stat: convert json output to a new per priority granularity format
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #ifdef WIN32
21 #define LOG_MSEC_SLACK  2
22 #else
23 #define LOG_MSEC_SLACK  1
24 #endif
25
26 struct fio_sem *stat_sem;
27
28 void clear_rusage_stat(struct thread_data *td)
29 {
30         struct thread_stat *ts = &td->ts;
31
32         fio_getrusage(&td->ru_start);
33         ts->usr_time = ts->sys_time = 0;
34         ts->ctx = 0;
35         ts->minf = ts->majf = 0;
36 }
37
38 void update_rusage_stat(struct thread_data *td)
39 {
40         struct thread_stat *ts = &td->ts;
41
42         fio_getrusage(&td->ru_end);
43         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44                                         &td->ru_end.ru_utime);
45         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46                                         &td->ru_end.ru_stime);
47         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53 }
54
55 /*
56  * Given a latency, return the index of the corresponding bucket in
57  * the structure tracking percentiles.
58  *
59  * (1) find the group (and error bits) that the value (latency)
60  * belongs to by looking at its MSB. (2) find the bucket number in the
61  * group by looking at the index bits.
62  *
63  */
64 static unsigned int plat_val_to_idx(unsigned long long val)
65 {
66         unsigned int msb, error_bits, base, offset, idx;
67
68         /* Find MSB starting from bit 0 */
69         if (val == 0)
70                 msb = 0;
71         else
72                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74         /*
75          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76          * all bits of the sample as index
77          */
78         if (msb <= FIO_IO_U_PLAT_BITS)
79                 return val;
80
81         /* Compute the number of error bits to discard*/
82         error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84         /* Compute the number of buckets before the group */
85         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87         /*
88          * Discard the error bits and apply the mask to find the
89          * index for the buckets in the group
90          */
91         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93         /* Make sure the index does not exceed (array size - 1) */
94         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97         return idx;
98 }
99
100 /*
101  * Convert the given index of the bucket array to the value
102  * represented by the bucket
103  */
104 static unsigned long long plat_idx_to_val(unsigned int idx)
105 {
106         unsigned int error_bits;
107         unsigned long long k, base;
108
109         assert(idx < FIO_IO_U_PLAT_NR);
110
111         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112          * all bits of the sample as index */
113         if (idx < (FIO_IO_U_PLAT_VAL << 1))
114                 return idx;
115
116         /* Find the group and compute the minimum value of that group */
117         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120         /* Find its bucket number of the group */
121         k = idx % FIO_IO_U_PLAT_VAL;
122
123         /* Return the mean of the range of the bucket */
124         return base + ((k + 0.5) * (1 << error_bits));
125 }
126
127 static int double_cmp(const void *a, const void *b)
128 {
129         const fio_fp64_t fa = *(const fio_fp64_t *) a;
130         const fio_fp64_t fb = *(const fio_fp64_t *) b;
131         int cmp = 0;
132
133         if (fa.u.f > fb.u.f)
134                 cmp = 1;
135         else if (fa.u.f < fb.u.f)
136                 cmp = -1;
137
138         return cmp;
139 }
140
141 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142                                    fio_fp64_t *plist, unsigned long long **output,
143                                    unsigned long long *maxv, unsigned long long *minv)
144 {
145         unsigned long long sum = 0;
146         unsigned int len, i, j = 0;
147         unsigned long long *ovals = NULL;
148         bool is_last;
149
150         *minv = -1ULL;
151         *maxv = 0;
152
153         len = 0;
154         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155                 len++;
156
157         if (!len)
158                 return 0;
159
160         /*
161          * Sort the percentile list. Note that it may already be sorted if
162          * we are using the default values, but since it's a short list this
163          * isn't a worry. Also note that this does not work for NaN values.
164          */
165         if (len > 1)
166                 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168         ovals = malloc(len * sizeof(*ovals));
169         if (!ovals)
170                 return 0;
171
172         /*
173          * Calculate bucket values, note down max and min values
174          */
175         is_last = false;
176         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177                 sum += io_u_plat[i];
178                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179                         assert(plist[j].u.f <= 100.0);
180
181                         ovals[j] = plat_idx_to_val(i);
182                         if (ovals[j] < *minv)
183                                 *minv = ovals[j];
184                         if (ovals[j] > *maxv)
185                                 *maxv = ovals[j];
186
187                         is_last = (j == len - 1) != 0;
188                         if (is_last)
189                                 break;
190
191                         j++;
192                 }
193         }
194
195         if (!is_last)
196                 log_err("fio: error calculating latency percentiles\n");
197
198         *output = ovals;
199         return len;
200 }
201
202 /*
203  * Find and display the p-th percentile of clat
204  */
205 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206                                   fio_fp64_t *plist, unsigned int precision,
207                                   const char *pre, struct buf_output *out)
208 {
209         unsigned int divisor, len, i, j = 0;
210         unsigned long long minv, maxv;
211         unsigned long long *ovals;
212         int per_line, scale_down, time_width;
213         bool is_last;
214         char fmt[32];
215
216         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217         if (!len || !ovals)
218                 return;
219
220         /*
221          * We default to nsecs, but if the value range is such that we
222          * should scale down to usecs or msecs, do that.
223          */
224         if (minv > 2000000 && maxv > 99999999ULL) {
225                 scale_down = 2;
226                 divisor = 1000000;
227                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
228         } else if (minv > 2000 && maxv > 99999) {
229                 scale_down = 1;
230                 divisor = 1000;
231                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
232         } else {
233                 scale_down = 0;
234                 divisor = 1;
235                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
236         }
237
238
239         time_width = max(5, (int) (log10(maxv / divisor) + 1));
240         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241                         precision, time_width);
242         /* fmt will be something like " %5.2fth=[%4llu]%c" */
243         per_line = (80 - 7) / (precision + 10 + time_width);
244
245         for (j = 0; j < len; j++) {
246                 /* for formatting */
247                 if (j != 0 && (j % per_line) == 0)
248                         log_buf(out, "     |");
249
250                 /* end of the list */
251                 is_last = (j == len - 1) != 0;
252
253                 for (i = 0; i < scale_down; i++)
254                         ovals[j] = (ovals[j] + 999) / 1000;
255
256                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258                 if (is_last)
259                         break;
260
261                 if ((j % per_line) == per_line - 1)     /* for formatting */
262                         log_buf(out, "\n");
263         }
264
265         free(ovals);
266 }
267
268 static int get_nr_prios_with_samples(struct thread_stat *ts, enum fio_ddir ddir)
269 {
270         int i, nr_prios_with_samples = 0;
271
272         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
273                 if (ts->clat_prio[ddir][i].clat_stat.samples)
274                         nr_prios_with_samples++;
275         }
276
277         return nr_prios_with_samples;
278 }
279
280 bool calc_lat(struct io_stat *is, unsigned long long *min,
281               unsigned long long *max, double *mean, double *dev)
282 {
283         double n = (double) is->samples;
284
285         if (n == 0)
286                 return false;
287
288         *min = is->min_val;
289         *max = is->max_val;
290         *mean = is->mean.u.f;
291
292         if (n > 1.0)
293                 *dev = sqrt(is->S.u.f / (n - 1.0));
294         else
295                 *dev = 0;
296
297         return true;
298 }
299
300 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
301 {
302         char *io, *agg, *min, *max;
303         char *ioalt, *aggalt, *minalt, *maxalt;
304         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
305         uint64_t min_run = -1, max_run = 0;
306         const int i2p = is_power_of_2(rs->kb_base);
307         int i;
308
309         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
310                 if (!rs->max_run[i])
311                         continue;
312                 io_mix += rs->iobytes[i];
313                 agg_mix += rs->agg[i];
314                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
315                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
316                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
317                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
318         }
319         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
320         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
321         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
322         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
323         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
324         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
325         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
326         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
327         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
328                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
329                         (unsigned long long) min_run,
330                         (unsigned long long) max_run);
331         free(io);
332         free(agg);
333         free(min);
334         free(max);
335         free(ioalt);
336         free(aggalt);
337         free(minalt);
338         free(maxalt);
339 }
340
341 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
342 {
343         char *io, *agg, *min, *max;
344         char *ioalt, *aggalt, *minalt, *maxalt;
345         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
346         int i;
347
348         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
349
350         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
351                 const int i2p = is_power_of_2(rs->kb_base);
352
353                 if (!rs->max_run[i])
354                         continue;
355
356                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
357                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
358                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
359                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
360                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
361                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
362                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
363                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
364                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
365                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
366                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
367                                 (unsigned long long) rs->min_run[i],
368                                 (unsigned long long) rs->max_run[i]);
369
370                 free(io);
371                 free(agg);
372                 free(min);
373                 free(max);
374                 free(ioalt);
375                 free(aggalt);
376                 free(minalt);
377                 free(maxalt);
378         }
379
380         /* Need to aggregate statisitics to show mixed values */
381         if (rs->unified_rw_rep == UNIFIED_BOTH)
382                 show_mixed_group_stats(rs, out);
383 }
384
385 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
386 {
387         int i;
388
389         /*
390          * Do depth distribution calculations
391          */
392         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
393                 if (total) {
394                         io_u_dist[i] = (double) map[i] / (double) total;
395                         io_u_dist[i] *= 100.0;
396                         if (io_u_dist[i] < 0.1 && map[i])
397                                 io_u_dist[i] = 0.1;
398                 } else
399                         io_u_dist[i] = 0.0;
400         }
401 }
402
403 static void stat_calc_lat(struct thread_stat *ts, double *dst,
404                           uint64_t *src, int nr)
405 {
406         unsigned long total = ddir_rw_sum(ts->total_io_u);
407         int i;
408
409         /*
410          * Do latency distribution calculations
411          */
412         for (i = 0; i < nr; i++) {
413                 if (total) {
414                         dst[i] = (double) src[i] / (double) total;
415                         dst[i] *= 100.0;
416                         if (dst[i] < 0.01 && src[i])
417                                 dst[i] = 0.01;
418                 } else
419                         dst[i] = 0.0;
420         }
421 }
422
423 /*
424  * To keep the terse format unaltered, add all of the ns latency
425  * buckets to the first us latency bucket
426  */
427 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
428 {
429         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
430         int i;
431
432         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
433
434         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
435                 ntotal += ts->io_u_lat_n[i];
436
437         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
438 }
439
440 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
441 {
442         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
443 }
444
445 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
446 {
447         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
448 }
449
450 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
451 {
452         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
453 }
454
455 static void display_lat(const char *name, unsigned long long min,
456                         unsigned long long max, double mean, double dev,
457                         struct buf_output *out)
458 {
459         const char *base = "(nsec)";
460         char *minp, *maxp;
461
462         if (nsec_to_msec(&min, &max, &mean, &dev))
463                 base = "(msec)";
