stat: fix high/low prio unified rw bug
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #define LOG_MSEC_SLACK  1
21
22 struct fio_sem *stat_sem;
23
24 void clear_rusage_stat(struct thread_data *td)
25 {
26         struct thread_stat *ts = &td->ts;
27
28         fio_getrusage(&td->ru_start);
29         ts->usr_time = ts->sys_time = 0;
30         ts->ctx = 0;
31         ts->minf = ts->majf = 0;
32 }
33
34 void update_rusage_stat(struct thread_data *td)
35 {
36         struct thread_stat *ts = &td->ts;
37
38         fio_getrusage(&td->ru_end);
39         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
40                                         &td->ru_end.ru_utime);
41         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
42                                         &td->ru_end.ru_stime);
43         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
44                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
45         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
46         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
47
48         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
49 }
50
51 /*
52  * Given a latency, return the index of the corresponding bucket in
53  * the structure tracking percentiles.
54  *
55  * (1) find the group (and error bits) that the value (latency)
56  * belongs to by looking at its MSB. (2) find the bucket number in the
57  * group by looking at the index bits.
58  *
59  */
60 static unsigned int plat_val_to_idx(unsigned long long val)
61 {
62         unsigned int msb, error_bits, base, offset, idx;
63
64         /* Find MSB starting from bit 0 */
65         if (val == 0)
66                 msb = 0;
67         else
68                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
69
70         /*
71          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
72          * all bits of the sample as index
73          */
74         if (msb <= FIO_IO_U_PLAT_BITS)
75                 return val;
76
77         /* Compute the number of error bits to discard*/
78         error_bits = msb - FIO_IO_U_PLAT_BITS;
79
80         /* Compute the number of buckets before the group */
81         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
82
83         /*
84          * Discard the error bits and apply the mask to find the
85          * index for the buckets in the group
86          */
87         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
88
89         /* Make sure the index does not exceed (array size - 1) */
90         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
91                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
92
93         return idx;
94 }
95
96 /*
97  * Convert the given index of the bucket array to the value
98  * represented by the bucket
99  */
100 static unsigned long long plat_idx_to_val(unsigned int idx)
101 {
102         unsigned int error_bits;
103         unsigned long long k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned long long *ovals = NULL;
144         bool is_last;
145
146         *minv = -1ULL;
147         *maxv = 0;
148
149         len = 0;
150         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151                 len++;
152
153         if (!len)
154                 return 0;
155
156         /*
157          * Sort the percentile list. Note that it may already be sorted if
158          * we are using the default values, but since it's a short list this
159          * isn't a worry. Also note that this does not work for NaN values.
160          */
161         if (len > 1)
162                 qsort(plist, len, sizeof(plist[0]), double_cmp);
163
164         ovals = malloc(len * sizeof(*ovals));
165         if (!ovals)
166                 return 0;
167
168         /*
169          * Calculate bucket values, note down max and min values
170          */
171         is_last = false;
172         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
173                 sum += io_u_plat[i];
174                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
175                         assert(plist[j].u.f <= 100.0);
176
177                         ovals[j] = plat_idx_to_val(i);
178                         if (ovals[j] < *minv)
179                                 *minv = ovals[j];
180                         if (ovals[j] > *maxv)
181                                 *maxv = ovals[j];
182
183                         is_last = (j == len - 1) != 0;
184                         if (is_last)
185                                 break;
186
187                         j++;
188                 }
189         }
190
191         if (!is_last)
192                 log_err("fio: error calculating latency percentiles\n");
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   const char *pre, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         bool is_last;
210         char fmt[32];
211
212         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
213         if (!len || !ovals)
214                 goto out;
215
216         /*
217          * We default to nsecs, but if the value range is such that we
218          * should scale down to usecs or msecs, do that.
219          */
220         if (minv > 2000000 && maxv > 99999999ULL) {
221                 scale_down = 2;
222                 divisor = 1000000;
223                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
224         } else if (minv > 2000 && maxv > 99999) {
225                 scale_down = 1;
226                 divisor = 1000;
227                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
228         } else {
229                 scale_down = 0;
230                 divisor = 1;
231                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
232         }
233
234
235         time_width = max(5, (int) (log10(maxv / divisor) + 1));
236         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237                         precision, time_width);
238         /* fmt will be something like " %5.2fth=[%4llu]%c" */
239         per_line = (80 - 7) / (precision + 10 + time_width);
240
241         for (j = 0; j < len; j++) {
242                 /* for formatting */
243                 if (j != 0 && (j % per_line) == 0)
244                         log_buf(out, "     |");
245
246                 /* end of the list */
247                 is_last = (j == len - 1) != 0;
248
249                 for (i = 0; i < scale_down; i++)
250                         ovals[j] = (ovals[j] + 999) / 1000;
251
252                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
253
254                 if (is_last)
255                         break;
256
257                 if ((j % per_line) == per_line - 1)     /* for formatting */
258                         log_buf(out, "\n");
259         }
260
261 out:
262         free(ovals);
263 }
264
265 bool calc_lat(struct io_stat *is, unsigned long long *min,
266               unsigned long long *max, double *mean, double *dev)
267 {
268         double n = (double) is->samples;
269
270         if (n == 0)
271                 return false;
272
273         *min = is->min_val;
274         *max = is->max_val;
275         *mean = is->mean.u.f;
276
277         if (n > 1.0)
278                 *dev = sqrt(is->S.u.f / (n - 1.0));
279         else
280                 *dev = 0;
281
282         return true;
283 }
284
285 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286 {
287         char *io, *agg, *min, *max;
288         char *ioalt, *aggalt, *minalt, *maxalt;
289         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
290         int i;
291
292         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295                 const int i2p = is_power_of_2(rs->kb_base);
296
297                 if (!rs->max_run[i])
298                         continue;
299
300                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
301                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
302                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
303                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309                                 rs->unified_rw_rep ? "  MIXED" : str[i],
310                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311                                 (unsigned long long) rs->min_run[i],
312                                 (unsigned long long) rs->max_run[i]);
313
314                 free(io);
315                 free(agg);
316                 free(min);
317                 free(max);
318                 free(ioalt);
319                 free(aggalt);
320                 free(minalt);
321                 free(maxalt);
322         }
323 }
324
325 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
326 {
327         int i;
328
329         /*
330          * Do depth distribution calculations
331          */
332         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333                 if (total) {
334                         io_u_dist[i] = (double) map[i] / (double) total;
335                         io_u_dist[i] *= 100.0;
336                         if (io_u_dist[i] < 0.1 && map[i])
337                                 io_u_dist[i] = 0.1;
338                 } else
339                         io_u_dist[i] = 0.0;
340         }
341 }
342
343 static void stat_calc_lat(struct thread_stat *ts, double *dst,
344                           uint64_t *src, int nr)
345 {
346         unsigned long total = ddir_rw_sum(ts->total_io_u);
347         int i;
348
349         /*
350          * Do latency distribution calculations
351          */
352         for (i = 0; i < nr; i++) {
353                 if (total) {
354                         dst[i] = (double) src[i] / (double) total;
355                         dst[i] *= 100.0;
356                         if (dst[i] < 0.01 && src[i])
357                                 dst[i] = 0.01;
358                 } else
359                         dst[i] = 0.0;
360         }
361 }
362
363 /*
364  * To keep the terse format unaltered, add all of the ns latency
365  * buckets to the first us latency bucket
366  */
367 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368 {
369         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370         int i;
371
372         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375                 ntotal += ts->io_u_lat_n[i];
376
377         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378 }
379
380 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381 {
382         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383 }
384
385 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386 {
387         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388 }
389
390 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391 {
392         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393 }
394
395 static void display_lat(const char *name, unsigned long long min,
396                         unsigned long long max, double mean, double dev,
397                         struct buf_output *out)
398 {
399         const char *base = "(nsec)";
400         char *minp, *maxp;
401
402         if (nsec_to_msec(&min, &max, &mean, &dev))
403                 base = "(msec)";
404         else if (nsec_to_usec(&min, &max, &mean, &dev))
405                 base = "(usec)";
406
407         minp = num2str(min, 6, 1, 0, N2S_NONE);
408         maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
411                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413         free(minp);
414         free(maxp);
415 }
416
417 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418                              int ddir, struct buf_output *out)
419 {
420         unsigned long runt;
421         unsigned long long min, max, bw, iops;
422         double mean, dev;
423         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
424         int i2p;
425
426         if (ddir_sync(ddir)) {
427                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
429                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
430                         show_clat_percentiles(ts->io_u_sync_plat,
431                                                 ts->sync_stat.samples,
432                                                 ts->percentile_list,
433                                                 ts->percentile_precision,
434                                                 io_ddir_name(ddir), out);
435                 }
436                 return;
437         }
438
439         assert(ddir_rw(ddir));
440
441         if (!ts->runtime[ddir])
442                 return;
443
444         i2p = is_power_of_2(rs->kb_base);
445         runt = ts->runtime[ddir];
446
447         bw = (1000 * ts->io_bytes[ddir]) / runt;
448         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454         if (ddir == DDIR_WRITE)
455                 post_st = zbd_write_status(ts);
456         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
457                 uint64_t total;
458                 double hit;
459
460                 total = ts->cachehit + ts->cachemiss;
461                 hit = (double) ts->cachehit / (double) total;
462                 hit *= 100.0;
463                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
464                         post_st = NULL;
465         }
466
467         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
468                         rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
469                         iops_p, bw_p, bw_p_alt, io_p,
470                         (unsigned long long) ts->runtime[ddir],
471                         post_st ? : "");
472
473         free(post_st);
474         free(io_p);
475         free(bw_p);
476         free(bw_p_alt);
477         free(iops_p);
478
479         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
480                 display_lat("slat", min, max, mean, dev, out);
481         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
482                 display_lat("clat", min, max, mean, dev, out);
483         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
484                 display_lat(" lat", min, max, mean, dev, out);
485         if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev))
486                 display_lat(ts->lat_percentiles ? "prio_lat" : "prio_clat",
487                                 min, max, mean, dev, out);
488
489         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
490                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
491                                         ts->slat_stat[ddir].samples,
492                                         ts->percentile_list,
493                                         ts->percentile_precision, "slat", out);
494         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
495                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
496                                         ts->clat_stat[ddir].samples,
497                                         ts->percentile_list,
498                                         ts->percentile_precision, "clat", out);
499         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
500                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
501                                         ts->lat_stat[ddir].samples,
502                                         ts->percentile_list,
503                                         ts->percentile_precision, "lat", out);
504
505         if (ts->clat_percentiles || ts->lat_percentiles) {
506                 const char *name = ts->lat_percentiles ? "lat" : "clat";
507                 char prio_name[32];
508                 uint64_t samples;
509
510                 if (ts->lat_percentiles)
511                         samples = ts->lat_stat[ddir].samples;
512                 else
513                         samples = ts->clat_stat[ddir].samples;
514
515                 /* Only print this if some high and low priority stats were collected */
516                 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
517                         ts->clat_low_prio_stat[ddir].samples > 0)
518                 {
519                         sprintf(prio_name, "high prio (%.2f%%) %s",
520                                         100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
521                                         name);
522                         show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
523                                                 ts->clat_high_prio_stat[ddir].samples,
524                                                 ts->percentile_list,
