
328
329         /* make sure that ss options are consistent within reporting group */
330         for_each_td(td2, j) {
331                 if (td2->groupid == td->groupid) {
332                         struct steadystate_data *ss2 = &td2->ss;
333
334                         if (ss2->dur != ss->dur ||
335                             ss2->limit != ss->limit ||
336                             ss2->ramp_time != ss->ramp_time ||
337                             ss2->state != ss->state ||
338                             ss2->sum_x != ss->sum_x ||
339                             ss2->sum_x_sq != ss->sum_x_sq) {
340                                 td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
341                                 return 1;
342                         }
343                 }
344         }
345
346         return 0;
347 }
348
349 uint64_t steadystate_bw_mean(struct thread_stat *ts)
350 {
351         int i;
352         uint64_t sum;
353
354         for (i = 0, sum = 0; i < ts->ss_dur; i++)
355                 sum += ts->ss_bw_data[i];
356
357         return sum / ts->ss_dur;
358 }
359
360 uint64_t steadystate_iops_mean(struct thread_stat *ts)
361 {
362         int i;
363         uint64_t sum;
364
365         for (i = 0, sum = 0; i < ts->ss_dur; i++)
366                 sum += ts->ss_iops_data[i];
367
368         return sum / ts->ss_dur;
369 }