464         else if (nsec_to_usec(&min, &max, &mean, &dev))
465                 base = "(usec)";
466
467         minp = num2str(min, 6, 1, 0, N2S_NONE);
468         maxp = num2str(max, 6, 1, 0, N2S_NONE);
469
470         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
471                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
472
473         free(minp);
474         free(maxp);
475 }
476
477 static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
478 {
479         struct thread_stat *ts_lcl;
480
481         /*
482          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
483          * Trims (ddir = 2)
484          */
485         ts_lcl = malloc(sizeof(struct thread_stat));
486         if (!ts_lcl) {
487                 log_err("fio: failed to allocate local thread stat\n");
488                 return NULL;
489         }
490
491         init_thread_stat(ts_lcl);
492
493         /* calculate mixed stats  */
494         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
495         ts_lcl->lat_percentiles = ts->lat_percentiles;
496         ts_lcl->clat_percentiles = ts->clat_percentiles;
497         ts_lcl->slat_percentiles = ts->slat_percentiles;
498         ts_lcl->percentile_precision = ts->percentile_precision;
499         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
500
501         sum_thread_stats(ts_lcl, ts);
502
503         return ts_lcl;
504 }
505
506 static double convert_agg_kbytes_percent(struct group_run_stats *rs,
507                                          enum fio_ddir ddir, int mean)
508 {
509         double p_of_agg = 100.0;
510         if (rs && rs->agg[ddir] > 1024) {
511                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
512
513                 if (p_of_agg > 100.0)
514                         p_of_agg = 100.0;
515         }
516         return p_of_agg;
517 }
518
519 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
520                              enum fio_ddir ddir, struct buf_output *out)
521 {
522         unsigned long runt;
523         unsigned long long min, max, bw, iops;
524         double mean, dev;
525         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
526         int i2p, i;
527         const char *clat_type = ts->lat_percentiles ? "lat" : "clat";
528
529         if (ddir_sync(ddir)) {
530                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
531                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
532                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
533                         show_clat_percentiles(ts->io_u_sync_plat,
534                                                 ts->sync_stat.samples,
535                                                 ts->percentile_list,
536                                                 ts->percentile_precision,
537                                                 io_ddir_name(ddir), out);
538                 }
539                 return;
540         }
541
542         assert(ddir_rw(ddir));
543
544         if (!ts->runtime[ddir])
545                 return;
546
547         i2p = is_power_of_2(rs->kb_base);
548         runt = ts->runtime[ddir];
549
550         bw = (1000 * ts->io_bytes[ddir]) / runt;
551         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
552         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
553         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
554
555         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
556         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
557         if (ddir == DDIR_WRITE)
558                 post_st = zbd_write_status(ts);
559         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
560                 uint64_t total;
561                 double hit;
562
563                 total = ts->cachehit + ts->cachemiss;
564                 hit = (double) ts->cachehit / (double) total;
565                 hit *= 100.0;
566                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
567                         post_st = NULL;
568         }
569
570         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
571                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
572                         iops_p, bw_p, bw_p_alt, io_p,
573                         (unsigned long long) ts->runtime[ddir],
574                         post_st ? : "");
575
576         free(post_st);
577         free(io_p);
578         free(bw_p);
579         free(bw_p_alt);
580         free(iops_p);
581
582         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
583                 display_lat("slat", min, max, mean, dev, out);
584         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
585                 display_lat("clat", min, max, mean, dev, out);
586         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
587                 display_lat(" lat", min, max, mean, dev, out);
588
589         /* Only print per prio stats if there are >= 2 prios with samples */
590         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
591                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
592                         if (calc_lat(&ts->clat_prio[ddir][i].clat_stat, &min,
593                                      &max, &mean, &dev)) {
594                                 char buf[64];
595
596                                 snprintf(buf, sizeof(buf),
597                                          "%s prio %u/%u",
598                                          clat_type,
599                                          ts->clat_prio[ddir][i].ioprio >> 13,
600                                          ts->clat_prio[ddir][i].ioprio & 7);
601                                 display_lat(buf, min, max, mean, dev, out);
602                         }
603                 }
604         }
605
606         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
607                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
608                                         ts->slat_stat[ddir].samples,
609                                         ts->percentile_list,
610                                         ts->percentile_precision, "slat", out);
611         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
612                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
613                                         ts->clat_stat[ddir].samples,
614                                         ts->percentile_list,
615                                         ts->percentile_precision, "clat", out);
616         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
617                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
618                                         ts->lat_stat[ddir].samples,
619                                         ts->percentile_list,
620                                         ts->percentile_precision, "lat", out);
621
622         if (ts->clat_percentiles || ts->lat_percentiles) {
623                 char prio_name[64];
624                 uint64_t samples;
625
626                 if (ts->lat_percentiles)
627                         samples = ts->lat_stat[ddir].samples;
628                 else
629                         samples = ts->clat_stat[ddir].samples;
630
631                 /* Only print per prio stats if there are >= 2 prios with samples */
632                 if (get_nr_prios_with_samples(ts, ddir) >= 2) {
633                         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
634                                 uint64_t prio_samples = ts->clat_prio[ddir][i].clat_stat.samples;
635
636                                 if (prio_samples > 0) {
637                                         snprintf(prio_name, sizeof(prio_name),
638                                                  "%s prio %u/%u (%.2f%% of IOs)",
639                                                  clat_type,
640                                                  ts->clat_prio[ddir][i].ioprio >> 13,
641                                                  ts->clat_prio[ddir][i].ioprio & 7,
642                                                  100. * (double) prio_samples / (double) samples);
643                                         show_clat_percentiles(ts->clat_prio[ddir][i].io_u_plat,
644                                                               prio_samples, ts->percentile_list,
645                                                               ts->percentile_precision,
646                                                               prio_name, out);
647                                 }
648                         }
649                 }
650         }
651
652         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
653                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
654                 const char *bw_str;
655
656                 if ((rs->unit_base == 1) && i2p)
657                         bw_str = "Kibit";
658                 else if (rs->unit_base == 1)
659                         bw_str = "kbit";
660                 else if (i2p)
661                         bw_str = "KiB";
662                 else
663                         bw_str = "kB";
664
665                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
666
667                 if (rs->unit_base == 1) {
668                         min *= 8.0;
669                         max *= 8.0;
670                         mean *= 8.0;
671                         dev *= 8.0;
672                 }
673
674                 if (mean > fkb_base * fkb_base) {
675                         min /= fkb_base;
676                         max /= fkb_base;
677                         mean /= fkb_base;
678                         dev /= fkb_base;
679                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
680                 }
681
682                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
683                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
684                         bw_str, min, max, p_of_agg, mean, dev,
685                         (&ts->bw_stat[ddir])->samples);
686         }
687         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
688                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
689                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
690                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
691         }
692 }
693
694 static void show_mixed_ddir_status(struct group_run_stats *rs,
695                                    struct thread_stat *ts,
696                                    struct buf_output *out)
697 {
698         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
699
700         if (ts_lcl)
701                 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
702
703         free_clat_prio_stats(ts_lcl);
704         free(ts_lcl);
705 }
706
707 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
708                      const char *msg, struct buf_output *out)
709 {
710         bool new_line = true, shown = false;
711         int i, line = 0;
712
713         for (i = 0; i < nr; i++) {
714                 if (io_u_lat[i] <= 0.0)
715                         continue;
716                 shown = true;
717                 if (new_line) {
718                         if (line)
719                                 log_buf(out, "\n");
720                         log_buf(out, "  lat (%s)   : ", msg);
721                         new_line = false;
722                         line = 0;
723                 }
724                 if (line)
725                         log_buf(out, ", ");
726                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
727                 line++;
728                 if (line == 5)
729                         new_line = true;
730         }
731
732         if (shown)
733                 log_buf(out, "\n");
734
735         return true;
736 }
737
738 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
739 {
740         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
741                                  "250=", "500=", "750=", "1000=", };
742
743         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
744 }
745
746 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
747 {
748         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
749                                  "250=", "500=", "750=", "1000=", };
750
751         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
752 }
753
754 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
755 {
756         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
757                                  "250=", "500=", "750=", "1000=", "2000=",
758                                  ">=2000=", };
759
760         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
761 }
762
763 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
764 {
765         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
766         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
767         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
768
769         stat_calc_lat_n(ts, io_u_lat_n);
770         stat_calc_lat_u(ts, io_u_lat_u);
771         stat_calc_lat_m(ts, io_u_lat_m);
772
773         show_lat_n(io_u_lat_n, out);
774         show_lat_u(io_u_lat_u, out);
775         show_lat_m(io_u_lat_m, out);
776 }
777
778 static int block_state_category(int block_state)
779 {
780         switch (block_state) {
781         case BLOCK_STATE_UNINIT:
782                 return 0;
783         case BLOCK_STATE_TRIMMED:
784         case BLOCK_STATE_WRITTEN:
785                 return 1;
786         case BLOCK_STATE_WRITE_FAILURE:
787         case BLOCK_STATE_TRIM_FAILURE:
788                 return 2;
789         default:
790                 /* Silence compile warning on some BSDs and have a return */
791                 assert(0);
792                 return -1;
793         }
794 }
795
796 static int compare_block_infos(const void *bs1, const void *bs2)
797 {
798         uint64_t block1 = *(uint64_t *)bs1;
799         uint64_t block2 = *(uint64_t *)bs2;
800         int state1 = BLOCK_INFO_STATE(block1);
801         int state2 = BLOCK_INFO_STATE(block2);
802         int bscat1 = block_state_category(state1);
803         int bscat2 = block_state_category(state2);
804         int cycles1 = BLOCK_INFO_TRIMS(block1);
805         int cycles2 = BLOCK_INFO_TRIMS(block2);
806
807         if (bscat1 < bscat2)
808                 return -1;
809         if (bscat1 > bscat2)
810                 return 1;
811
812         if (cycles1 < cycles2)
813                 return -1;
814         if (cycles1 > cycles2)
815                 return 1;
816
817         if (state1 < state2)
818                 return -1;
819         if (state1 > state2)
820                 return 1;
821
822         assert(block1 == block2);
823         return 0;
824 }
825
826 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
827                                   fio_fp64_t *plist, unsigned int **percentiles,
828                                   unsigned int *types)
829 {
830         int len = 0;
831         int i, nr_uninit;
832
833         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
834
835         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
836                 len++;
837
838         if (!len)
839                 return 0;
840
841         /*
842          * Sort the percentile list. Note that it may already be sorted if
843          * we are using the default values, but since it's a short list this
844          * isn't a worry. Also note that this does not work for NaN values.