525                                                 ts->percentile_precision, prio_name, out);
526
527                         sprintf(prio_name, "low prio (%.2f%%) %s",
528                                         100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
529                                         name);
530                         show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
531                                                 ts->clat_low_prio_stat[ddir].samples,
532                                                 ts->percentile_list,
533                                                 ts->percentile_precision, prio_name, out);
534                 }
535         }
536
537         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
538                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
539                 const char *bw_str;
540
541                 if ((rs->unit_base == 1) && i2p)
542                         bw_str = "Kibit";
543                 else if (rs->unit_base == 1)
544                         bw_str = "kbit";
545                 else if (i2p)
546                         bw_str = "KiB";
547                 else
548                         bw_str = "kB";
549
550                 if (rs->agg[ddir]) {
551                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
552                         if (p_of_agg > 100.0)
553                                 p_of_agg = 100.0;
554                 }
555
556                 if (rs->unit_base == 1) {
557                         min *= 8.0;
558                         max *= 8.0;
559                         mean *= 8.0;
560                         dev *= 8.0;
561                 }
562
563                 if (mean > fkb_base * fkb_base) {
564                         min /= fkb_base;
565                         max /= fkb_base;
566                         mean /= fkb_base;
567                         dev /= fkb_base;
568                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
569                 }
570
571                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
572                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
573                         bw_str, min, max, p_of_agg, mean, dev,
574                         (&ts->bw_stat[ddir])->samples);
575         }
576         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
577                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
578                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
579                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
580         }
581 }
582
583 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
584                      const char *msg, struct buf_output *out)
585 {
586         bool new_line = true, shown = false;
587         int i, line = 0;
588
589         for (i = 0; i < nr; i++) {
590                 if (io_u_lat[i] <= 0.0)
591                         continue;
592                 shown = true;
593                 if (new_line) {
594                         if (line)
595                                 log_buf(out, "\n");
596                         log_buf(out, "  lat (%s)   : ", msg);
597                         new_line = false;
598                         line = 0;
599                 }
600                 if (line)
601                         log_buf(out, ", ");
602                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
603                 line++;
604                 if (line == 5)
605                         new_line = true;
606         }
607
608         if (shown)
609                 log_buf(out, "\n");
610
611         return true;
612 }
613
614 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
615 {
616         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
617                                  "250=", "500=", "750=", "1000=", };
618
619         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
620 }
621
622 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
623 {
624         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
625                                  "250=", "500=", "750=", "1000=", };
626
627         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
628 }
629
630 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
631 {
632         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
633                                  "250=", "500=", "750=", "1000=", "2000=",
634                                  ">=2000=", };
635
636         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
637 }
638
639 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
640 {
641         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
642         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
643         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
644
645         stat_calc_lat_n(ts, io_u_lat_n);
646         stat_calc_lat_u(ts, io_u_lat_u);
647         stat_calc_lat_m(ts, io_u_lat_m);
648
649         show_lat_n(io_u_lat_n, out);
650         show_lat_u(io_u_lat_u, out);
651         show_lat_m(io_u_lat_m, out);
652 }
653
654 static int block_state_category(int block_state)
655 {
656         switch (block_state) {
657         case BLOCK_STATE_UNINIT:
658                 return 0;
659         case BLOCK_STATE_TRIMMED:
660         case BLOCK_STATE_WRITTEN:
661                 return 1;
662         case BLOCK_STATE_WRITE_FAILURE:
663         case BLOCK_STATE_TRIM_FAILURE:
664                 return 2;
665         default:
666                 /* Silence compile warning on some BSDs and have a return */
667                 assert(0);
668                 return -1;
669         }
670 }
671
672 static int compare_block_infos(const void *bs1, const void *bs2)
673 {
674         uint64_t block1 = *(uint64_t *)bs1;
675         uint64_t block2 = *(uint64_t *)bs2;
676         int state1 = BLOCK_INFO_STATE(block1);
677         int state2 = BLOCK_INFO_STATE(block2);
678         int bscat1 = block_state_category(state1);
679         int bscat2 = block_state_category(state2);
680         int cycles1 = BLOCK_INFO_TRIMS(block1);
681         int cycles2 = BLOCK_INFO_TRIMS(block2);
682
683         if (bscat1 < bscat2)
684                 return -1;
685         if (bscat1 > bscat2)
686                 return 1;
687
688         if (cycles1 < cycles2)
689                 return -1;
690         if (cycles1 > cycles2)
691                 return 1;
692
693         if (state1 < state2)
694                 return -1;
695         if (state1 > state2)
696                 return 1;
697
698         assert(block1 == block2);
699         return 0;
700 }
701
702 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
703                                   fio_fp64_t *plist, unsigned int **percentiles,
704                                   unsigned int *types)
705 {
706         int len = 0;
707         int i, nr_uninit;
708
709         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
710
711         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
712                 len++;
713
714         if (!len)
715                 return 0;
716
717         /*
718          * Sort the percentile list. Note that it may already be sorted if
719          * we are using the default values, but since it's a short list this
720          * isn't a worry. Also note that this does not work for NaN values.
721          */
722         if (len > 1)
723                 qsort(plist, len, sizeof(plist[0]), double_cmp);
724
725         /* Start only after the uninit entries end */
726         for (nr_uninit = 0;
727              nr_uninit < nr_block_infos
728                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
729              nr_uninit ++)
730                 ;
731
732         if (nr_uninit == nr_block_infos)
733                 return 0;
734
735         *percentiles = calloc(len, sizeof(**percentiles));
736
737         for (i = 0; i < len; i++) {
738                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
739                                 + nr_uninit;
740                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
741         }
742
743         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
744         for (i = 0; i < nr_block_infos; i++)
745                 types[BLOCK_INFO_STATE(block_infos[i])]++;
746
747         return len;
748 }
749
750 static const char *block_state_names[] = {
751         [BLOCK_STATE_UNINIT] = "unwritten",
752         [BLOCK_STATE_TRIMMED] = "trimmed",
753         [BLOCK_STATE_WRITTEN] = "written",
754         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
755         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
756 };
757
758 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
759                              fio_fp64_t *plist, struct buf_output *out)
760 {
761         int len, pos, i;
762         unsigned int *percentiles = NULL;
763         unsigned int block_state_counts[BLOCK_STATE_COUNT];
764
765         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
766                                      &percentiles, block_state_counts);
767
768         log_buf(out, "  block lifetime percentiles :\n   |");
769         pos = 0;
770         for (i = 0; i < len; i++) {
771                 uint32_t block_info = percentiles[i];
772 #define LINE_LENGTH     75
773                 char str[LINE_LENGTH];
774                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
775                                      plist[i].u.f, block_info,
776                                      i == len - 1 ? '\n' : ',');
777                 assert(strln < LINE_LENGTH);
778                 if (pos + strln > LINE_LENGTH) {
779                         pos = 0;
780                         log_buf(out, "\n   |");
781                 }
782                 log_buf(out, "%s", str);
783                 pos += strln;
784 #undef LINE_LENGTH
785         }
786         if (percentiles)
787                 free(percentiles);
788
789         log_buf(out, "        states               :");
790         for (i = 0; i < BLOCK_STATE_COUNT; i++)
791                 log_buf(out, " %s=%u%c",
792                          block_state_names[i], block_state_counts[i],
793                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
794 }
795
796 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
797 {
798         char *p1, *p1alt, *p2;
799         unsigned long long bw_mean, iops_mean;
800         const int i2p = is_power_of_2(ts->kb_base);
801
802         if (!ts->ss_dur)
803                 return;
804
805         bw_mean = steadystate_bw_mean(ts);
806         iops_mean = steadystate_iops_mean(ts);
807
808         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
809         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
810         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
811
812         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
813                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
814                 p1, p1alt, p2,
815                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
816                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
817                 ts->ss_criterion.u.f,
818                 ts->ss_state & FIO_SS_PCT ? "%" : "");
819
820         free(p1);
821         free(p1alt);
822         free(p2);
823 }
824
825 static void show_agg_stats(struct disk_util_agg *agg, int terse,
826                            struct buf_output *out)
827 {
828         if (!agg->slavecount)
829                 return;
830
831         if (!terse) {
832                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
833                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
834                          "aggrutil=%3.2f%%",
835                         (unsigned long long) agg->ios[0] / agg->slavecount,
836                         (unsigned long long) agg->ios[1] / agg->slavecount,
837                         (unsigned long long) agg->merges[0] / agg->slavecount,
838                         (unsigned long long) agg->merges[1] / agg->slavecount,
839                         (unsigned long long) agg->ticks[0] / agg->slavecount,
840                         (unsigned long long) agg->ticks[1] / agg->slavecount,
841                         (unsigned long long) agg->time_in_queue / agg->slavecount,
842                         agg->max_util.u.f);
843         } else {
844                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
845                         (unsigned long long) agg->ios[0] / agg->slavecount,
846                         (unsigned long long) agg->ios[1] / agg->slavecount,
847                         (unsigned long long) agg->merges[0] / agg->slavecount,
848                         (unsigned long long) agg->merges[1] / agg->slavecount,
849                         (unsigned long long) agg->ticks[0] / agg->slavecount,
850                         (unsigned long long) agg->ticks[1] / agg->slavecount,
851                         (unsigned long long) agg->time_in_queue / agg->slavecount,
852                         agg->max_util.u.f);
853         }
854 }
855
856 static void aggregate_slaves_stats(struct disk_util *masterdu)
857 {
858         struct disk_util_agg *agg = &masterdu->agg;
859         struct disk_util_stat *dus;
860         struct flist_head *entry;
861         struct disk_util *slavedu;
862         double util;
863
864         flist_for_each(entry, &masterdu->slaves) {
865                 slavedu = flist_entry(entry, struct disk_util, slavelist);
866                 dus = &slavedu->dus;
867                 agg->ios[0] += dus->s.ios[0];
868                 agg->ios[1] += dus->s.ios[1];
869                 agg->merges[0] += dus->s.merges[0];
870                 agg->merges[1] += dus->s.merges[1];
871                 agg->sectors[0] += dus->s.sectors[0];
872                 agg->sectors[1] += dus->s.sectors[1];
873                 agg->ticks[0] += dus->s.ticks[0];
874                 agg->ticks[1] += dus->s.ticks[1];
875                 agg->time_in_queue += dus->s.time_in_queue;
876                 agg->slavecount++;
877
878                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
879                 /* System utilization is the utilization of the
880                  * component with the highest utilization.
881                  */
882                 if (util > agg->max_util.u.f)
883                         agg->max_util.u.f = util;
884
885         }
886
887         if (agg->max_util.u.f > 100.0)
888                 agg->max_util.u.f = 100.0;
889 }
890
891 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
892                      int terse, struct buf_output *out)
893 {
894         double util = 0;
895
896         if (dus->s.msec)
897                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
898         if (util > 100.0)
899                 util = 100.0;
900
901         if (!terse) {
902                 if (agg->slavecount)
903                         log_buf(out, "  ");
904
905                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
906                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
907                                 dus->name,
908                                 (unsigned long long) dus->s.ios[0],
909                                 (unsigned long long) dus->s.ios[1],
910                                 (unsigned long long) dus->s.merges[0],
911                                 (unsigned long long) dus->s.merges[1],
912                                 (unsigned long long) dus->s.ticks[0],
913                                 (unsigned long long) dus->s.ticks[1],
914                                 (unsigned long long) dus->s.time_in_queue,
915                                 util);
916         } else {
917                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
918                                 dus->name,
919                                 (unsigned long long) dus->s.ios[0],
920                                 (unsigned long long) dus->s.ios[1],
921                                 (unsigned long long) dus->s.merges[0],
922                                 (unsigned long long) dus->s.merges[1],
923                                 (unsigned long long) dus->s.ticks[0],
924                                 (unsigned long long) dus->s.ticks[1],
925                                 (unsigned long long) dus->s.time_in_queue,
926                                 util);
927         }
928
929         /*
930          * If the device has slaves, aggregate the stats for
931          * those slave devices also.
