0563efd19d413510b1d5ce6b107f254d71eadca6
[fio.git] / steadystate.c
1 #include <stdlib.h>
2
3 #include "fio.h"
4 #include "steadystate.h"
5 #include "helper_thread.h"
6
7 bool steadystate_enabled = false;
8
9 static void steadystate_alloc(struct thread_data *td)
10 {
11         int i;
12
13         td->ss.bw_data = malloc(td->ss.dur * sizeof(uint64_t));
14         td->ss.iops_data = malloc(td->ss.dur * sizeof(uint64_t));
15         /* initialize so that it is obvious if the cache is not full in the output */
16         for (i = 0; i < td->ss.dur; i++)
17                 td->ss.iops_data[i] = td->ss.bw_data[i] = 0;
18
19         td->ss.state |= __FIO_SS_DATA;
20 }
21
22 void steadystate_setup(void)
23 {
24         int i, prev_groupid;
25         struct thread_data *td, *prev_td;
26
27         if (!steadystate_enabled)
28                 return;
29
30         /*
31          * if group reporting is enabled, identify the last td
32          * for each group and use it for storing steady state
33          * data
34          */
35         prev_groupid = -1;
36         prev_td = NULL;
37         for_each_td(td, i) {
38                 if (!td->ss.dur)
39                         continue;
40
41                 if (!td->o.group_reporting) {
42                         steadystate_alloc(td);
43                         continue;
44                 }
45
46                 if (prev_groupid != td->groupid) {
47                         if (prev_td != NULL) {
48                                 steadystate_alloc(prev_td);
49                         }
50                         prev_groupid = td->groupid;
51                 }
52                 prev_td = td;
53         }
54
55         if (prev_td != NULL && prev_td->o.group_reporting) {
56                 steadystate_alloc(prev_td);
57         }
58 }
59
60 static bool steadystate_slope(uint64_t iops, uint64_t bw,
61                               struct thread_data *td)
62 {
63         int i, j;
64         double result;
65         struct steadystate_data *ss = &td->ss;
66         uint64_t new_val;
67
68         ss->bw_data[ss->tail] = bw;
69         ss->iops_data[ss->tail] = iops;
70
71         if (ss->state & __FIO_SS_IOPS)
72                 new_val = iops;
73         else
74                 new_val = bw;
75
76         if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
77                 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
78                         /* first time through */
79                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++) {
80                                 if (ss->state & __FIO_SS_IOPS)
81                                         ss->sum_y += ss->iops_data[i];
82                                 else
83                                         ss->sum_y += ss->bw_data[i];
84                                 j = (ss->head + i) % ss->dur;
85                                 if (ss->state & __FIO_SS_IOPS)
86                                         ss->sum_xy += i * ss->iops_data[j];
87                                 else
88                                         ss->sum_xy += i * ss->bw_data[j];
89                         }
90                         ss->state |= __FIO_SS_BUFFER_FULL;
91                 } else {                /* easy to update the sums */
92                         ss->sum_y -= ss->oldest_y;
93                         ss->sum_y += new_val;
94                         ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
95                 }
96
97                 if (ss->state & __FIO_SS_IOPS)
98                         ss->oldest_y = ss->iops_data[ss->head];
99                 else
100                         ss->oldest_y = ss->bw_data[ss->head];
101
102                 /*
103                  * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
104                  * - (sum_x)^2 / n) This code assumes that all x values are
105                  * equally spaced when they are often off by a few milliseconds.
106                  * This assumption greatly simplifies the calculations.