845          */
846         if (len > 1)
847                 qsort(plist, len, sizeof(plist[0]), double_cmp);
848
849         /* Start only after the uninit entries end */
850         for (nr_uninit = 0;
851              nr_uninit < nr_block_infos
852                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
853              nr_uninit ++)
854                 ;
855
856         if (nr_uninit == nr_block_infos)
857                 return 0;
858
859         *percentiles = calloc(len, sizeof(**percentiles));
860
861         for (i = 0; i < len; i++) {
862                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
863                                 + nr_uninit;
864                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
865         }
866
867         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
868         for (i = 0; i < nr_block_infos; i++)
869                 types[BLOCK_INFO_STATE(block_infos[i])]++;
870
871         return len;
872 }
873
874 static const char *block_state_names[] = {
875         [BLOCK_STATE_UNINIT] = "unwritten",
876         [BLOCK_STATE_TRIMMED] = "trimmed",
877         [BLOCK_STATE_WRITTEN] = "written",
878         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
879         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
880 };
881
882 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
883                              fio_fp64_t *plist, struct buf_output *out)
884 {
885         int len, pos, i;
886         unsigned int *percentiles = NULL;
887         unsigned int block_state_counts[BLOCK_STATE_COUNT];
888
889         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
890                                      &percentiles, block_state_counts);
891
892         log_buf(out, "  block lifetime percentiles :\n   |");
893         pos = 0;
894         for (i = 0; i < len; i++) {
895                 uint32_t block_info = percentiles[i];
896 #define LINE_LENGTH     75
897                 char str[LINE_LENGTH];
898                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
899                                      plist[i].u.f, block_info,
900                                      i == len - 1 ? '\n' : ',');
901                 assert(strln < LINE_LENGTH);
902                 if (pos + strln > LINE_LENGTH) {
903                         pos = 0;
904                         log_buf(out, "\n   |");
905                 }
906                 log_buf(out, "%s", str);
907                 pos += strln;
908 #undef LINE_LENGTH
909         }
910         if (percentiles)
911                 free(percentiles);
912
913         log_buf(out, "        states               :");
914         for (i = 0; i < BLOCK_STATE_COUNT; i++)
915                 log_buf(out, " %s=%u%c",
916                          block_state_names[i], block_state_counts[i],
917                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
918 }
919
920 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
921 {
922         char *p1, *p1alt, *p2;
923         unsigned long long bw_mean, iops_mean;
924         const int i2p = is_power_of_2(ts->kb_base);
925
926         if (!ts->ss_dur)
927                 return;
928
929         bw_mean = steadystate_bw_mean(ts);
930         iops_mean = steadystate_iops_mean(ts);
931
932         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
933         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
934         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
935
936         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
937                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
938                 p1, p1alt, p2,
939                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
940                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
941                 ts->ss_criterion.u.f,
942                 ts->ss_state & FIO_SS_PCT ? "%" : "");
943
944         free(p1);
945         free(p1alt);
946         free(p2);
947 }
948
949 static void show_agg_stats(struct disk_util_agg *agg, int terse,
950                            struct buf_output *out)
951 {
952         if (!agg->slavecount)
953                 return;
954
955         if (!terse) {
956                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
957                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
958                          "aggrutil=%3.2f%%",
959                         (unsigned long long) agg->ios[0] / agg->slavecount,
960                         (unsigned long long) agg->ios[1] / agg->slavecount,
961                         (unsigned long long) agg->merges[0] / agg->slavecount,
962                         (unsigned long long) agg->merges[1] / agg->slavecount,
963                         (unsigned long long) agg->ticks[0] / agg->slavecount,
964                         (unsigned long long) agg->ticks[1] / agg->slavecount,
965                         (unsigned long long) agg->time_in_queue / agg->slavecount,
966                         agg->max_util.u.f);
967         } else {
968                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
969                         (unsigned long long) agg->ios[0] / agg->slavecount,
970                         (unsigned long long) agg->ios[1] / agg->slavecount,
971                         (unsigned long long) agg->merges[0] / agg->slavecount,
972                         (unsigned long long) agg->merges[1] / agg->slavecount,
973                         (unsigned long long) agg->ticks[0] / agg->slavecount,
974                         (unsigned long long) agg->ticks[1] / agg->slavecount,
975                         (unsigned long long) agg->time_in_queue / agg->slavecount,
976                         agg->max_util.u.f);
977         }
978 }
979
980 static void aggregate_slaves_stats(struct disk_util *masterdu)
981 {
982         struct disk_util_agg *agg = &masterdu->agg;
983         struct disk_util_stat *dus;
984         struct flist_head *entry;
985         struct disk_util *slavedu;
986         double util;
987
988         flist_for_each(entry, &masterdu->slaves) {
989                 slavedu = flist_entry(entry, struct disk_util, slavelist);
990                 dus = &slavedu->dus;
991                 agg->ios[0] += dus->s.ios[0];
992                 agg->ios[1] += dus->s.ios[1];
993                 agg->merges[0] += dus->s.merges[0];
994                 agg->merges[1] += dus->s.merges[1];
995                 agg->sectors[0] += dus->s.sectors[0];
996                 agg->sectors[1] += dus->s.sectors[1];
997                 agg->ticks[0] += dus->s.ticks[0];
998                 agg->ticks[1] += dus->s.ticks[1];
999                 agg->time_in_queue += dus->s.time_in_queue;
1000                 agg->slavecount++;
1001
1002                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1003                 /* System utilization is the utilization of the
1004                  * component with the highest utilization.
1005                  */
1006                 if (util > agg->max_util.u.f)
1007                         agg->max_util.u.f = util;
1008
1009         }
1010
1011         if (agg->max_util.u.f > 100.0)
1012                 agg->max_util.u.f = 100.0;
1013 }
1014
1015 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1016                      int terse, struct buf_output *out)
1017 {
1018         double util = 0;
1019
1020         if (dus->s.msec)
1021                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1022         if (util > 100.0)
1023                 util = 100.0;
1024
1025         if (!terse) {
1026                 if (agg->slavecount)
1027                         log_buf(out, "  ");
1028
1029                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
1030                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1031                                 dus->name,
1032                                 (unsigned long long) dus->s.ios[0],
1033                                 (unsigned long long) dus->s.ios[1],
1034                                 (unsigned long long) dus->s.merges[0],
1035                                 (unsigned long long) dus->s.merges[1],
1036                                 (unsigned long long) dus->s.ticks[0],
1037                                 (unsigned long long) dus->s.ticks[1],
1038                                 (unsigned long long) dus->s.time_in_queue,
1039                                 util);
1040         } else {
1041                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1042                                 dus->name,
1043                                 (unsigned long long) dus->s.ios[0],
1044                                 (unsigned long long) dus->s.ios[1],
1045                                 (unsigned long long) dus->s.merges[0],
1046                                 (unsigned long long) dus->s.merges[1],
1047                                 (unsigned long long) dus->s.ticks[0],
1048                                 (unsigned long long) dus->s.ticks[1],
1049                                 (unsigned long long) dus->s.time_in_queue,
1050                                 util);
1051         }
1052
1053         /*
1054          * If the device has slaves, aggregate the stats for
1055          * those slave devices also.