932          */
933         show_agg_stats(agg, terse, out);
934
935         if (!terse)
936                 log_buf(out, "\n");
937 }
938
939 void json_array_add_disk_util(struct disk_util_stat *dus,
940                 struct disk_util_agg *agg, struct json_array *array)
941 {
942         struct json_object *obj;
943         double util = 0;
944
945         if (dus->s.msec)
946                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
947         if (util > 100.0)
948                 util = 100.0;
949
950         obj = json_create_object();
951         json_array_add_value_object(array, obj);
952
953         json_object_add_value_string(obj, "name", dus->name);
954         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
955         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
956         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
957         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
958         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
959         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
960         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
961         json_object_add_value_float(obj, "util", util);
962
963         /*
964          * If the device has slaves, aggregate the stats for
965          * those slave devices also.
966          */
967         if (!agg->slavecount)
968                 return;
969         json_object_add_value_int(obj, "aggr_read_ios",
970                                 agg->ios[0] / agg->slavecount);
971         json_object_add_value_int(obj, "aggr_write_ios",
972                                 agg->ios[1] / agg->slavecount);
973         json_object_add_value_int(obj, "aggr_read_merges",
974                                 agg->merges[0] / agg->slavecount);
975         json_object_add_value_int(obj, "aggr_write_merge",
976                                 agg->merges[1] / agg->slavecount);
977         json_object_add_value_int(obj, "aggr_read_ticks",
978                                 agg->ticks[0] / agg->slavecount);
979         json_object_add_value_int(obj, "aggr_write_ticks",
980                                 agg->ticks[1] / agg->slavecount);
981         json_object_add_value_int(obj, "aggr_in_queue",
982                                 agg->time_in_queue / agg->slavecount);
983         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
984 }
985
986 static void json_object_add_disk_utils(struct json_object *obj,
987                                        struct flist_head *head)
988 {
989         struct json_array *array = json_create_array();
990         struct flist_head *entry;
991         struct disk_util *du;
992
993         json_object_add_value_array(obj, "disk_util", array);
994
995         flist_for_each(entry, head) {
996                 du = flist_entry(entry, struct disk_util, list);
997
998                 aggregate_slaves_stats(du);
999                 json_array_add_disk_util(&du->dus, &du->agg, array);
1000         }
1001 }
1002
1003 void show_disk_util(int terse, struct json_object *parent,
1004                     struct buf_output *out)
1005 {
1006         struct flist_head *entry;
1007         struct disk_util *du;
1008         bool do_json;
1009
1010         if (!is_running_backend())
1011                 return;
1012
1013         if (flist_empty(&disk_list)) {
1014                 return;
1015         }
1016
1017         if ((output_format & FIO_OUTPUT_JSON) && parent)
1018                 do_json = true;
1019         else
1020                 do_json = false;
1021
1022         if (!terse && !do_json)
1023                 log_buf(out, "\nDisk stats (read/write):\n");
1024
1025         if (do_json)
1026                 json_object_add_disk_utils(parent, &disk_list);
1027         else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1028                 flist_for_each(entry, &disk_list) {
1029                         du = flist_entry(entry, struct disk_util, list);
1030
1031                         aggregate_slaves_stats(du);
1032                         print_disk_util(&du->dus, &du->agg, terse, out);
1033                 }
1034         }
1035 }
1036
1037 static void show_thread_status_normal(struct thread_stat *ts,
1038                                       struct group_run_stats *rs,
1039                                       struct buf_output *out)
1040 {
1041         double usr_cpu, sys_cpu;
1042         unsigned long runtime;
1043         double io_u_dist[FIO_IO_U_MAP_NR];
1044         time_t time_p;
1045         char time_buf[32];
1046
1047         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1048                 return;
1049
1050         memset(time_buf, 0, sizeof(time_buf));
1051
1052         time(&time_p);
1053         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1054
1055         if (!ts->error) {
1056                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1057                                         ts->name, ts->groupid, ts->members,
1058                                         ts->error, (int) ts->pid, time_buf);
1059         } else {
1060                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1061                                         ts->name, ts->groupid, ts->members,
1062                                         ts->error, ts->verror, (int) ts->pid,
1063                                         time_buf);
1064         }
1065
1066         if (strlen(ts->description))
1067                 log_buf(out, "  Description  : [%s]\n", ts->description);
1068
1069         if (ts->io_bytes[DDIR_READ])
1070                 show_ddir_status(rs, ts, DDIR_READ, out);
1071         if (ts->io_bytes[DDIR_WRITE])
1072                 show_ddir_status(rs, ts, DDIR_WRITE, out);
1073         if (ts->io_bytes[DDIR_TRIM])
1074                 show_ddir_status(rs, ts, DDIR_TRIM, out);
1075
1076         show_latencies(ts, out);
1077
1078         if (ts->sync_stat.samples)
1079                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1080
1081         runtime = ts->total_run_time;
1082         if (runtime) {
1083                 double runt = (double) runtime;
1084
1085                 usr_cpu = (double) ts->usr_time * 100 / runt;
1086                 sys_cpu = (double) ts->sys_time * 100 / runt;
1087         } else {
1088                 usr_cpu = 0;
1089                 sys_cpu = 0;
1090         }
1091
1092         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1093                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1094                         (unsigned long long) ts->ctx,
1095                         (unsigned long long) ts->majf,
1096                         (unsigned long long) ts->minf);
1097
1098         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1099         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1100                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1101                                         io_u_dist[1], io_u_dist[2],
1102                                         io_u_dist[3], io_u_dist[4],
1103                                         io_u_dist[5], io_u_dist[6]);
1104
1105         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1106         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1107                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1108                                         io_u_dist[1], io_u_dist[2],
1109                                         io_u_dist[3], io_u_dist[4],
1110                                         io_u_dist[5], io_u_dist[6]);
1111         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1112         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1113                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1114                                         io_u_dist[1], io_u_dist[2],
1115                                         io_u_dist[3], io_u_dist[4],
1116                                         io_u_dist[5], io_u_dist[6]);
1117         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1118                                  " short=%llu,%llu,%llu,0"
1119                                  " dropped=%llu,%llu,%llu,0\n",
1120                                         (unsigned long long) ts->total_io_u[0],
1121                                         (unsigned long long) ts->total_io_u[1],
1122                                         (unsigned long long) ts->total_io_u[2],
1123                                         (unsigned long long) ts->total_io_u[3],
1124                                         (unsigned long long) ts->short_io_u[0],
1125                                         (unsigned long long) ts->short_io_u[1],
1126                                         (unsigned long long) ts->short_io_u[2],
1127                                         (unsigned long long) ts->drop_io_u[0],
1128                                         (unsigned long long) ts->drop_io_u[1],
1129                                         (unsigned long long) ts->drop_io_u[2]);
1130         if (ts->continue_on_error) {
1131                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1132                                         (unsigned long long)ts->total_err_count,
1133                                         ts->first_error,
1134                                         strerror(ts->first_error));
1135         }
1136         if (ts->latency_depth) {
1137                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1138                                         (unsigned long long)ts->latency_target,
1139                                         (unsigned long long)ts->latency_window,
1140                                         ts->latency_percentile.u.f,
1141                                         ts->latency_depth);
1142         }
1143
1144         if (ts->nr_block_infos)
1145                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1146                                   ts->percentile_list, out);
1147
1148         if (ts->ss_dur)
1149                 show_ss_normal(ts, out);
1150 }
1151
1152 static void show_ddir_status_terse(struct thread_stat *ts,
1153                                    struct group_run_stats *rs, int ddir,
1154                                    int ver, struct buf_output *out)
1155 {
1156         unsigned long long min, max, minv, maxv, bw, iops;
1157         unsigned long long *ovals = NULL;
1158         double mean, dev;
1159         unsigned int len;
1160         int i, bw_stat;
1161
1162         assert(ddir_rw(ddir));
1163
1164         iops = bw = 0;
1165         if (ts->runtime[ddir]) {
1166                 uint64_t runt = ts->runtime[ddir];
1167
1168                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1169                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1170         }
1171
1172         log_buf(out, ";%llu;%llu;%llu;%llu",
1173                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1174                                         (unsigned long long) ts->runtime[ddir]);
1175
1176         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1177                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1178         else
1179                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1180
1181         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1182                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1183         else
1184                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1185
1186         if (ts->lat_percentiles)
1187                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1188                                         ts->lat_stat[ddir].samples,
1189                                         ts->percentile_list, &ovals, &maxv,
1190                                         &minv);
1191         else if (ts->clat_percentiles)
1192                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1193                                         ts->clat_stat[ddir].samples,
1194                                         ts->percentile_list, &ovals, &maxv,
1195                                         &minv);
1196         else
1197                 len = 0;
1198
1199         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1200                 if (i >= len) {
1201                         log_buf(out, ";0%%=0");
1202                         continue;
1203                 }
1204                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1205         }
1206
1207         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1208                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1209         else
1210                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1211
1212         free(ovals);
1213
1214         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1215         if (bw_stat) {
1216                 double p_of_agg = 100.0;
1217
1218                 if (rs->agg[ddir]) {
1219                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1220                         if (p_of_agg > 100.0)
1221                                 p_of_agg = 100.0;
1222                 }
1223
1224                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1225         } else
1226                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1227
1228         if (ver == 5) {
1229                 if (bw_stat)
1230                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1231                 else
1232                         log_buf(out, ";%lu", 0UL);
1233
1234                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1235                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1236                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1237                 else
1238                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1239         }
1240 }
1241
1242 static struct json_object *add_ddir_lat_json(struct thread_stat *ts, uint32_t percentiles,
1243                 struct io_stat *lat_stat, uint64_t *io_u_plat)
1244 {
1245         char buf[120];
1246         double mean, dev;
1247         unsigned int i, len;
1248         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1249         unsigned long long min, max, maxv, minv, *ovals = NULL;
1250
1251         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1252                 min = max = 0;
1253                 mean = dev = 0.0;
1254         }
1255         lat_object = json_create_object();
1256         json_object_add_value_int(lat_object, "min", min);
1257         json_object_add_value_int(lat_object, "max", max);
1258         json_object_add_value_float(lat_object, "mean", mean);
1259         json_object_add_value_float(lat_object, "stddev", dev);
1260         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1261
1262         if (percentiles && lat_stat->samples) {
1263                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1264                                 ts->percentile_list, &ovals, &maxv, &minv);
1265
1266                 if (len > FIO_IO_U_LIST_MAX_LEN)
1267                         len = FIO_IO_U_LIST_MAX_LEN;
1268
1269                 percentile_object = json_create_object();
1270                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1271                 for (i = 0; i < len; i++) {
1272                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1273                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1274                 }
1275                 free(ovals);
1276
1277                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1278                         clat_bins_object = json_create_object();
1279                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1280
1281                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1282                                 if (io_u_plat[i]) {
1283                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1284                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1285                                 }
1286                 }
1287         }
1288
1289         return lat_object;
1290 }
1291
1292 static void add_ddir_status_json(struct thread_stat *ts,
1293                 struct group_run_stats *rs, int ddir, struct json_object *parent)
1294 {
1295         unsigned long long min, max;
1296         unsigned long long bw_bytes, bw;
1297         double mean, dev, iops;
1298         struct json_object *dir_object, *tmp_object;
1299         double p_of_agg = 100.0;
1300
1301         assert(ddir_rw(ddir) || ddir_sync(ddir));
1302
1303         if (ts->unified_rw_rep && ddir != DDIR_READ)
1304                 return;
1305
1306         dir_object = json_create_object();
1307         json_object_add_value_object(parent,
1308                 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1309
1310         if (ddir_rw(ddir)) {
1311                 bw_bytes = 0;
1312                 bw = 0;
1313                 iops = 0.0;
1314                 if (ts->runtime[ddir]) {
1315                         uint64_t runt = ts->runtime[ddir];
1316
1317                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1318                         bw = bw_bytes / 1024; /* KiB/s */
1319                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1320                 }
1321
1322                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1323                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1324                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1325                 json_object_add_value_int(dir_object, "bw", bw);
1326                 json_object_add_value_float(dir_object, "iops", iops);
1327                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1328                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1329                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1330                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1331
1332                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1333                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1334                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1335
1336                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1337                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1338                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1339