107                  */
108                 ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
109                                 (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
110                 if (ss->state & __FIO_SS_PCT)
111                         ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
112                 else
113                         ss->criterion = ss->slope;
114
115                 dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
116                                         "criterion: %f, limit: %f\n",
117                                         (unsigned long long) ss->sum_y,
118                                         (unsigned long long) ss->sum_xy,
119                                         ss->slope, ss->criterion, ss->limit);
120
121                 result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
122                 if (result < ss->limit)
123                         return true;
124         }
125
126         ss->tail = (ss->tail + 1) % ss->dur;
127         if (ss->tail <= ss->head)
128                 ss->head = (ss->head + 1) % ss->dur;
129
130         return false;
131 }
132
133 static bool steadystate_deviation(uint64_t iops, uint64_t bw,
134                                   struct thread_data *td)
135 {
136         int i;
137         double diff;
138         double mean;
139
140         struct steadystate_data *ss = &td->ss;
141
142         ss->bw_data[ss->tail] = bw;
143         ss->iops_data[ss->tail] = iops;
144
145         if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
146                 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
147                         /* first time through */
148                         for(i = 0, ss->sum_y = 0; i < ss->dur; i++)
149                                 if (ss->state & __FIO_SS_IOPS)
150                                         ss->sum_y += ss->iops_data[i];
151                                 else
152                                         ss->sum_y += ss->bw_data[i];
153                         ss->state |= __FIO_SS_BUFFER_FULL;
154                 } else {                /* easy to update the sum */
155                         ss->sum_y -= ss->oldest_y;
156                         if (ss->state & __FIO_SS_IOPS)
157                                 ss->sum_y += ss->iops_data[ss->tail];
158                         else
159                                 ss->sum_y += ss->bw_data[ss->tail];
160                 }
161
162                 if (ss->state & __FIO_SS_IOPS)
163                         ss->oldest_y = ss->iops_data[ss->head];
164                 else
165                         ss->oldest_y = ss->bw_data[ss->head];
166
167                 mean = (double) ss->sum_y / ss->dur;
168                 ss->deviation = 0.0;
169
170                 for (i = 0; i < ss->dur; i++) {
171                         if (ss->state & __FIO_SS_IOPS)
172                                 diff = ss->iops_data[i] - mean;
173                         else
174                                 diff = ss->bw_data[i] - mean;
175                         ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
176                 }
177
178                 if (ss->state & __FIO_SS_PCT)
179                         ss->criterion = 100.0 * ss->deviation / mean;
180                 else
181                         ss->criterion = ss->deviation;
182
183                 dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
184                                         "objective: %f, limit: %f\n",
185                                         (unsigned long long) ss->sum_y, mean,
186                                         ss->deviation, ss->criterion, ss->limit);
187
188                 if (ss->criterion < ss->limit)
189                         return true;
190         }
191
192         ss->tail = (ss->tail + 1) % ss->dur;
193         if (ss->tail <= ss->head)
194                 ss->head = (ss->head + 1) % ss->dur;
195
196         return false;
197 }
198
199 void steadystate_check(void)
200 {
201         int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
202         unsigned long rate_time;
203         struct thread_data *td, *td2;
204         struct timeval now;
205         uint64_t group_bw = 0, group_iops = 0;
206         uint64_t td_iops, td_bytes;
207         bool ret;
208
209         prev_groupid = -1;
210         for_each_td(td, i) {
211                 struct steadystate_data *ss = &td->ss;
212
213                 if (!ss->dur || td->runstate <= TD_SETTING_UP ||
214                     td->runstate >= TD_EXITED || (ss->state & __FIO_SS_ATTAINED))
215                         continue;
216
217                 td_iops = 0;
218                 td_bytes = 0;
219                 if (!td->o.group_reporting ||
220                     (td->o.group_reporting && td->groupid != prev_groupid)) {
221                         group_bw = 0;
222                         group_iops = 0;
223                         group_ramp_time_over = 0;
224                 }
225                 prev_groupid = td->groupid;
226
227                 fio_gettime(&now, NULL);
228                 if (ss->ramp_time && !(ss->state & __FIO_SS_RAMP_OVER)) {
229                         /*
230                          * Begin recording data one second after ss->ramp_time
231                          * has elapsed
232                          */
233                         if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
234                                 ss->state |= __FIO_SS_RAMP_OVER;
235                 }
236
237                 td_io_u_lock(td);
238                 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
239                         td_iops += td->io_blocks[ddir];
240                         td_bytes += td->io_bytes[ddir];
241                 }
242                 td_io_u_unlock(td);
243
244                 rate_time = mtime_since(&ss->prev_time, &now);
245                 memcpy(&ss->prev_time, &now, sizeof(now));
246
247                 /*
248                  * Begin monitoring when job starts but don't actually use
249                  * data in checking stopping criterion until ss->ramp_time is
250                  * over. This ensures that we will have a sane value in
251                  * prev_iops/bw the first time through after ss->ramp_time
252                  * is done.