1056          */
1057         show_agg_stats(agg, terse, out);
1058
1059         if (!terse)
1060                 log_buf(out, "\n");
1061 }
1062
1063 void json_array_add_disk_util(struct disk_util_stat *dus,
1064                 struct disk_util_agg *agg, struct json_array *array)
1065 {
1066         struct json_object *obj;
1067         double util = 0;
1068
1069         if (dus->s.msec)
1070                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1071         if (util > 100.0)
1072                 util = 100.0;
1073
1074         obj = json_create_object();
1075         json_array_add_value_object(array, obj);
1076
1077         json_object_add_value_string(obj, "name", (const char *)dus->name);
1078         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1079         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1080         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1081         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1082         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1083         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1084         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1085         json_object_add_value_float(obj, "util", util);
1086
1087         /*
1088          * If the device has slaves, aggregate the stats for
1089          * those slave devices also.
1090          */
1091         if (!agg->slavecount)
1092                 return;
1093         json_object_add_value_int(obj, "aggr_read_ios",
1094                                 agg->ios[0] / agg->slavecount);
1095         json_object_add_value_int(obj, "aggr_write_ios",
1096                                 agg->ios[1] / agg->slavecount);
1097         json_object_add_value_int(obj, "aggr_read_merges",
1098                                 agg->merges[0] / agg->slavecount);
1099         json_object_add_value_int(obj, "aggr_write_merge",
1100                                 agg->merges[1] / agg->slavecount);
1101         json_object_add_value_int(obj, "aggr_read_ticks",
1102                                 agg->ticks[0] / agg->slavecount);
1103         json_object_add_value_int(obj, "aggr_write_ticks",
1104                                 agg->ticks[1] / agg->slavecount);
1105         json_object_add_value_int(obj, "aggr_in_queue",
1106                                 agg->time_in_queue / agg->slavecount);
1107         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1108 }
1109
1110 static void json_object_add_disk_utils(struct json_object *obj,
1111                                        struct flist_head *head)
1112 {
1113         struct json_array *array = json_create_array();
1114         struct flist_head *entry;
1115         struct disk_util *du;
1116
1117         json_object_add_value_array(obj, "disk_util", array);
1118
1119         flist_for_each(entry, head) {
1120                 du = flist_entry(entry, struct disk_util, list);
1121
1122                 aggregate_slaves_stats(du);
1123                 json_array_add_disk_util(&du->dus, &du->agg, array);
1124         }
1125 }
1126
1127 void show_disk_util(int terse, struct json_object *parent,
1128                     struct buf_output *out)
1129 {
1130         struct flist_head *entry;
1131         struct disk_util *du;
1132         bool do_json;
1133
1134         if (!is_running_backend())
1135                 return;
1136
1137         if (flist_empty(&disk_list))
1138                 return;
1139
1140         if ((output_format & FIO_OUTPUT_JSON) && parent)
1141                 do_json = true;
1142         else
1143                 do_json = false;
1144
1145         if (!terse && !do_json)
1146                 log_buf(out, "\nDisk stats (read/write):\n");
1147
1148         if (do_json) {
1149                 json_object_add_disk_utils(parent, &disk_list);
1150         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1151                 flist_for_each(entry, &disk_list) {
1152                         du = flist_entry(entry, struct disk_util, list);
1153
1154                         aggregate_slaves_stats(du);
1155                         print_disk_util(&du->dus, &du->agg, terse, out);
1156                 }
1157         }
1158 }
1159
1160 static void show_thread_status_normal(struct thread_stat *ts,
1161                                       struct group_run_stats *rs,
1162                                       struct buf_output *out)
1163 {
1164         double usr_cpu, sys_cpu;
1165         unsigned long runtime;
1166         double io_u_dist[FIO_IO_U_MAP_NR];
1167         time_t time_p;
1168         char time_buf[32];
1169
1170         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1171                 return;
1172
1173         memset(time_buf, 0, sizeof(time_buf));
1174
1175         time(&time_p);
1176         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1177
1178         if (!ts->error) {
1179                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1180                                         ts->name, ts->groupid, ts->members,
1181                                         ts->error, (int) ts->pid, time_buf);
1182         } else {
1183                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1184                                         ts->name, ts->groupid, ts->members,
1185                                         ts->error, ts->verror, (int) ts->pid,
1186                                         time_buf);
1187         }
1188
1189         if (strlen(ts->description))
1190                 log_buf(out, "  Description  : [%s]\n", ts->description);
1191
1192         for_each_rw_ddir(ddir) {
1193                 if (ts->io_bytes[ddir])
1194                         show_ddir_status(rs, ts, ddir, out);
1195         }
1196
1197         if (ts->unified_rw_rep == UNIFIED_BOTH)
1198                 show_mixed_ddir_status(rs, ts, out);
1199
1200         show_latencies(ts, out);
1201
1202         if (ts->sync_stat.samples)
1203                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1204
1205         runtime = ts->total_run_time;
1206         if (runtime) {
1207                 double runt = (double) runtime;
1208
1209                 usr_cpu = (double) ts->usr_time * 100 / runt;
1210                 sys_cpu = (double) ts->sys_time * 100 / runt;
1211         } else {
1212                 usr_cpu = 0;
1213                 sys_cpu = 0;
1214         }
1215
1216         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1217                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1218                         (unsigned long long) ts->ctx,
1219                         (unsigned long long) ts->majf,
1220                         (unsigned long long) ts->minf);
1221
1222         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1223         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1224                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1225                                         io_u_dist[1], io_u_dist[2],
1226                                         io_u_dist[3], io_u_dist[4],
1227                                         io_u_dist[5], io_u_dist[6]);
1228
1229         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1230         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1231                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1232                                         io_u_dist[1], io_u_dist[2],
1233                                         io_u_dist[3], io_u_dist[4],
1234                                         io_u_dist[5], io_u_dist[6]);
1235         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1236         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1237                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1238                                         io_u_dist[1], io_u_dist[2],
1239                                         io_u_dist[3], io_u_dist[4],
1240                                         io_u_dist[5], io_u_dist[6]);
1241         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1242                                  " short=%llu,%llu,%llu,0"
1243                                  " dropped=%llu,%llu,%llu,0\n",
1244                                         (unsigned long long) ts->total_io_u[0],
1245                                         (unsigned long long) ts->total_io_u[1],
1246                                         (unsigned long long) ts->total_io_u[2],
1247                                         (unsigned long long) ts->total_io_u[3],
1248                                         (unsigned long long) ts->short_io_u[0],
1249                                         (unsigned long long) ts->short_io_u[1],
1250                                         (unsigned long long) ts->short_io_u[2],
1251                                         (unsigned long long) ts->drop_io_u[0],
1252                                         (unsigned long long) ts->drop_io_u[1],
1253                                         (unsigned long long) ts->drop_io_u[2]);
1254         if (ts->continue_on_error) {
1255                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1256                                         (unsigned long long)ts->total_err_count,
1257                                         ts->first_error,
1258                                         strerror(ts->first_error));
1259         }
1260         if (ts->latency_depth) {
1261                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1262                                         (unsigned long long)ts->latency_target,
1263                                         (unsigned long long)ts->latency_window,
1264                                         ts->latency_percentile.u.f,
1265                                         ts->latency_depth);
1266         }
1267
1268         if (ts->nr_block_infos)
1269                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1270                                   ts->percentile_list, out);
1271
1272         if (ts->ss_dur)
1273                 show_ss_normal(ts, out);
1274 }
1275
1276 static void show_ddir_status_terse(struct thread_stat *ts,
1277                                    struct group_run_stats *rs,
1278                                    enum fio_ddir ddir, int ver,
1279                                    struct buf_output *out)
1280 {
1281         unsigned long long min, max, minv, maxv, bw, iops;
1282         unsigned long long *ovals = NULL;
1283         double mean, dev;
1284         unsigned int len;
1285         int i, bw_stat;
1286
1287         assert(ddir_rw(ddir));
1288
1289         iops = bw = 0;
1290         if (ts->runtime[ddir]) {
1291                 uint64_t runt = ts->runtime[ddir];
1292
1293                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1294                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1295         }
1296
1297         log_buf(out, ";%llu;%llu;%llu;%llu",
1298                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1299                                         (unsigned long long) ts->runtime[ddir]);
1300
1301         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1302                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1303         else
1304                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1305
1306         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1307                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1308         else
1309                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1310
1311         if (ts->lat_percentiles) {
1312                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1313                                         ts->lat_stat[ddir].samples,
1314                                         ts->percentile_list, &ovals, &maxv,
1315                                         &minv);
1316         } else if (ts->clat_percentiles) {
1317                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1318                                         ts->clat_stat[ddir].samples,
1319                                         ts->percentile_list, &ovals, &maxv,
1320                                         &minv);
1321         } else {
1322                 len = 0;
1323         }
1324
1325         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1326                 if (i >= len) {
1327                         log_buf(out, ";0%%=0");
1328                         continue;
1329                 }
1330                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1331         }
1332
1333         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1334                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1335         else
1336                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1337
1338         free(ovals);
1339
1340         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1341         if (bw_stat) {
1342                 double p_of_agg = 100.0;
1343
1344                 if (rs->agg[ddir]) {
1345                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1346                         if (p_of_agg > 100.0)
1347                                 p_of_agg = 100.0;
1348                 }
1349
1350                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1351         } else {
1352                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1353         }
1354
1355         if (ver == 5) {
1356                 if (bw_stat)
1357                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1358                 else
1359                         log_buf(out, ";%lu", 0UL);
1360
1361                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1362                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1363                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1364                 else
1365                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1366         }
1367 }
1368
1369 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1370                                    struct group_run_stats *rs,