1340                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1341                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1342                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1343         } else {
1344                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1345                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1346                                 &ts->sync_stat, ts->io_u_sync_plat);
1347                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1348         }
1349
1350         if (!ddir_rw(ddir))
1351                 return;
1352
1353         /* Only print PRIO latencies if some high priority samples were gathered */
1354         if (ts->clat_high_prio_stat[ddir].samples > 0) {
1355                 const char *high, *low;
1356
1357                 if (ts->lat_percentiles) {
1358                         high = "lat_high_prio";
1359                         low = "lat_low_prio";
1360                 } else {
1361                         high = "clat_high_prio";
1362                         low = "clat_low_prio";
1363                 }
1364
1365                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1366                                 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1367                 json_object_add_value_object(dir_object, high, tmp_object);
1368
1369                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1370                                 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1371                 json_object_add_value_object(dir_object, low, tmp_object);
1372         }
1373
1374         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1375                 if (rs->agg[ddir]) {
1376                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1377                         if (p_of_agg > 100.0)
1378                                 p_of_agg = 100.0;
1379                 }
1380         } else {
1381                 min = max = 0;
1382                 p_of_agg = mean = dev = 0.0;
1383         }
1384
1385         json_object_add_value_int(dir_object, "bw_min", min);
1386         json_object_add_value_int(dir_object, "bw_max", max);
1387         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1388         json_object_add_value_float(dir_object, "bw_mean", mean);
1389         json_object_add_value_float(dir_object, "bw_dev", dev);
1390         json_object_add_value_int(dir_object, "bw_samples",
1391                                 (&ts->bw_stat[ddir])->samples);
1392
1393         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1394                 min = max = 0;
1395                 mean = dev = 0.0;
1396         }
1397         json_object_add_value_int(dir_object, "iops_min", min);
1398         json_object_add_value_int(dir_object, "iops_max", max);
1399         json_object_add_value_float(dir_object, "iops_mean", mean);
1400         json_object_add_value_float(dir_object, "iops_stddev", dev);
1401         json_object_add_value_int(dir_object, "iops_samples",
1402                                 (&ts->iops_stat[ddir])->samples);
1403
1404         if (ts->cachehit + ts->cachemiss) {
1405                 uint64_t total;
1406                 double hit;
1407
1408                 total = ts->cachehit + ts->cachemiss;
1409                 hit = (double) ts->cachehit / (double) total;
1410                 hit *= 100.0;
1411                 json_object_add_value_float(dir_object, "cachehit", hit);
1412         }
1413 }
1414
1415 static void show_thread_status_terse_all(struct thread_stat *ts,
1416                                          struct group_run_stats *rs, int ver,
1417                                          struct buf_output *out)
1418 {
1419         double io_u_dist[FIO_IO_U_MAP_NR];
1420         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1421         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1422         double usr_cpu, sys_cpu;
1423         int i;
1424
1425         /* General Info */
1426         if (ver == 2)
1427                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1428         else
1429                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1430                         ts->name, ts->groupid, ts->error);
1431
1432         /* Log Read Status */
1433         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1434         /* Log Write Status */
1435         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1436         /* Log Trim Status */
1437         if (ver == 2 || ver == 4 || ver == 5)
1438                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1439
1440         /* CPU Usage */
1441         if (ts->total_run_time) {
1442                 double runt = (double) ts->total_run_time;
1443
1444                 usr_cpu = (double) ts->usr_time * 100 / runt;
1445                 sys_cpu = (double) ts->sys_time * 100 / runt;
1446         } else {
1447                 usr_cpu = 0;
1448                 sys_cpu = 0;
1449         }
1450
1451         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1452                                                 (unsigned long long) ts->ctx,
1453                                                 (unsigned long long) ts->majf,
1454                                                 (unsigned long long) ts->minf);
1455
1456         /* Calc % distribution of IO depths, usecond, msecond latency */
1457         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1458         stat_calc_lat_nu(ts, io_u_lat_u);
1459         stat_calc_lat_m(ts, io_u_lat_m);
1460
1461         /* Only show fixed 7 I/O depth levels*/
1462         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1463                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1464                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1465
1466         /* Microsecond latency */
1467         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1468                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1469         /* Millisecond latency */
1470         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1471                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1472
1473         /* disk util stats, if any */
1474         if (ver >= 3 && is_running_backend())
1475                 show_disk_util(1, NULL, out);
1476
1477         /* Additional output if continue_on_error set - default off*/
1478         if (ts->continue_on_error)
1479                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1480
1481         /* Additional output if description is set */
1482         if (strlen(ts->description)) {
1483                 if (ver == 2)
1484                         log_buf(out, "\n");
1485                 log_buf(out, ";%s", ts->description);
1486         }
1487
1488         log_buf(out, "\n");
1489 }
1490
1491 static void json_add_job_opts(struct json_object *root, const char *name,
1492                               struct flist_head *opt_list)
1493 {
1494         struct json_object *dir_object;
1495         struct flist_head *entry;
1496         struct print_option *p;
1497
1498         if (flist_empty(opt_list))
1499                 return;
1500
1501         dir_object = json_create_object();
1502         json_object_add_value_object(root, name, dir_object);
1503
1504         flist_for_each(entry, opt_list) {
1505                 const char *pos = "";
1506
1507                 p = flist_entry(entry, struct print_option, list);
1508                 if (p->value)
1509                         pos = p->value;
1510                 json_object_add_value_string(dir_object, p->name, pos);
1511         }
1512 }
1513
1514 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1515                                                    struct group_run_stats *rs,
1516                                                    struct flist_head *opt_list)
1517 {
1518         struct json_object *root, *tmp;
1519         struct jobs_eta *je;
1520         double io_u_dist[FIO_IO_U_MAP_NR];
1521         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1522         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1523         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1524         double usr_cpu, sys_cpu;
1525         int i;
1526         size_t size;
1527
1528         root = json_create_object();
1529         json_object_add_value_string(root, "jobname", ts->name);
1530         json_object_add_value_int(root, "groupid", ts->groupid);
1531         json_object_add_value_int(root, "error", ts->error);
1532
1533         /* ETA Info */
1534         je = get_jobs_eta(true, &size);
1535         if (je) {
1536                 json_object_add_value_int(root, "eta", je->eta_sec);
1537                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1538         }
1539
1540         if (opt_list)
1541                 json_add_job_opts(root, "job options", opt_list);
1542
1543         add_ddir_status_json(ts, rs, DDIR_READ, root);
1544         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1545         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1546         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1547
1548         /* CPU Usage */
1549         if (ts->total_run_time) {
1550                 double runt = (double) ts->total_run_time;
1551
1552                 usr_cpu = (double) ts->usr_time * 100 / runt;
1553                 sys_cpu = (double) ts->sys_time * 100 / runt;
1554         } else {
1555                 usr_cpu = 0;
1556                 sys_cpu = 0;
1557         }
1558         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1559         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1560         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1561         json_object_add_value_int(root, "ctx", ts->ctx);
1562         json_object_add_value_int(root, "majf", ts->majf);
1563         json_object_add_value_int(root, "minf", ts->minf);
1564
1565         /* Calc % distribution of IO depths */
1566         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1567         tmp = json_create_object();
1568         json_object_add_value_object(root, "iodepth_level", tmp);
1569         /* Only show fixed 7 I/O depth levels*/
1570         for (i = 0; i < 7; i++) {
1571                 char name[20];
1572                 if (i < 6)
1573                         snprintf(name, 20, "%d", 1 << i);
1574                 else
1575                         snprintf(name, 20, ">=%d", 1 << i);
1576                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1577         }
1578
1579         /* Calc % distribution of submit IO depths */
1580         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1581         tmp = json_create_object();
1582         json_object_add_value_object(root, "iodepth_submit", tmp);
1583         /* Only show fixed 7 I/O depth levels*/
1584         for (i = 0; i < 7; i++) {
1585                 char name[20];
1586                 if (i == 0)
1587                         snprintf(name, 20, "0");
1588                 else if (i < 6)
1589                         snprintf(name, 20, "%d", 1 << (i+1));
1590                 else
1591                         snprintf(name, 20, ">=%d", 1 << i);
1592                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1593         }
1594
1595         /* Calc % distribution of completion IO depths */
1596         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1597         tmp = json_create_object();
1598         json_object_add_value_object(root, "iodepth_complete", tmp);
1599         /* Only show fixed 7 I/O depth levels*/
1600         for (i = 0; i < 7; i++) {
1601                 char name[20];
1602                 if (i == 0)
1603                         snprintf(name, 20, "0");
1604                 else if (i < 6)
1605                         snprintf(name, 20, "%d", 1 << (i+1));
1606                 else
1607                         snprintf(name, 20, ">=%d", 1 << i);
1608                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1609         }
1610
1611         /* Calc % distribution of nsecond, usecond, msecond latency */
1612         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1613         stat_calc_lat_n(ts, io_u_lat_n);
1614         stat_calc_lat_u(ts, io_u_lat_u);
1615         stat_calc_lat_m(ts, io_u_lat_m);
1616
1617         /* Nanosecond latency */
1618         tmp = json_create_object();
1619         json_object_add_value_object(root, "latency_ns", tmp);
1620         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1621                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1622                                  "250", "500", "750", "1000", };
1623                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1624         }
1625         /* Microsecond latency */
1626         tmp = json_create_object();
1627         json_object_add_value_object(root, "latency_us", tmp);
1628         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1629                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1630                                  "250", "500", "750", "1000", };
1631                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1632         }
1633         /* Millisecond latency */
1634         tmp = json_create_object();
1635         json_object_add_value_object(root, "latency_ms", tmp);
1636         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1637                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1638                                  "250", "500", "750", "1000", "2000",
1639                                  ">=2000", };
1640                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1641         }
1642
1643         /* Additional output if continue_on_error set - default off*/
1644         if (ts->continue_on_error) {
1645                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1646                 json_object_add_value_int(root, "first_error", ts->first_error);
1647         }
1648
1649         if (ts->latency_depth) {
1650                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1651                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1652                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1653                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1654         }
1655
1656         /* Additional output if description is set */
1657         if (strlen(ts->description))
1658                 json_object_add_value_string(root, "desc", ts->description);
1659
1660         if (ts->nr_block_infos) {
1661                 /* Block error histogram and types */
1662                 int len;
1663                 unsigned int *percentiles = NULL;
1664                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1665
1666                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1667                                              ts->percentile_list,
1668                                              &percentiles, block_state_counts);
1669
1670                 if (len) {
1671                         struct json_object *block, *percentile_object, *states;
1672                         int state;
1673                         block = json_create_object();
1674                         json_object_add_value_object(root, "block", block);
1675
1676                         percentile_object = json_create_object();
1677                         json_object_add_value_object(block, "percentiles",
1678                                                      percentile_object);
1679                         for (i = 0; i < len; i++) {
1680                                 char buf[20];
1681                                 snprintf(buf, sizeof(buf), "%f",
1682                                          ts->percentile_list[i].u.f);
1683                                 json_object_add_value_int(percentile_object,
1684                                                           buf,
1685                                                           percentiles[i]);
1686                         }
1687
1688                         states = json_create_object();
1689                         json_object_add_value_object(block, "states", states);
1690                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1691                                 json_object_add_value_int(states,
1692                                         block_state_names[state],
1693                                         block_state_counts[state]);
1694                         }
1695                         free(percentiles);
1696                 }
1697         }
1698
1699         if (ts->ss_dur) {
1700                 struct json_object *data;
1701                 struct json_array *iops, *bw;
1702                 int j, k, l;
1703                 char ss_buf[64];
1704
1705                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1706                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1707                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1708                         (float) ts->ss_limit.u.f,
1709                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1710
1711                 tmp = json_create_object();
1712                 json_object_add_value_object(root, "steadystate", tmp);
1713                 json_object_add_value_string(tmp, "ss", ss_buf);
1714                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1715                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1716
1717                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1718                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1719                 json_object_add_value_string(tmp, "criterion", ss_buf);
1720                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1721                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1722
1723                 data = json_create_object();
1724                 json_object_add_value_object(tmp, "data", data);
1725                 bw = json_create_array();
1726                 iops = json_create_array();
1727
1728                 /*
1729                 ** if ss was attained or the buffer is not full,
1730                 ** ss->head points to the first element in the list.