253                  */
254                 if (ss->state & __FIO_SS_RAMP_OVER) {
255                         group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
256                         group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
257                         ++group_ramp_time_over;
258                 }
259                 ss->prev_iops = td_iops;
260                 ss->prev_bytes = td_bytes;
261
262                 if (td->o.group_reporting && !(ss->state & __FIO_SS_DATA))
263                         continue;
264
265                 /*
266                  * Don't begin checking criterion until ss->ramp_time is over
267                  * for at least one thread in group
268                  */
269                 if (!group_ramp_time_over)
270                         continue;
271
272                 dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
273                                         "groupid: %u, rate_msec: %ld, "
274                                         "iops: %llu, bw: %llu, head: %d, tail: %d\n",
275                                         i, td->groupid, rate_time,
276                                         (unsigned long long) group_iops,
277                                         (unsigned long long) group_bw,
278                                         ss->head, ss->tail);
279
280                 if (td->o.ss & __FIO_SS_SLOPE)
281                         ret = steadystate_slope(group_iops, group_bw, td);
282                 else
283                         ret = steadystate_deviation(group_iops, group_bw, td);
284
285                 if (ret) {
286                         if (td->o.group_reporting) {
287                                 for_each_td(td2, j) {
288                                         if (td2->groupid == td->groupid) {
289                                                 td2->ss.state |= __FIO_SS_ATTAINED;
290                                                 fio_mark_td_terminate(td2);
291                                         }
292                                 }
293                         } else {
294                                 ss->state |= __FIO_SS_ATTAINED;
295                                 fio_mark_td_terminate(td);
296                         }
297                 }
298         }
299 }
300
301 int td_steadystate_init(struct thread_data *td)
302 {
303         struct steadystate_data *ss = &td->ss;
304         struct thread_options *o = &td->o;
305         struct thread_data *td2;
306         int j;
307
308         memset(ss, 0, sizeof(*ss));
309
310         if (o->ss_dur) {
311                 steadystate_enabled = true;
312                 o->ss_dur /= 1000000L;
313
314                 /* put all steady state info in one place */
315                 ss->dur = o->ss_dur;
316                 ss->limit = o->ss_limit.u.f;
317                 ss->ramp_time = o->ss_ramp_time;
318
319                 ss->state = o->ss;
320                 if (!td->ss.ramp_time)
321                         ss->state |= __FIO_SS_RAMP_OVER;
322
323                 ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
324                 ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
325         }
326
327         /* make sure that ss options are consistent within reporting group */
328         for_each_td(td2, j) {
329                 if (td2->groupid == td->groupid) {
330                         struct steadystate_data *ss2 = &td2->ss;
331
332                         if (ss2->dur != ss->dur ||
333                             ss2->limit != ss->limit ||
334                             ss2->ramp_time != ss->ramp_time ||
335                             ss2->state != ss->state ||
336                             ss2->sum_x != ss->sum_x ||
337                             ss2->sum_x_sq != ss->sum_x_sq) {
338                                 td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
339                                 return 1;
340                         }
341                 }
342         }
343
344         return 0;
345 }
346
347 uint64_t steadystate_bw_mean(struct thread_stat *ts)
348 {
349         int i;
350         uint64_t sum;
351
352         for (i = 0, sum = 0; i < ts->ss_dur; i++)
353                 sum += ts->ss_bw_data[i];
354
355         return sum / ts->ss_dur;
356 }
357
358 uint64_t steadystate_iops_mean(struct thread_stat *ts)
359 {
360         int i;
361         uint64_t sum;
362
363         for (i = 0, sum = 0; i < ts->ss_dur; i++)
364                 sum += ts->ss_iops_data[i];
365
366         return sum / ts->ss_dur;
367 }