1371                                    int ver, struct buf_output *out)
1372 {
1373         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1374
1375         if (ts_lcl)
1376                 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1377
1378         free_clat_prio_stats(ts_lcl);
1379         free(ts_lcl);
1380 }
1381
1382 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1383                                              uint32_t percentiles,
1384                                              struct io_stat *lat_stat,
1385                                              uint64_t *io_u_plat)
1386 {
1387         char buf[120];
1388         double mean, dev;
1389         unsigned int i, len;
1390         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1391         unsigned long long min, max, maxv, minv, *ovals = NULL;
1392
1393         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1394                 min = max = 0;
1395                 mean = dev = 0.0;
1396         }
1397         lat_object = json_create_object();
1398         json_object_add_value_int(lat_object, "min", min);
1399         json_object_add_value_int(lat_object, "max", max);
1400         json_object_add_value_float(lat_object, "mean", mean);
1401         json_object_add_value_float(lat_object, "stddev", dev);
1402         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1403
1404         if (percentiles && lat_stat->samples) {
1405                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1406                                 ts->percentile_list, &ovals, &maxv, &minv);
1407
1408                 if (len > FIO_IO_U_LIST_MAX_LEN)
1409                         len = FIO_IO_U_LIST_MAX_LEN;
1410
1411                 percentile_object = json_create_object();
1412                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1413                 for (i = 0; i < len; i++) {
1414                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1415                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1416                 }
1417                 free(ovals);
1418
1419                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1420                         clat_bins_object = json_create_object();
1421                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1422
1423                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1424                                 if (io_u_plat[i]) {
1425                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1426                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1427                                 }
1428                 }
1429         }
1430
1431         return lat_object;
1432 }
1433
1434 static void add_ddir_status_json(struct thread_stat *ts,
1435                                  struct group_run_stats *rs, enum fio_ddir ddir,
1436                                  struct json_object *parent)
1437 {
1438         unsigned long long min, max;
1439         unsigned long long bw_bytes, bw;
1440         double mean, dev, iops;
1441         struct json_object *dir_object, *tmp_object;
1442         double p_of_agg = 100.0;
1443
1444         assert(ddir_rw(ddir) || ddir_sync(ddir));
1445
1446         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1447                 return;
1448
1449         dir_object = json_create_object();
1450         json_object_add_value_object(parent,
1451                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1452
1453         if (ddir_rw(ddir)) {
1454                 bw_bytes = 0;
1455                 bw = 0;
1456                 iops = 0.0;
1457                 if (ts->runtime[ddir]) {
1458                         uint64_t runt = ts->runtime[ddir];
1459
1460                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1461                         bw = bw_bytes / 1024; /* KiB/s */
1462                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1463                 }
1464
1465                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1466                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1467                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1468                 json_object_add_value_int(dir_object, "bw", bw);
1469                 json_object_add_value_float(dir_object, "iops", iops);
1470                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1471                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1472                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1473                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1474
1475                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1476                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1477                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1478
1479                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1480                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1481                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1482
1483                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1484                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1485                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1486         } else {
1487                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1488                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1489                                 &ts->sync_stat, ts->io_u_sync_plat);
1490                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1491         }
1492
1493         if (!ddir_rw(ddir))
1494                 return;
1495
1496         /* Only include per prio stats if there are >= 2 prios with samples */
1497         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
1498                 struct json_array *array = json_create_array();
1499                 const char *obj_name;
1500                 int i;
1501
1502                 if (ts->lat_percentiles)
1503                         obj_name = "lat_ns";
1504                 else
1505                         obj_name = "clat_ns";
1506
1507                 json_object_add_value_array(dir_object, "prios", array);
1508
1509                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
1510                         if (ts->clat_prio[ddir][i].clat_stat.samples > 0) {
1511                                 struct json_object *obj = json_create_object();
1512                                 unsigned long long class, level;
1513
1514                                 class = ts->clat_prio[ddir][i].ioprio >> 13;
1515                                 json_object_add_value_int(obj, "prioclass", class);
1516                                 level = ts->clat_prio[ddir][i].ioprio & 7;
1517                                 json_object_add_value_int(obj, "prio", level);
1518
1519                                 tmp_object = add_ddir_lat_json(ts,
1520                                                                ts->clat_percentiles | ts->lat_percentiles,
1521                                                                &ts->clat_prio[ddir][i].clat_stat,
1522                                                                ts->clat_prio[ddir][i].io_u_plat);
1523                                 json_object_add_value_object(obj, obj_name, tmp_object);
1524                                 json_array_add_value_object(array, obj);
1525                         }
1526                 }
1527         }
1528
1529         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1530                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1531         } else {
1532                 min = max = 0;
1533                 p_of_agg = mean = dev = 0.0;
1534         }
1535
1536         json_object_add_value_int(dir_object, "bw_min", min);
1537         json_object_add_value_int(dir_object, "bw_max", max);
1538         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1539         json_object_add_value_float(dir_object, "bw_mean", mean);
1540         json_object_add_value_float(dir_object, "bw_dev", dev);
1541         json_object_add_value_int(dir_object, "bw_samples",
1542                                 (&ts->bw_stat[ddir])->samples);
1543
1544         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1545                 min = max = 0;
1546                 mean = dev = 0.0;
1547         }
1548         json_object_add_value_int(dir_object, "iops_min", min);
1549         json_object_add_value_int(dir_object, "iops_max", max);
1550         json_object_add_value_float(dir_object, "iops_mean", mean);
1551         json_object_add_value_float(dir_object, "iops_stddev", dev);
1552         json_object_add_value_int(dir_object, "iops_samples",
1553                                 (&ts->iops_stat[ddir])->samples);
1554
1555         if (ts->cachehit + ts->cachemiss) {
1556                 uint64_t total;
1557                 double hit;
1558
1559                 total = ts->cachehit + ts->cachemiss;
1560                 hit = (double) ts->cachehit / (double) total;
1561                 hit *= 100.0;
1562                 json_object_add_value_float(dir_object, "cachehit", hit);
1563         }
1564 }
1565
1566 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1567                 struct group_run_stats *rs, struct json_object *parent)
1568 {
1569         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1570
1571         /* add the aggregated stats to json parent */
1572         if (ts_lcl)
1573                 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1574
1575         free_clat_prio_stats(ts_lcl);
1576         free(ts_lcl);
1577 }
1578
1579 static void show_thread_status_terse_all(struct thread_stat *ts,
1580                                          struct group_run_stats *rs, int ver,
1581                                          struct buf_output *out)
1582 {
1583         double io_u_dist[FIO_IO_U_MAP_NR];
1584         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1585         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1586         double usr_cpu, sys_cpu;
1587         int i;
1588
1589         /* General Info */
1590         if (ver == 2)
1591                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1592         else
1593                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1594                         ts->name, ts->groupid, ts->error);
1595
1596         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1597         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1598         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1599                 /* Log Write Status */
1600                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1601                 /* Log Trim Status */
1602                 if (ver == 2 || ver == 4 || ver == 5)
1603                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1604         }
1605         if (ts->unified_rw_rep == UNIFIED_BOTH)
1606                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1607         /* CPU Usage */
1608         if (ts->total_run_time) {
1609                 double runt = (double) ts->total_run_time;
1610
1611                 usr_cpu = (double) ts->usr_time * 100 / runt;
1612                 sys_cpu = (double) ts->sys_time * 100 / runt;
1613         } else {
1614                 usr_cpu = 0;
1615                 sys_cpu = 0;
1616         }
1617
1618         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1619                                                 (unsigned long long) ts->ctx,
1620                                                 (unsigned long long) ts->majf,
1621                                                 (unsigned long long) ts->minf);
1622
1623         /* Calc % distribution of IO depths, usecond, msecond latency */
1624         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1625         stat_calc_lat_nu(ts, io_u_lat_u);
1626         stat_calc_lat_m(ts, io_u_lat_m);
1627
1628         /* Only show fixed 7 I/O depth levels*/
1629         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1630                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1631                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1632
1633         /* Microsecond latency */
1634         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1635                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1636         /* Millisecond latency */
1637         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1638                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1639
1640         /* disk util stats, if any */
1641         if (ver >= 3 && is_running_backend())
1642                 show_disk_util(1, NULL, out);
1643
1644         /* Additional output if continue_on_error set - default off*/
1645         if (ts->continue_on_error)
1646                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1647
1648         /* Additional output if description is set */
1649         if (strlen(ts->description)) {
1650                 if (ver == 2)
1651                         log_buf(out, "\n");
1652                 log_buf(out, ";%s", ts->description);
1653         }
1654
1655         log_buf(out, "\n");
1656 }
1657
1658 static void json_add_job_opts(struct json_object *root, const char *name,
1659                               struct flist_head *opt_list)
1660 {
1661         struct json_object *dir_object;
1662         struct flist_head *entry;
1663         struct print_option *p;
1664
1665         if (flist_empty(opt_list))
1666                 return;
1667
1668         dir_object = json_create_object();
1669         json_object_add_value_object(root, name, dir_object);
1670
1671         flist_for_each(entry, opt_list) {
1672                 p = flist_entry(entry, struct print_option, list);
1673                 json_object_add_value_string(dir_object, p->name, p->value);
1674         }
1675 }
1676
1677 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1678                                                    struct group_run_stats *rs,