1731                 ** otherwise it actually points to the second element
1732                 ** in the list
1733                 */
1734                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1735                         j = ts->ss_head;
1736                 else
1737                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1738                 for (l = 0; l < ts->ss_dur; l++) {
1739                         k = (j + l) % ts->ss_dur;
1740                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1741                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1742                 }
1743                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1744                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1745                 json_object_add_value_array(data, "iops", iops);
1746                 json_object_add_value_array(data, "bw", bw);
1747         }
1748
1749         return root;
1750 }
1751
1752 static void show_thread_status_terse(struct thread_stat *ts,
1753                                      struct group_run_stats *rs,
1754                                      struct buf_output *out)
1755 {
1756         if (terse_version >= 2 && terse_version <= 5)
1757                 show_thread_status_terse_all(ts, rs, terse_version, out);
1758         else
1759                 log_err("fio: bad terse version!? %d\n", terse_version);
1760 }
1761
1762 struct json_object *show_thread_status(struct thread_stat *ts,
1763                                        struct group_run_stats *rs,
1764                                        struct flist_head *opt_list,
1765                                        struct buf_output *out)
1766 {
1767         struct json_object *ret = NULL;
1768
1769         if (output_format & FIO_OUTPUT_TERSE)
1770                 show_thread_status_terse(ts, rs,  out);
1771         if (output_format & FIO_OUTPUT_JSON)
1772                 ret = show_thread_status_json(ts, rs, opt_list);
1773         if (output_format & FIO_OUTPUT_NORMAL)
1774                 show_thread_status_normal(ts, rs,  out);
1775
1776         return ret;
1777 }
1778
1779 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1780 {
1781         double mean, S;
1782
1783         dst->min_val = min(dst->min_val, src->min_val);
1784         dst->max_val = max(dst->max_val, src->max_val);
1785
1786         /*
1787          * Compute new mean and S after the merge
1788          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1789          *  #Parallel_algorithm>
1790          */
1791         if (first) {
1792                 mean = src->mean.u.f;
1793                 S = src->S.u.f;
1794         } else {
1795                 double delta = src->mean.u.f - dst->mean.u.f;
1796
1797                 mean = ((src->mean.u.f * src->samples) +
1798                         (dst->mean.u.f * dst->samples)) /
1799                         (dst->samples + src->samples);
1800
1801                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1802                         (dst->samples * src->samples) /
1803                         (dst->samples + src->samples);
1804         }
1805
1806         dst->samples += src->samples;
1807         dst->mean.u.f = mean;
1808         dst->S.u.f = S;
1809
1810 }
1811
1812 /*
1813  * We sum two kinds of stats - one that is time based, in which case we
1814  * apply the proper summing technique, and then one that is iops/bw
1815  * numbers. For group_reporting, we should just add those up, not make
1816  * them the mean of everything.
1817  */
1818 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1819                      bool pure_sum)
1820 {
1821         if (src->samples == 0)
1822                 return;
1823
1824         if (!pure_sum) {
1825                 __sum_stat(dst, src, first);
1826                 return;
1827         }
1828
1829         if (first) {
1830                 dst->min_val = src->min_val;
1831                 dst->max_val = src->max_val;
1832                 dst->samples = src->samples;
1833                 dst->mean.u.f = src->mean.u.f;
1834                 dst->S.u.f = src->S.u.f;
1835         } else {
1836                 dst->min_val += src->min_val;
1837                 dst->max_val += src->max_val;
1838                 dst->samples += src->samples;
1839                 dst->mean.u.f += src->mean.u.f;
1840                 dst->S.u.f += src->S.u.f;
1841         }
1842 }
1843
1844 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1845 {
1846         int i;
1847
1848         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1849                 if (dst->max_run[i] < src->max_run[i])
1850                         dst->max_run[i] = src->max_run[i];
1851                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1852                         dst->min_run[i] = src->min_run[i];
1853                 if (dst->max_bw[i] < src->max_bw[i])
1854                         dst->max_bw[i] = src->max_bw[i];
1855                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1856                         dst->min_bw[i] = src->min_bw[i];
1857
1858                 dst->iobytes[i] += src->iobytes[i];
1859                 dst->agg[i] += src->agg[i];
1860         }
1861
1862         if (!dst->kb_base)
1863                 dst->kb_base = src->kb_base;
1864         if (!dst->unit_base)
1865                 dst->unit_base = src->unit_base;
1866         if (!dst->sig_figs)
1867                 dst->sig_figs = src->sig_figs;
1868 }
1869
1870 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1871                       bool first)
1872 {
1873         int k, l, m;
1874
1875         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1876                 if (!dst->unified_rw_rep) {
1877                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1878                         sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
1879                         sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
1880                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1881                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1882                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1883                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1884
1885                         dst->io_bytes[l] += src->io_bytes[l];
1886
1887                         if (dst->runtime[l] < src->runtime[l])
1888                                 dst->runtime[l] = src->runtime[l];
1889                 } else {
1890                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1891                         sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
1892                         sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
1893                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1894                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1895                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1896                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1897
1898                         dst->io_bytes[0] += src->io_bytes[l];
1899
1900                         if (dst->runtime[0] < src->runtime[l])
1901                                 dst->runtime[0] = src->runtime[l];
1902
1903                         /*
1904                          * We're summing to the same destination, so override
1905                          * 'first' after the first iteration of the loop
1906                          */
1907                         first = false;
1908                 }
1909         }
1910
1911         sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1912         dst->usr_time += src->usr_time;
1913         dst->sys_time += src->sys_time;
1914         dst->ctx += src->ctx;
1915         dst->majf += src->majf;
1916         dst->minf += src->minf;
1917
1918         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1919                 dst->io_u_map[k] += src->io_u_map[k];
1920                 dst->io_u_submit[k] += src->io_u_submit[k];
1921                 dst->io_u_complete[k] += src->io_u_complete[k];
1922         }
1923
1924         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1925                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1926         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1927                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1928         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1929                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1930
1931         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1932                 if (!dst->unified_rw_rep) {
1933                         dst->total_io_u[k] += src->total_io_u[k];
1934                         dst->short_io_u[k] += src->short_io_u[k];
1935                         dst->drop_io_u[k] += src->drop_io_u[k];
1936                 } else {
1937                         dst->total_io_u[0] += src->total_io_u[k];
1938                         dst->short_io_u[0] += src->short_io_u[k];
1939                         dst->drop_io_u[0] += src->drop_io_u[k];
1940                 }
1941         }
1942
1943         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1944
1945         for (k = 0; k < FIO_LAT_CNT; k++)
1946                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
1947                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
1948                                 if (!dst->unified_rw_rep)
1949                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
1950                                 else
1951                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
1952
1953         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1954                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1955
1956         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1957                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1958                         if (!dst->unified_rw_rep) {
1959                                 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
1960                                 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
1961                         } else {
1962                                 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
1963                                 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
1964                         }
1965
1966                 }
1967         }
1968
1969         dst->total_run_time += src->total_run_time;
1970         dst->total_submit += src->total_submit;
1971         dst->total_complete += src->total_complete;
1972         dst->nr_zone_resets += src->nr_zone_resets;
1973         dst->cachehit += src->cachehit;
1974         dst->cachemiss += src->cachemiss;
1975 }
1976
1977 void init_group_run_stat(struct group_run_stats *gs)
1978 {
1979         int i;
1980         memset(gs, 0, sizeof(*gs));
1981
1982         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1983                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1984 }
1985
1986 void init_thread_stat(struct thread_stat *ts)
1987 {
1988         int j;
1989
1990         memset(ts, 0, sizeof(*ts));
1991
1992         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1993                 ts->lat_stat[j].min_val = -1UL;
1994                 ts->clat_stat[j].min_val = -1UL;
1995                 ts->slat_stat[j].min_val = -1UL;
1996                 ts->bw_stat[j].min_val = -1UL;
1997                 ts->iops_stat[j].min_val = -1UL;
1998                 ts->clat_high_prio_stat[j].min_val = -1UL;
1999                 ts->clat_low_prio_stat[j].min_val = -1UL;
2000         }
2001         ts->sync_stat.min_val = -1UL;
2002         ts->groupid = -1;
2003 }
2004
2005 void __show_run_stats(void)
2006 {
2007         struct group_run_stats *runstats, *rs;
2008         struct thread_data *td;
2009         struct thread_stat *threadstats, *ts;
2010         int i, j, k, nr_ts, last_ts, idx;
2011         bool kb_base_warned = false;
2012         bool unit_base_warned = false;
2013         struct json_object *root = NULL;
2014         struct json_array *array = NULL;
2015         struct buf_output output[FIO_OUTPUT_NR];
2016         struct flist_head **opt_lists;
2017
2018         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2019
2020         for (i = 0; i < groupid + 1; i++)
2021                 init_group_run_stat(&runstats[i]);
2022
2023         /*
2024          * find out how many threads stats we need. if group reporting isn't
2025          * enabled, it's one-per-td.
2026          */
2027         nr_ts = 0;
2028         last_ts = -1;
2029         for_each_td(td, i) {
2030                 if (!td->o.group_reporting) {
2031                         nr_ts++;
2032                         continue;
2033                 }
2034                 if (last_ts == td->groupid)
2035                         continue;
2036                 if (!td->o.stats)
2037                         continue;
2038
2039                 last_ts = td->groupid;
2040                 nr_ts++;
2041         }
2042
2043         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2044         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2045
2046         for (i = 0; i < nr_ts; i++) {
2047                 init_thread_stat(&threadstats[i]);
2048                 opt_lists[i] = NULL;
2049         }
2050
2051         j = 0;
2052         last_ts = -1;
2053         idx = 0;
2054         for_each_td(td, i) {
2055                 if (!td->o.stats)
2056                         continue;
2057                 if (idx && (!td->o.group_reporting ||
2058                     (td->o.group_reporting && last_ts != td->groupid))) {
2059                         idx = 0;
2060                         j++;
2061                 }
2062
2063                 last_ts = td->groupid;
2064
2065                 ts = &threadstats[j];
2066
2067                 ts->clat_percentiles = td->o.clat_percentiles;
2068                 ts->lat_percentiles = td->o.lat_percentiles;
2069                 ts->slat_percentiles = td->o.slat_percentiles;
2070                 ts->percentile_precision = td->o.percentile_precision;
2071                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2072                 opt_lists[j] = &td->opt_list;
2073
2074                 idx++;
2075                 ts->members++;
2076
2077                 if (ts->groupid == -1) {
2078                         /*
2079                          * These are per-group shared already
2080                          */
2081                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2082                         if (td->o.description)
2083                                 snprintf(ts->description,
2084                                          sizeof(ts->description), "%s",
2085                                          td->o.description);
2086                         else
2087                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2088
2089                         /*
2090                          * If multiple entries in this group, this is
2091                          * the first member.
2092                          */
2093                         ts->thread_number = td->thread_number;
2094                         ts->groupid = td->groupid;
2095
2096                         /*
2097                          * first pid in group, not very useful...
2098                          */
2099                         ts->pid = td->pid;
2100
2101                         ts->kb_base = td->o.kb_base;
2102                         ts->unit_base = td->o.unit_base;
2103                         ts->sig_figs = td->o.sig_figs;
2104                         ts->unified_rw_rep = td->o.unified_rw_rep;
2105                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2106                         log_info("fio: kb_base differs for jobs in group, using"
2107                                  " %u as the base\n", ts->kb_base);
2108                         kb_base_warned = true;
2109                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2110                         log_info("fio: unit_base differs for jobs in group, using"
2111                                  " %u as the base\n", ts->unit_base);
2112                         unit_base_warned = true;
2113                 }
2114
2115                 ts->continue_on_error = td->o.continue_on_error;
2116                 ts->total_err_count += td->total_err_count;
2117                 ts->first_error = td->first_error;
2118                 if (!ts->error) {
2119                         if (!td->error && td->o.continue_on_error &&
2120                             td->first_error) {
2121                                 ts->error = td->first_error;
2122                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2123                                          td->verror);
2124                         } else  if (td->error) {
2125                                 ts->error = td->error;
2126                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2127                                          td->verror);
2128                         }
2129                 }
2130
2131                 ts->latency_depth = td->latency_qd;
2132                 ts->latency_target = td->o.latency_target;
2133                 ts->latency_percentile = td->o.latency_percentile;
2134                 ts->latency_window = td->o.latency_window;
2135
2136                 ts->nr_block_infos = td->ts.nr_block_infos;
2137                 for (k = 0; k < ts->nr_block_infos; k++)
2138                         ts->block_infos[k] = td->ts.block_infos[k];
2139
2140                 sum_thread_stats(ts, &td->ts, idx == 1);
2141
2142                 if (td->o.ss_dur) {
2143                         ts->ss_state = td->ss.state;
2144                         ts->ss_dur = td->ss.dur;
2145                         ts->ss_head = td->ss.head;
2146                         ts->ss_bw_data = td->ss.bw_data;
2147                         ts->ss_iops_data = td->ss.iops_data;
2148                         ts->ss_limit.u.f = td->ss.limit;
2149                         ts->ss_slope.u.f = td->ss.slope;
2150                         ts->ss_deviation.u.f = td->ss.deviation;
2151                         ts->ss_criterion.u.f = td->ss.criterion;
2152                 }
2153                 else
2154                         ts->ss_dur = ts->ss_state = 0;
2155         }
2156
2157         for (i = 0; i < nr_ts; i++) {
2158                 unsigned long long bw;
2159
2160                 ts = &threadstats[i];
2161                 if (ts->groupid == -1)
2162                         continue;
2163                 rs = &runstats[ts->groupid];
2164                 rs->kb_base = ts->kb_base;
2165                 rs->unit_base = ts->unit_base;
2166                 rs->sig_figs = ts->sig_figs;
2167                 rs->unified_rw_rep += ts->unified_rw_rep;
2168
2169                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2170                         if (!ts->runtime[j])
2171                                 continue;
2172                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2173                                 rs->min_run[j] = ts->runtime[j];
2174                         if (ts->runtime[j] > rs->max_run[j])
2175                                 rs->max_run[j] = ts->runtime[j];
2176
2177                         bw = 0;
2178                         if (ts->runtime[j])
2179                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2180                         if (bw < rs->min_bw[j])
2181                                 rs->min_bw[j] = bw;
2182                         if (bw > rs->max_bw[j])
2183                                 rs->max_bw[j] = bw;
2184
2185                         rs->iobytes[j] += ts->io_bytes[j];
2186                 }
2187         }
2188
2189         for (i = 0; i < groupid + 1; i++) {
2190                 int ddir;
2191
2192                 rs = &runstats[i];
2193
2194                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2195                         if (rs->max_run[ddir])
2196                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2197                                                 rs->max_run[ddir];
2198                 }
2199         }
2200
2201         for (i = 0; i < FIO_OUTPUT_NR; i++)
2202                 buf_output_init(&output[i]);
2203
2204         /*
2205          * don't overwrite last signal output
2206          */
2207         if (output_format & FIO_OUTPUT_NORMAL)
2208                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2209         if (output_format & FIO_OUTPUT_JSON) {
2210                 struct thread_data *global;
2211                 char time_buf[32];
2212                 struct timeval now;
2213                 unsigned long long ms_since_epoch;
2214                 time_t tv_sec;
2215
2216                 gettimeofday(&now, NULL);
2217                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2218                                  (unsigned long long)(now.tv_usec) / 1000;
2219
2220                 tv_sec = now.tv_sec;
2221                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2222                 if (time_buf[strlen(time_buf) - 1] == '\n')
2223                         time_buf[strlen(time_buf) - 1] = '\0';
2224
2225                 root = json_create_object();
2226                 json_object_add_value_string(root, "fio version", fio_version_string);
2227                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2228                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2229                 json_object_add_value_string(root, "time", time_buf);
2230                 global = get_global_options();
2231                 json_add_job_opts(root, "global options", &global->opt_list);
2232                 array = json_create_array();
2233                 json_object_add_value_array(root, "jobs", array);
2234         }
2235
2236         if (is_backend)
2237                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2238
2239         for (i = 0; i < nr_ts; i++) {
2240                 ts = &threadstats[i];
2241                 rs = &runstats[ts->groupid];
2242
2243                 if (is_backend) {
2244                         fio_server_send_job_options(opt_lists[i], i);
2245                         fio_server_send_ts(ts, rs);
2246                 } else {
2247                         if (output_format & FIO_OUTPUT_TERSE)
2248                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2249                         if (output_format & FIO_OUTPUT_JSON) {
2250                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2251                                 json_array_add_value_object(array, tmp);
2252                         }
2253                         if (output_format & FIO_OUTPUT_NORMAL)
2254                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2255                 }
2256         }
2257         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2258                 /* disk util stats, if any */
2259                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2260
2261                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2262
2263                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2264                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2265                 json_free_object(root);
2266         }
2267
2268         for (i = 0; i < groupid + 1; i++) {
2269                 rs = &runstats[i];
2270
2271                 rs->groupid = i;
2272                 if (is_backend)
2273                         fio_server_send_gs(rs);
2274                 else if (output_format & FIO_OUTPUT_NORMAL)
2275                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2276         }
2277
2278         if (is_backend)
2279                 fio_server_send_du();
2280         else if (output_format & FIO_OUTPUT_NORMAL) {
2281                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2282                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2283         }
2284
2285         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2286                 struct buf_output *out = &output[i];
2287
2288                 log_info_buf(out->buf, out->buflen);
2289                 buf_output_free(out);
2290         }
2291
2292         fio_idle_prof_cleanup();
2293
2294         log_info_flush();
2295         free(runstats);
2296         free(threadstats);
2297         free(opt_lists);
2298 }
2299
2300 void __show_running_run_stats(void)
2301 {
2302         struct thread_data *td;
2303         unsigned long long *rt;
2304         struct timespec ts;
2305         int i;
2306
2307         fio_sem_down(stat_sem);
2308
2309         rt = malloc(thread_number * sizeof(unsigned long long));
2310         fio_gettime(&ts, NULL);
2311
2312         for_each_td(td, i) {
2313                 td->update_rusage = 1;
2314                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2315                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2316                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2317                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2318
2319                 rt[i] = mtime_since(&td->start, &ts);
2320                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2321                         td->ts.runtime[DDIR_READ] += rt[i];
2322                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2323                         td->ts.runtime[DDIR_WRITE] += rt[i];
2324                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2325                         td->ts.runtime[DDIR_TRIM] += rt[i];
2326         }
2327
2328         for_each_td(td, i) {
2329                 if (td->runstate >= TD_EXITED)
2330                         continue;
2331                 if (td->rusage_sem) {
2332                         td->update_rusage = 1;
2333                         fio_sem_down(td->rusage_sem);
2334                 }
2335                 td->update_rusage = 0;
2336         }
2337
2338         __show_run_stats();
2339
2340         for_each_td(td, i) {
2341                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2342                         td->ts.runtime[DDIR_READ] -= rt[i];
2343                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2344                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2345                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2346                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2347         }
2348
2349         free(rt);
2350         fio_sem_up(stat_sem);
2351 }
2352
2353 static bool status_interval_init;
2354 static struct timespec status_time;
2355 static bool status_file_disabled;
2356
2357 #define FIO_STATUS_FILE         "fio-dump-status"
2358
2359 static int check_status_file(void)
2360 {
2361         struct stat sb;
2362         const char *temp_dir;
2363         char fio_status_file_path[PATH_MAX];
2364
2365         if (status_file_disabled)
2366                 return 0;
2367
2368         temp_dir = getenv("TMPDIR");
2369         if (temp_dir == NULL) {
2370                 temp_dir = getenv("TEMP");
2371                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2372                         temp_dir = NULL;
2373         }
2374         if (temp_dir == NULL)
2375                 temp_dir = "/tmp";
2376 #ifdef __COVERITY__
2377         __coverity_tainted_data_sanitize__(temp_dir);
2378 #endif
2379
2380         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2381
2382         if (stat(fio_status_file_path, &sb))
2383                 return 0;
2384
2385         if (unlink(fio_status_file_path) < 0) {
2386                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2387                                                         strerror(errno));
2388                 log_err("fio: disabling status file updates\n");
2389                 status_file_disabled = true;
2390         }
2391
2392         return 1;
2393 }
2394
2395 void check_for_running_stats(void)
2396 {
2397         if (status_interval) {
2398                 if (!status_interval_init) {
2399                         fio_gettime(&status_time, NULL);
2400                         status_interval_init = true;
2401                 } else if (mtime_since_now(&status_time) >= status_interval) {
2402                         show_running_run_stats();
2403                         fio_gettime(&status_time, NULL);
2404                         return;
2405                 }
2406         }
2407         if (check_status_file()) {
2408                 show_running_run_stats();
2409                 return;
2410         }
2411 }
2412
2413 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2414 {
2415         double val = data;
2416         double delta;
2417
2418         if (data > is->max_val)
2419                 is->max_val = data;
2420         if (data < is->min_val)
2421                 is->min_val = data;
2422
2423         delta = val - is->mean.u.f;
2424         if (delta) {
2425                 is->mean.u.f += delta / (is->samples + 1.0);
2426                 is->S.u.f += delta * (val - is->mean.u.f);
2427         }
2428
2429         is->samples++;
2430 }
2431
2432 /*
2433  * Return a struct io_logs, which is added to the tail of the log
2434  * list for 'iolog'.