1679                                                    struct flist_head *opt_list)
1680 {
1681         struct json_object *root, *tmp;
1682         struct jobs_eta *je;
1683         double io_u_dist[FIO_IO_U_MAP_NR];
1684         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1685         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1686         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1687         double usr_cpu, sys_cpu;
1688         int i;
1689         size_t size;
1690
1691         root = json_create_object();
1692         json_object_add_value_string(root, "jobname", ts->name);
1693         json_object_add_value_int(root, "groupid", ts->groupid);
1694         json_object_add_value_int(root, "error", ts->error);
1695
1696         /* ETA Info */
1697         je = get_jobs_eta(true, &size);
1698         if (je) {
1699                 json_object_add_value_int(root, "eta", je->eta_sec);
1700                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1701         }
1702
1703         if (opt_list)
1704                 json_add_job_opts(root, "job options", opt_list);
1705
1706         add_ddir_status_json(ts, rs, DDIR_READ, root);
1707         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1708         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1709         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1710
1711         if (ts->unified_rw_rep == UNIFIED_BOTH)
1712                 add_mixed_ddir_status_json(ts, rs, root);
1713
1714         /* CPU Usage */
1715         if (ts->total_run_time) {
1716                 double runt = (double) ts->total_run_time;
1717
1718                 usr_cpu = (double) ts->usr_time * 100 / runt;
1719                 sys_cpu = (double) ts->sys_time * 100 / runt;
1720         } else {
1721                 usr_cpu = 0;
1722                 sys_cpu = 0;
1723         }
1724         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1725         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1726         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1727         json_object_add_value_int(root, "ctx", ts->ctx);
1728         json_object_add_value_int(root, "majf", ts->majf);
1729         json_object_add_value_int(root, "minf", ts->minf);
1730
1731         /* Calc % distribution of IO depths */
1732         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1733         tmp = json_create_object();
1734         json_object_add_value_object(root, "iodepth_level", tmp);
1735         /* Only show fixed 7 I/O depth levels*/
1736         for (i = 0; i < 7; i++) {
1737                 char name[20];
1738                 if (i < 6)
1739                         snprintf(name, 20, "%d", 1 << i);
1740                 else
1741                         snprintf(name, 20, ">=%d", 1 << i);
1742                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1743         }
1744
1745         /* Calc % distribution of submit IO depths */
1746         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1747         tmp = json_create_object();
1748         json_object_add_value_object(root, "iodepth_submit", tmp);
1749         /* Only show fixed 7 I/O depth levels*/
1750         for (i = 0; i < 7; i++) {
1751                 char name[20];
1752                 if (i == 0)
1753                         snprintf(name, 20, "0");
1754                 else if (i < 6)
1755                         snprintf(name, 20, "%d", 1 << (i+1));
1756                 else
1757                         snprintf(name, 20, ">=%d", 1 << i);
1758                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1759         }
1760
1761         /* Calc % distribution of completion IO depths */
1762         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1763         tmp = json_create_object();
1764         json_object_add_value_object(root, "iodepth_complete", tmp);
1765         /* Only show fixed 7 I/O depth levels*/
1766         for (i = 0; i < 7; i++) {
1767                 char name[20];
1768                 if (i == 0)
1769                         snprintf(name, 20, "0");
1770                 else if (i < 6)
1771                         snprintf(name, 20, "%d", 1 << (i+1));
1772                 else
1773                         snprintf(name, 20, ">=%d", 1 << i);
1774                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1775         }
1776
1777         /* Calc % distribution of nsecond, usecond, msecond latency */
1778         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1779         stat_calc_lat_n(ts, io_u_lat_n);
1780         stat_calc_lat_u(ts, io_u_lat_u);
1781         stat_calc_lat_m(ts, io_u_lat_m);
1782
1783         /* Nanosecond latency */
1784         tmp = json_create_object();
1785         json_object_add_value_object(root, "latency_ns", tmp);
1786         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1787                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1788                                  "250", "500", "750", "1000", };
1789                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1790         }
1791         /* Microsecond latency */
1792         tmp = json_create_object();
1793         json_object_add_value_object(root, "latency_us", tmp);
1794         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1795                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1796                                  "250", "500", "750", "1000", };
1797                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1798         }
1799         /* Millisecond latency */
1800         tmp = json_create_object();
1801         json_object_add_value_object(root, "latency_ms", tmp);
1802         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1803                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1804                                  "250", "500", "750", "1000", "2000",
1805                                  ">=2000", };
1806                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1807         }
1808
1809         /* Additional output if continue_on_error set - default off*/
1810         if (ts->continue_on_error) {
1811                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1812                 json_object_add_value_int(root, "first_error", ts->first_error);
1813         }
1814
1815         if (ts->latency_depth) {
1816                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1817                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1818                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1819                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1820         }
1821
1822         /* Additional output if description is set */
1823         if (strlen(ts->description))
1824                 json_object_add_value_string(root, "desc", ts->description);
1825
1826         if (ts->nr_block_infos) {
1827                 /* Block error histogram and types */
1828                 int len;
1829                 unsigned int *percentiles = NULL;
1830                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1831
1832                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1833                                              ts->percentile_list,
1834                                              &percentiles, block_state_counts);
1835
1836                 if (len) {
1837                         struct json_object *block, *percentile_object, *states;
1838                         int state;
1839                         block = json_create_object();
1840                         json_object_add_value_object(root, "block", block);
1841
1842                         percentile_object = json_create_object();
1843                         json_object_add_value_object(block, "percentiles",
1844                                                      percentile_object);
1845                         for (i = 0; i < len; i++) {
1846                                 char buf[20];
1847                                 snprintf(buf, sizeof(buf), "%f",
1848                                          ts->percentile_list[i].u.f);
1849                                 json_object_add_value_int(percentile_object,
1850                                                           buf,
1851                                                           percentiles[i]);
1852                         }
1853
1854                         states = json_create_object();
1855                         json_object_add_value_object(block, "states", states);
1856                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1857                                 json_object_add_value_int(states,
1858                                         block_state_names[state],
1859                                         block_state_counts[state]);
1860                         }
1861                         free(percentiles);
1862                 }
1863         }
1864
1865         if (ts->ss_dur) {
1866                 struct json_object *data;
1867                 struct json_array *iops, *bw;
1868                 int j, k, l;
1869                 char ss_buf[64];
1870
1871                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1872                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1873                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1874                         (float) ts->ss_limit.u.f,
1875                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1876
1877                 tmp = json_create_object();
1878                 json_object_add_value_object(root, "steadystate", tmp);
1879                 json_object_add_value_string(tmp, "ss", ss_buf);
1880                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1881                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1882
1883                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1884                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1885                 json_object_add_value_string(tmp, "criterion", ss_buf);
1886                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1887                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1888
1889                 data = json_create_object();
1890                 json_object_add_value_object(tmp, "data", data);
1891                 bw = json_create_array();
1892                 iops = json_create_array();
1893
1894                 /*
1895                 ** if ss was attained or the buffer is not full,
1896                 ** ss->head points to the first element in the list.
1897                 ** otherwise it actually points to the second element
1898                 ** in the list
1899                 */
1900                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1901                         j = ts->ss_head;
1902                 else
1903                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1904                 for (l = 0; l < ts->ss_dur; l++) {
1905                         k = (j + l) % ts->ss_dur;
1906                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1907                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1908                 }
1909                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1910                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1911                 json_object_add_value_array(data, "iops", iops);
1912                 json_object_add_value_array(data, "bw", bw);
1913         }
1914
1915         return root;
1916 }
1917
1918 static void show_thread_status_terse(struct thread_stat *ts,
1919                                      struct group_run_stats *rs,
1920                                      struct buf_output *out)
1921 {
1922         if (terse_version >= 2 && terse_version <= 5)
1923                 show_thread_status_terse_all(ts, rs, terse_version, out);
1924         else
1925                 log_err("fio: bad terse version!? %d\n", terse_version);
1926 }
1927
1928 struct json_object *show_thread_status(struct thread_stat *ts,
1929                                        struct group_run_stats *rs,
1930                                        struct flist_head *opt_list,
1931                                        struct buf_output *out)
1932 {
1933         struct json_object *ret = NULL;
1934
1935         if (output_format & FIO_OUTPUT_TERSE)
1936                 show_thread_status_terse(ts, rs,  out);
1937         if (output_format & FIO_OUTPUT_JSON)
1938                 ret = show_thread_status_json(ts, rs, opt_list);
1939         if (output_format & FIO_OUTPUT_NORMAL)
1940                 show_thread_status_normal(ts, rs,  out);
1941
1942         return ret;
1943 }
1944
1945 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1946 {
1947         double mean, S;
1948
1949         dst->min_val = min(dst->min_val, src->min_val);
1950         dst->max_val = max(dst->max_val, src->max_val);
1951
1952         /*
1953          * Compute new mean and S after the merge
1954          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1955          *  #Parallel_algorithm>
1956          */
1957         if (first) {
1958                 mean = src->mean.u.f;
1959                 S = src->S.u.f;
1960         } else {
1961                 double delta = src->mean.u.f - dst->mean.u.f;
1962
1963                 mean = ((src->mean.u.f * src->samples) +
1964                         (dst->mean.u.f * dst->samples)) /
1965                         (dst->samples + src->samples);
1966
1967                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1968                         (dst->samples * src->samples) /
1969                         (dst->samples + src->samples);
1970         }
1971
1972         dst->samples += src->samples;
1973         dst->mean.u.f = mean;
1974         dst->S.u.f = S;
1975
1976 }
1977
1978 /*
1979  * We sum two kinds of stats - one that is time based, in which case we
1980  * apply the proper summing technique, and then one that is iops/bw
1981  * numbers. For group_reporting, we should just add those up, not make
1982  * them the mean of everything.