2435  */
2436 static struct io_logs *get_new_log(struct io_log *iolog)
2437 {
2438         size_t new_size, new_samples;
2439         struct io_logs *cur_log;
2440
2441         /*
2442          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2443          * forever
2444          */
2445         if (!iolog->cur_log_max)
2446                 new_samples = DEF_LOG_ENTRIES;
2447         else {
2448                 new_samples = iolog->cur_log_max * 2;
2449                 if (new_samples > MAX_LOG_ENTRIES)
2450                         new_samples = MAX_LOG_ENTRIES;
2451         }
2452
2453         new_size = new_samples * log_entry_sz(iolog);
2454
2455         cur_log = smalloc(sizeof(*cur_log));
2456         if (cur_log) {
2457                 INIT_FLIST_HEAD(&cur_log->list);
2458                 cur_log->log = malloc(new_size);
2459                 if (cur_log->log) {
2460                         cur_log->nr_samples = 0;
2461                         cur_log->max_samples = new_samples;
2462                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2463                         iolog->cur_log_max = new_samples;
2464                         return cur_log;
2465                 }
2466                 sfree(cur_log);
2467         }
2468
2469         return NULL;
2470 }
2471
2472 /*
2473  * Add and return a new log chunk, or return current log if big enough
2474  */
2475 static struct io_logs *regrow_log(struct io_log *iolog)
2476 {
2477         struct io_logs *cur_log;
2478         int i;
2479
2480         if (!iolog || iolog->disabled)
2481                 goto disable;
2482
2483         cur_log = iolog_cur_log(iolog);
2484         if (!cur_log) {
2485                 cur_log = get_new_log(iolog);
2486                 if (!cur_log)
2487                         return NULL;
2488         }
2489
2490         if (cur_log->nr_samples < cur_log->max_samples)
2491                 return cur_log;
2492
2493         /*
2494          * No room for a new sample. If we're compressing on the fly, flush
2495          * out the current chunk
2496          */
2497         if (iolog->log_gz) {
2498                 if (iolog_cur_flush(iolog, cur_log)) {
2499                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2500                         return NULL;
2501                 }
2502         }
2503
2504         /*
2505          * Get a new log array, and add to our list
2506          */
2507         cur_log = get_new_log(iolog);
2508         if (!cur_log) {
2509                 log_err("fio: failed extending iolog! Will stop logging.\n");
2510                 return NULL;
2511         }
2512
2513         if (!iolog->pending || !iolog->pending->nr_samples)
2514                 return cur_log;
2515
2516         /*
2517          * Flush pending items to new log
2518          */
2519         for (i = 0; i < iolog->pending->nr_samples; i++) {
2520                 struct io_sample *src, *dst;
2521
2522                 src = get_sample(iolog, iolog->pending, i);
2523                 dst = get_sample(iolog, cur_log, i);
2524                 memcpy(dst, src, log_entry_sz(iolog));
2525         }
2526         cur_log->nr_samples = iolog->pending->nr_samples;
2527
2528         iolog->pending->nr_samples = 0;
2529         return cur_log;
2530 disable:
2531         if (iolog)
2532                 iolog->disabled = true;
2533         return NULL;
2534 }
2535
2536 void regrow_logs(struct thread_data *td)
2537 {
2538         regrow_log(td->slat_log);
2539         regrow_log(td->clat_log);
2540         regrow_log(td->clat_hist_log);
2541         regrow_log(td->lat_log);
2542         regrow_log(td->bw_log);
2543         regrow_log(td->iops_log);
2544         td->flags &= ~TD_F_REGROW_LOGS;
2545 }
2546
2547 static struct io_logs *get_cur_log(struct io_log *iolog)
2548 {
2549         struct io_logs *cur_log;
2550
2551         cur_log = iolog_cur_log(iolog);
2552         if (!cur_log) {
2553                 cur_log = get_new_log(iolog);
2554                 if (!cur_log)
2555                         return NULL;
2556         }
2557
2558         if (cur_log->nr_samples < cur_log->max_samples)
2559                 return cur_log;
2560
2561         /*
2562          * Out of space. If we're in IO offload mode, or we're not doing
2563          * per unit logging (hence logging happens outside of the IO thread
2564          * as well), add a new log chunk inline. If we're doing inline
2565          * submissions, flag 'td' as needing a log regrow and we'll take
2566          * care of it on the submission side.
2567          */
2568         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2569             !per_unit_log(iolog))
2570                 return regrow_log(iolog);
2571
2572         if (iolog->td)
2573                 iolog->td->flags |= TD_F_REGROW_LOGS;
2574         if (iolog->pending)
2575                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2576         return iolog->pending;
2577 }
2578
2579 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2580                              enum fio_ddir ddir, unsigned long long bs,
2581                              unsigned long t, uint64_t offset, uint8_t priority_bit)
2582 {
2583         struct io_logs *cur_log;
2584
2585         if (iolog->disabled)
2586                 return;
2587         if (flist_empty(&iolog->io_logs))
2588                 iolog->avg_last[ddir] = t;
2589
2590         cur_log = get_cur_log(iolog);
2591         if (cur_log) {
2592                 struct io_sample *s;
2593
2594                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2595
2596                 s->data = data;
2597                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2598                 io_sample_set_ddir(iolog, s, ddir);
2599                 s->bs = bs;
2600                 s->priority_bit = priority_bit;
2601
2602                 if (iolog->log_offset) {
2603                         struct io_sample_offset *so = (void *) s;
2604
2605                         so->offset = offset;
2606                 }
2607
2608                 cur_log->nr_samples++;
2609                 return;
2610         }
2611
2612         iolog->disabled = true;
2613 }
2614
2615 static inline void reset_io_stat(struct io_stat *ios)
2616 {
2617         ios->min_val = -1ULL;
2618         ios->max_val = ios->samples = 0;
2619         ios->mean.u.f = ios->S.u.f = 0;
2620 }
2621
2622 void reset_io_stats(struct thread_data *td)
2623 {
2624         struct thread_stat *ts = &td->ts;
2625         int i, j, k;
2626
2627         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2628                 reset_io_stat(&ts->clat_high_prio_stat[i]);
2629                 reset_io_stat(&ts->clat_low_prio_stat[i]);
2630                 reset_io_stat(&ts->clat_stat[i]);
2631                 reset_io_stat(&ts->slat_stat[i]);
2632                 reset_io_stat(&ts->lat_stat[i]);
2633                 reset_io_stat(&ts->bw_stat[i]);
2634                 reset_io_stat(&ts->iops_stat[i]);
2635
2636                 ts->io_bytes[i] = 0;
2637                 ts->runtime[i] = 0;
2638                 ts->total_io_u[i] = 0;
2639                 ts->short_io_u[i] = 0;
2640                 ts->drop_io_u[i] = 0;
2641
2642                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2643                         ts->io_u_plat_high_prio[i][j] = 0;
2644                         ts->io_u_plat_low_prio[i][j] = 0;
2645                         if (!i)
2646                                 ts->io_u_sync_plat[j] = 0;
2647                 }
2648         }
2649
2650         for (i = 0; i < FIO_LAT_CNT; i++)
2651                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2652                         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2653                                 ts->io_u_plat[i][j][k] = 0;
2654
2655         ts->total_io_u[DDIR_SYNC] = 0;
2656
2657         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2658                 ts->io_u_map[i] = 0;
2659                 ts->io_u_submit[i] = 0;
2660                 ts->io_u_complete[i] = 0;
2661         }
2662
2663         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2664                 ts->io_u_lat_n[i] = 0;
2665         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2666                 ts->io_u_lat_u[i] = 0;
2667         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2668                 ts->io_u_lat_m[i] = 0;
2669
2670         ts->total_submit = 0;
2671         ts->total_complete = 0;
2672         ts->nr_zone_resets = 0;
2673         ts->cachehit = ts->cachemiss = 0;
2674 }
2675
2676 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2677                               unsigned long elapsed, bool log_max, uint8_t priority_bit)
2678 {
2679         /*
2680          * Note an entry in the log. Use the mean from the logged samples,
2681          * making sure to properly round up. Only write a log entry if we
2682          * had actual samples done.
2683          */
2684         if (iolog->avg_window[ddir].samples) {
2685                 union io_sample_data data;
2686
2687                 if (log_max)
2688                         data.val = iolog->avg_window[ddir].max_val;
2689                 else
2690                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2691
2692                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, priority_bit);
2693         }
2694
2695         reset_io_stat(&iolog->avg_window[ddir]);
2696 }
2697
2698 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2699                              bool log_max, uint8_t priority_bit)
2700 {
2701         int ddir;
2702
2703         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2704                 __add_stat_to_log(iolog, ddir, elapsed, log_max, priority_bit);
2705 }
2706
2707 static unsigned long add_log_sample(struct thread_data *td,
2708                                     struct io_log *iolog,
2709                                     union io_sample_data data,
2710                                     enum fio_ddir ddir, unsigned long long bs,
2711                                     uint64_t offset, uint8_t priority_bit)
2712 {
2713         unsigned long elapsed, this_window;
2714
2715         if (!ddir_rw(ddir))
2716                 return 0;
2717
2718         elapsed = mtime_since_now(&td->epoch);
2719
2720         /*
2721          * If no time averaging, just add the log sample.
2722          */
2723         if (!iolog->avg_msec) {
2724                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset, priority_bit);
2725                 return 0;
2726         }
2727
2728         /*
2729          * Add the sample. If the time period has passed, then
2730          * add that entry to the log and clear.
2731          */
2732         add_stat_sample(&iolog->avg_window[ddir], data.val);
2733
2734         /*
2735          * If period hasn't passed, adding the above sample is all we
2736          * need to do.
2737          */
2738         this_window = elapsed - iolog->avg_last[ddir];
2739         if (elapsed < iolog->avg_last[ddir])
2740                 return iolog->avg_last[ddir] - elapsed;
2741         else if (this_window < iolog->avg_msec) {
2742                 unsigned long diff = iolog->avg_msec - this_window;
2743
2744                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2745                         return diff;
2746         }
2747
2748         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0, priority_bit);
2749
2750         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2751         return iolog->avg_msec;
2752 }
2753
2754 void finalize_logs(struct thread_data *td, bool unit_logs)
2755 {
2756         unsigned long elapsed;
2757
2758         elapsed = mtime_since_now(&td->epoch);
2759
2760         if (td->clat_log && unit_logs)
2761                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0, 0);
2762         if (td->slat_log && unit_logs)
2763                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0, 0);
2764         if (td->lat_log && unit_logs)
2765                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0, 0);
2766         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2767                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0, 0);
2768         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2769                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0, 0);
2770 }
2771
2772 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs,
2773                                         uint8_t priority_bit)
2774 {
2775         struct io_log *iolog;
2776
2777         if (!ddir_rw(ddir))
2778                 return;
2779
2780         iolog = agg_io_log[ddir];
2781         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, priority_bit);
2782 }
2783
2784 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2785 {
2786         unsigned int idx = plat_val_to_idx(nsec);
2787         assert(idx < FIO_IO_U_PLAT_NR);
2788
2789         ts->io_u_sync_plat[idx]++;
2790         add_stat_sample(&ts->sync_stat, nsec);
2791 }
2792
2793 static void add_lat_percentile_sample_noprio(struct thread_stat *ts,
2794                                 unsigned long long nsec, enum fio_ddir ddir, enum fio_lat lat)
2795 {
2796         unsigned int idx = plat_val_to_idx(nsec);
2797         assert(idx < FIO_IO_U_PLAT_NR);
2798
2799         ts->io_u_plat[lat][ddir][idx]++;
2800 }
2801
2802 static void add_lat_percentile_sample(struct thread_stat *ts,
2803                                 unsigned long long nsec, enum fio_ddir ddir, uint8_t priority_bit,
2804                                 enum fio_lat lat)
2805 {
2806         unsigned int idx = plat_val_to_idx(nsec);
2807
2808         add_lat_percentile_sample_noprio(ts, nsec, ddir, lat);
2809
2810         if (!priority_bit)
2811                 ts->io_u_plat_low_prio[ddir][idx]++;
2812         else
2813                 ts->io_u_plat_high_prio[ddir][idx]++;
2814 }
2815
2816 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2817                      unsigned long long nsec, unsigned long long bs,
2818                      uint64_t offset, uint8_t priority_bit)
2819 {
2820         const bool needs_lock = td_async_processing(td);
2821         unsigned long elapsed, this_window;
2822         struct thread_stat *ts = &td->ts;
2823         struct io_log *iolog = td->clat_hist_log;
2824
2825         if (needs_lock)
2826                 __td_io_u_lock(td);
2827
2828         add_stat_sample(&ts->clat_stat[ddir], nsec);
2829
2830         if (!ts->lat_percentiles) {
2831                 if (priority_bit)
2832                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2833                 else
2834                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2835         }
2836
2837         if (td->clat_log)
2838                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2839                                offset, priority_bit);
2840
2841         if (ts->clat_percentiles) {
2842                 if (ts->lat_percentiles)
2843                         add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_CLAT);
2844                 else
2845                         add_lat_percentile_sample(ts, nsec, ddir, priority_bit, FIO_CLAT);
2846         }
2847
2848         if (iolog && iolog->hist_msec) {
2849                 struct io_hist *hw = &iolog->hist_window[ddir];
2850
2851                 hw->samples++;
2852                 elapsed = mtime_since_now(&td->epoch);
2853                 if (!hw->hist_last)
2854                         hw->hist_last = elapsed;
2855                 this_window = elapsed - hw->hist_last;
2856
2857                 if (this_window >= iolog->hist_msec) {
2858                         uint64_t *io_u_plat;
2859                         struct io_u_plat_entry *dst;
2860
2861                         /*
2862                          * Make a byte-for-byte copy of the latency histogram
2863                          * stored in td->ts.io_u_plat[ddir], recording it in a
2864                          * log sample. Note that the matching call to free() is
2865                          * located in iolog.c after printing this sample to the
2866                          * log file.
2867                          */
2868                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
2869                         dst = malloc(sizeof(struct io_u_plat_entry));
2870                         memcpy(&(dst->io_u_plat), io_u_plat,
2871                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
2872                         flist_add(&dst->list, &hw->list);
2873                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2874                                                 elapsed, offset, priority_bit);
2875
2876                         /*
2877                          * Update the last time we recorded as being now, minus
2878                          * any drift in time we encountered before actually
2879                          * making the record.
2880                          */
2881                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2882                         hw->samples = 0;
2883                 }
2884         }
2885
2886         if (needs_lock)
2887                 __td_io_u_unlock(td);
2888 }
2889
2890 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2891                         unsigned long long nsec, unsigned long long bs, uint64_t offset,
2892                         uint8_t priority_bit)
2893 {
2894         const bool needs_lock = td_async_processing(td);
2895         struct thread_stat *ts = &td->ts;
2896
2897         if (!ddir_rw(ddir))
2898                 return;
2899
2900         if (needs_lock)
2901                 __td_io_u_lock(td);
2902
2903         add_stat_sample(&ts->slat_stat[ddir], nsec);
2904
2905         if (td->slat_log)
2906                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs, offset,
2907                         priority_bit);
2908
2909         if (ts->slat_percentiles)
2910                 add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_SLAT);
2911
2912         if (needs_lock)
2913                 __td_io_u_unlock(td);
2914 }
2915
2916 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2917                     unsigned long long nsec, unsigned long long bs,
2918                     uint64_t offset, uint8_t priority_bit)
2919 {
2920         const bool needs_lock = td_async_processing(td);
2921         struct thread_stat *ts = &td->ts;
2922
2923         if (!ddir_rw(ddir))
2924                 return;
2925
2926         if (needs_lock)
2927                 __td_io_u_lock(td);
2928
2929         add_stat_sample(&ts->lat_stat[ddir], nsec);
2930
2931         if (td->lat_log)
2932                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2933                                offset, priority_bit);
2934
2935         if (ts->lat_percentiles) {
2936                 add_lat_percentile_sample(ts, nsec, ddir, priority_bit, FIO_LAT);
2937                 if (priority_bit)
2938                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2939                 else
2940                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2941
2942         }
2943         if (needs_lock)
2944                 __td_io_u_unlock(td);
2945 }
2946
2947 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2948                    unsigned int bytes, unsigned long long spent)
2949 {
2950         const bool needs_lock = td_async_processing(td);
2951         struct thread_stat *ts = &td->ts;
2952         unsigned long rate;
2953
2954         if (spent)
2955                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2956         else
2957                 rate = 0;
2958
2959         if (needs_lock)
2960                 __td_io_u_lock(td);
2961
2962         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2963
2964         if (td->bw_log)
2965                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2966                                bytes, io_u->offset, io_u_is_prio(io_u));
2967
2968         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2969
2970         if (needs_lock)
2971                 __td_io_u_unlock(td);
2972 }
2973
2974 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2975                          struct timespec *t, unsigned int avg_time,
2976                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2977                          struct io_stat *stat, struct io_log *log,
2978                          bool is_kb)
2979 {
2980         const bool needs_lock = td_async_processing(td);
2981         unsigned long spent, rate;
2982         enum fio_ddir ddir;
2983         unsigned long next, next_log;
2984
2985         next_log = avg_time;
2986
2987         spent = mtime_since(parent_tv, t);
2988         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2989                 return avg_time - spent;
2990
2991         if (needs_lock)
2992                 __td_io_u_lock(td);
2993
2994         /*
2995          * Compute both read and write rates for the interval.
2996          */
2997         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2998                 uint64_t delta;
2999
3000                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3001                 if (!delta)
3002                         continue; /* No entries for interval */
3003
3004                 if (spent) {
3005                         if (is_kb)
3006                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3007                         else
3008                                 rate = (delta * 1000) / spent;
3009                 } else
3010                         rate = 0;
3011
3012                 add_stat_sample(&stat[ddir], rate);
3013
3014                 if (log) {
3015                         unsigned long long bs = 0;
3016
3017                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3018                                 bs = td->o.min_bs[ddir];
3019
3020                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0, 0);
3021                         next_log = min(next_log, next);
3022                 }
3023
3024                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3025         }
3026
3027         *parent_tv = *t;
3028
3029         if (needs_lock)
3030                 __td_io_u_unlock(td);
3031
3032         if (spent <= avg_time)
3033                 next = avg_time;
3034         else
3035                 next = avg_time - (1 + spent - avg_time);
3036
3037         return min(next, next_log);
3038 }
3039
3040 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3041 {
3042         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3043                                 td->this_io_bytes, td->stat_io_bytes,
3044                                 td->ts.bw_stat, td->bw_log, true);
3045 }
3046
3047 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3048                      unsigned int bytes)
3049 {
3050         const bool needs_lock = td_async_processing(td);
3051         struct thread_stat *ts = &td->ts;
3052
3053         if (needs_lock)
3054                 __td_io_u_lock(td);
3055
3056         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3057
3058         if (td->iops_log)
3059                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3060                                bytes, io_u->offset, io_u_is_prio(io_u));
3061
3062         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3063
3064         if (needs_lock)
3065                 __td_io_u_unlock(td);
3066 }
3067
3068 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3069 {
3070         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3071                                 td->this_io_blocks, td->stat_io_blocks,
3072                                 td->ts.iops_stat, td->iops_log, false);
3073 }
3074
3075 /*
3076  * Returns msecs to next event
3077  */
3078 int calc_log_samples(void)
3079 {
3080         struct thread_data *td;
3081         unsigned int next = ~0U, tmp;
3082         struct timespec now;
3083         int i;
3084
3085         fio_gettime(&now, NULL);
3086
3087         for_each_td(td, i) {
3088                 if (!td->o.stats)
3089                         continue;
3090                 if (in_ramp_time(td) ||
3091                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3092                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3093                         continue;
3094                 }
3095                 if (!td->bw_log ||
3096                         (td->bw_log && !per_unit_log(td->bw_log))) {
3097                         tmp = add_bw_samples(td, &now);
3098                         if (tmp < next)
3099                                 next = tmp;
3100                 }
3101                 if (!td->iops_log ||
3102                         (td->iops_log && !per_unit_log(td->iops_log))) {
3103                         tmp = add_iops_samples(td, &now);
3104                         if (tmp < next)
3105                                 next = tmp;
3106                 }
3107         }
3108
3109         return next == ~0U ? 0 : next;
3110 }
3111
3112 void stat_init(void)
3113 {
3114         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3115 }
3116
3117 void stat_exit(void)
3118 {
3119         /*
3120          * When we have the mutex, we know out-of-band access to it
3121          * have ended.
3122          */
3123         fio_sem_down(stat_sem);
3124         fio_sem_remove(stat_sem);
3125 }
3126
3127 /*
3128  * Called from signal handler. Wake up status thread.
3129  */
3130 void show_running_run_stats(void)
3131 {
3132         helper_do_stat();
3133 }
3134
3135 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3136 {
3137         /* Ignore io_u's which span multiple blocks--they will just get
3138          * inaccurate counts. */
3139         int idx = (io_u->offset - io_u->file->file_offset)
3140                         / td->o.bs[DDIR_TRIM];
3141         uint32_t *info = &td->ts.block_infos[idx];
3142         assert(idx < td->ts.nr_block_infos);
3143         return info;
3144 }