1983  */
1984 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
1985 {
1986         bool first = dst->samples == 0;
1987
1988         if (src->samples == 0)
1989                 return;
1990
1991         if (!pure_sum) {
1992                 __sum_stat(dst, src, first);
1993                 return;
1994         }
1995
1996         if (first) {
1997                 dst->min_val = src->min_val;
1998                 dst->max_val = src->max_val;
1999                 dst->samples = src->samples;
2000                 dst->mean.u.f = src->mean.u.f;
2001                 dst->S.u.f = src->S.u.f;
2002         } else {
2003                 dst->min_val += src->min_val;
2004                 dst->max_val += src->max_val;
2005                 dst->samples += src->samples;
2006                 dst->mean.u.f += src->mean.u.f;
2007                 dst->S.u.f += src->S.u.f;
2008         }
2009 }
2010
2011 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2012 {
2013         int i;
2014
2015         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2016                 if (dst->max_run[i] < src->max_run[i])
2017                         dst->max_run[i] = src->max_run[i];
2018                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2019                         dst->min_run[i] = src->min_run[i];
2020                 if (dst->max_bw[i] < src->max_bw[i])
2021                         dst->max_bw[i] = src->max_bw[i];
2022                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2023                         dst->min_bw[i] = src->min_bw[i];
2024
2025                 dst->iobytes[i] += src->iobytes[i];
2026                 dst->agg[i] += src->agg[i];
2027         }
2028
2029         if (!dst->kb_base)
2030                 dst->kb_base = src->kb_base;
2031         if (!dst->unit_base)
2032                 dst->unit_base = src->unit_base;
2033         if (!dst->sig_figs)
2034                 dst->sig_figs = src->sig_figs;
2035 }
2036
2037 /*
2038  * Free the clat_prio_stat arrays allocated by alloc_clat_prio_stat_ddir().
2039  */
2040 void free_clat_prio_stats(struct thread_stat *ts)
2041 {
2042         enum fio_ddir ddir;
2043
2044         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2045                 sfree(ts->clat_prio[ddir]);
2046                 ts->clat_prio[ddir] = NULL;
2047                 ts->nr_clat_prio[ddir] = 0;
2048         }
2049 }
2050
2051 /*
2052  * Allocate a clat_prio_stat array. The array has to be allocated/freed using
2053  * smalloc/sfree, so that it is accessible by the process/thread summing the
2054  * thread_stats.
2055  */
2056 int alloc_clat_prio_stat_ddir(struct thread_stat *ts, enum fio_ddir ddir,
2057                               int nr_prios)
2058 {
2059         struct clat_prio_stat *clat_prio;
2060         int i;
2061
2062         clat_prio = scalloc(nr_prios, sizeof(*ts->clat_prio[ddir]));
2063         if (!clat_prio) {
2064                 log_err("fio: failed to allocate ts clat data\n");
2065                 return 1;
2066         }
2067
2068         for (i = 0; i < nr_prios; i++)
2069                 clat_prio[i].clat_stat.min_val = ULONG_MAX;
2070
2071         ts->clat_prio[ddir] = clat_prio;
2072         ts->nr_clat_prio[ddir] = nr_prios;
2073
2074         return 0;
2075 }
2076
2077 static int grow_clat_prio_stat(struct thread_stat *dst, enum fio_ddir ddir)
2078 {
2079         int curr_len = dst->nr_clat_prio[ddir];
2080         void *new_arr;
2081
2082         new_arr = scalloc(curr_len + 1, sizeof(*dst->clat_prio[ddir]));
2083         if (!new_arr) {
2084                 log_err("fio: failed to grow clat prio array\n");
2085                 return 1;
2086         }
2087
2088         memcpy(new_arr, dst->clat_prio[ddir],
2089                curr_len * sizeof(*dst->clat_prio[ddir]));
2090         sfree(dst->clat_prio[ddir]);
2091
2092         dst->clat_prio[ddir] = new_arr;
2093         dst->clat_prio[ddir][curr_len].clat_stat.min_val = ULONG_MAX;
2094         dst->nr_clat_prio[ddir]++;
2095
2096         return 0;
2097 }
2098
2099 static int find_clat_prio_index(struct thread_stat *dst, enum fio_ddir ddir,
2100                                 uint32_t ioprio)
2101 {
2102         int i, nr_prios = dst->nr_clat_prio[ddir];
2103
2104         for (i = 0; i < nr_prios; i++) {
2105                 if (dst->clat_prio[ddir][i].ioprio == ioprio)
2106                         return i;
2107         }
2108
2109         return -1;
2110 }
2111
2112 static int alloc_or_get_clat_prio_index(struct thread_stat *dst,
2113                                         enum fio_ddir ddir, uint32_t ioprio,
2114                                         int *idx)
2115 {
2116         int index = find_clat_prio_index(dst, ddir, ioprio);
2117
2118         if (index == -1) {
2119                 index = dst->nr_clat_prio[ddir];
2120
2121                 if (grow_clat_prio_stat(dst, ddir))
2122                         return 1;
2123
2124                 dst->clat_prio[ddir][index].ioprio = ioprio;
2125         }
2126
2127         *idx = index;
2128
2129         return 0;
2130 }
2131
2132 static int clat_prio_stats_copy(struct thread_stat *dst, struct thread_stat *src,
2133                                 enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2134 {
2135         size_t sz = sizeof(*src->clat_prio[src_ddir]) *
2136                 src->nr_clat_prio[src_ddir];
2137
2138         dst->clat_prio[dst_ddir] = smalloc(sz);
2139         if (!dst->clat_prio[dst_ddir]) {
2140                 log_err("fio: failed to alloc clat prio array\n");
2141                 return 1;
2142         }
2143
2144         memcpy(dst->clat_prio[dst_ddir], src->clat_prio[src_ddir], sz);
2145         dst->nr_clat_prio[dst_ddir] = src->nr_clat_prio[src_ddir];
2146
2147         return 0;
2148 }
2149
2150 static int clat_prio_stat_add_samples(struct thread_stat *dst,
2151                                       enum fio_ddir dst_ddir, uint32_t ioprio,
2152                                       struct io_stat *io_stat,
2153                                       uint64_t *io_u_plat)
2154 {
2155         int i, dst_index;
2156
2157         if (!io_stat->samples)
2158                 return 0;
2159
2160         if (alloc_or_get_clat_prio_index(dst, dst_ddir, ioprio, &dst_index))
2161                 return 1;
2162
2163         sum_stat(&dst->clat_prio[dst_ddir][dst_index].clat_stat, io_stat,
2164                  false);
2165
2166         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
2167                 dst->clat_prio[dst_ddir][dst_index].io_u_plat[i] += io_u_plat[i];
2168
2169         return 0;
2170 }
2171
2172 static int sum_clat_prio_stats_src_single_prio(struct thread_stat *dst,
2173                                                struct thread_stat *src,
2174                                                enum fio_ddir dst_ddir,
2175                                                enum fio_ddir src_ddir)
2176 {
2177         struct io_stat *io_stat;
2178         uint64_t *io_u_plat;
2179
2180         /*
2181          * If src ts has no clat_prio_stat array, then all I/Os were submitted
2182          * using src->ioprio. Thus, the global samples in src->clat_stat (or
2183          * src->lat_stat) can be used as the 'per prio' samples for src->ioprio.
2184          */
2185         assert(!src->clat_prio[src_ddir]);
2186         assert(src->nr_clat_prio[src_ddir] == 0);
2187
2188         if (src->lat_percentiles) {
2189                 io_u_plat = src->io_u_plat[FIO_LAT][src_ddir];
2190                 io_stat = &src->lat_stat[src_ddir];
2191         } else {
2192                 io_u_plat = src->io_u_plat[FIO_CLAT][src_ddir];
2193                 io_stat = &src->clat_stat[src_ddir];
2194         }
2195
2196         return clat_prio_stat_add_samples(dst, dst_ddir, src->ioprio, io_stat,
2197                                           io_u_plat);
2198 }
2199
2200 static int sum_clat_prio_stats_src_multi_prio(struct thread_stat *dst,
2201                                               struct thread_stat *src,
2202                                               enum fio_ddir dst_ddir,
2203                                               enum fio_ddir src_ddir)
2204 {
2205         int i;
2206
2207         /*
2208          * If src ts has a clat_prio_stat array, then there are multiple prios
2209          * in use (i.e. src ts had cmdprio_percentage or cmdprio_bssplit set).
2210          * The samples for the default prio will exist in the src->clat_prio
2211          * array, just like the samples for any other prio.
2212          */
2213         assert(src->clat_prio[src_ddir]);
2214         assert(src->nr_clat_prio[src_ddir]);
2215
2216         /* If the dst ts doesn't yet have a clat_prio array, simply memcpy. */
2217         if (!dst->clat_prio[dst_ddir])
2218                 return clat_prio_stats_copy(dst, src, dst_ddir, src_ddir);
2219
2220         /* The dst ts already has a clat_prio_array, add src stats into it. */
2221         for (i = 0; i < src->nr_clat_prio[src_ddir]; i++) {
2222                 struct io_stat *io_stat = &src->clat_prio[src_ddir][i].clat_stat;
2223                 uint64_t *io_u_plat = src->clat_prio[src_ddir][i].io_u_plat;
2224                 uint32_t ioprio = src->clat_prio[src_ddir][i].ioprio;
2225
2226                 if (clat_prio_stat_add_samples(dst, dst_ddir, ioprio, io_stat, io_u_plat))
2227                         return 1;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static int sum_clat_prio_stats(struct thread_stat *dst, struct thread_stat *src,
2234                                enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2235 {
2236         if (dst->disable_prio_stat)
2237                 return 0;
2238
2239         if (!src->clat_prio[src_ddir])
2240                 return sum_clat_prio_stats_src_single_prio(dst, src, dst_ddir,
2241                                                            src_ddir);
2242
2243         return sum_clat_prio_stats_src_multi_prio(dst, src, dst_ddir, src_ddir);
2244 }
2245
2246 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2247 {
2248         int k, l, m;
2249
2250         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2251                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2252                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2253                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2254                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2255                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2256                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2257                         sum_clat_prio_stats(dst, src, l, l);
2258
2259                         dst->io_bytes[l] += src->io_bytes[l];
2260
2261                         if (dst->runtime[l] < src->runtime[l])
2262                                 dst->runtime[l] = src->runtime[l];
2263                 } else {
2264                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2265                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2266                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2267                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2268                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2269                         sum_clat_prio_stats(dst, src, 0, l);
2270
2271                         dst->io_bytes[0] += src->io_bytes[l];
2272
2273                         if (dst->runtime[0] < src->runtime[l])
2274                                 dst->runtime[0] = src->runtime[l];
2275                 }
2276         }
2277
2278         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2279         dst->usr_time += src->usr_time;
2280         dst->sys_time += src->sys_time;
2281         dst->ctx += src->ctx;
2282         dst->majf += src->majf;
2283         dst->minf += src->minf;
2284
2285         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2286                 dst->io_u_map[k] += src->io_u_map[k];
2287                 dst->io_u_submit[k] += src->io_u_submit[k];
2288                 dst->io_u_complete[k] += src->io_u_complete[k];
2289         }
2290
2291         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2292                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2293         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2294                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2295         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2296                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2297
2298         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2299                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2300                         dst->total_io_u[k] += src->total_io_u[k];
2301                         dst->short_io_u[k] += src->short_io_u[k];
2302                         dst->drop_io_u[k] += src->drop_io_u[k];
2303                 } else {
2304                         dst->total_io_u[0] += src->total_io_u[k];
2305                         dst->short_io_u[0] += src->short_io_u[k];
2306                         dst->drop_io_u[0] += src->drop_io_u[k];
2307                 }
2308         }
2309
2310         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2311
2312         for (k = 0; k < FIO_LAT_CNT; k++)
2313                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2314                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2315                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2316                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2317                                 else
2318                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2319
2320         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2321                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2322
2323         dst->total_run_time += src->total_run_time;
2324         dst->total_submit += src->total_submit;
2325         dst->total_complete += src->total_complete;
2326         dst->nr_zone_resets += src->nr_zone_resets;
2327         dst->cachehit += src->cachehit;
2328         dst->cachemiss += src->cachemiss;
2329 }
2330
2331 void init_group_run_stat(struct group_run_stats *gs)
2332 {
2333         int i;
2334         memset(gs, 0, sizeof(*gs));
2335
2336         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2337                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2338 }
2339
2340 void init_thread_stat_min_vals(struct thread_stat *ts)
2341 {
2342         int i;
2343
2344         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2345                 ts->clat_stat[i].min_val = ULONG_MAX;
2346                 ts->slat_stat[i].min_val = ULONG_MAX;
2347                 ts->lat_stat[i].min_val = ULONG_MAX;
2348                 ts->bw_stat[i].min_val = ULONG_MAX;
2349                 ts->iops_stat[i].min_val = ULONG_MAX;
2350         }
2351         ts->sync_stat.min_val = ULONG_MAX;
2352 }
2353
2354 void init_thread_stat(struct thread_stat *ts)
2355 {
2356         memset(ts, 0, sizeof(*ts));
2357
2358         init_thread_stat_min_vals(ts);
2359         ts->groupid = -1;
2360 }
2361
2362 static void init_per_prio_stats(struct thread_stat *threadstats, int nr_ts)
2363 {
2364         struct thread_data *td;
2365         struct thread_stat *ts;
2366         int i, j, last_ts, idx;
2367         enum fio_ddir ddir;
2368
2369         j = 0;
2370         last_ts = -1;
2371         idx = 0;
2372
2373         /*
2374          * Loop through all tds, if a td requires per prio stats, temporarily
2375          * store a 1 in ts->disable_prio_stat, and then do an additional
2376          * loop at the end where we invert the ts->disable_prio_stat values.
2377          */
2378         for_each_td(td, i) {
2379                 if (!td->o.stats)
2380                         continue;
2381                 if (idx &&
2382                     (!td->o.group_reporting ||
2383                      (td->o.group_reporting && last_ts != td->groupid))) {
2384                         idx = 0;
2385                         j++;
2386                 }
2387
2388                 last_ts = td->groupid;
2389                 ts = &threadstats[j];
2390
2391                 /* idx == 0 means first td in group, or td is not in a group. */
2392                 if (idx == 0)
2393                         ts->ioprio = td->ioprio;
2394                 else if (td->ioprio != ts->ioprio)
2395                         ts->disable_prio_stat = 1;
2396
2397                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2398                         if (td->ts.clat_prio[ddir]) {
2399                                 ts->disable_prio_stat = 1;
2400                                 break;
2401                         }
2402                 }
2403
2404                 idx++;
2405         }
2406
2407         /* Loop through all dst threadstats and fixup the values. */
2408         for (i = 0; i < nr_ts; i++) {
2409                 ts = &threadstats[i];
2410                 ts->disable_prio_stat = !ts->disable_prio_stat;
2411         }
2412 }
2413
2414 void __show_run_stats(void)
2415 {
2416         struct group_run_stats *runstats, *rs;
2417         struct thread_data *td;
2418         struct thread_stat *threadstats, *ts;
2419         int i, j, k, nr_ts, last_ts, idx;
2420         bool kb_base_warned = false;
2421         bool unit_base_warned = false;
2422         struct json_object *root = NULL;
2423         struct json_array *array = NULL;
2424         struct buf_output output[FIO_OUTPUT_NR];
2425         struct flist_head **opt_lists;
2426
2427         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2428
2429         for (i = 0; i < groupid + 1; i++)
2430                 init_group_run_stat(&runstats[i]);
2431
2432         /*
2433          * find out how many threads stats we need. if group reporting isn't
2434          * enabled, it's one-per-td.
2435          */
2436         nr_ts = 0;
2437         last_ts = -1;
2438         for_each_td(td, i) {
2439                 if (!td->o.group_reporting) {
2440                         nr_ts++;
2441                         continue;
2442                 }
2443                 if (last_ts == td->groupid)
2444                         continue;
2445                 if (!td->o.stats)
2446                         continue;
2447
2448                 last_ts = td->groupid;
2449                 nr_ts++;
2450         }
2451
2452         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2453         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2454
2455         for (i = 0; i < nr_ts; i++) {
2456                 init_thread_stat(&threadstats[i]);
2457                 opt_lists[i] = NULL;
2458         }
2459
2460         init_per_prio_stats(threadstats, nr_ts);
2461
2462         j = 0;
2463         last_ts = -1;
2464         idx = 0;
2465         for_each_td(td, i) {
2466                 if (!td->o.stats)
2467                         continue;
2468                 if (idx && (!td->o.group_reporting ||
2469                     (td->o.group_reporting && last_ts != td->groupid))) {
2470                         idx = 0;
2471                         j++;
2472                 }
2473
2474                 last_ts = td->groupid;
2475
2476                 ts = &threadstats[j];
2477
2478                 ts->clat_percentiles = td->o.clat_percentiles;
2479                 ts->lat_percentiles = td->o.lat_percentiles;
2480                 ts->slat_percentiles = td->o.slat_percentiles;
2481                 ts->percentile_precision = td->o.percentile_precision;
2482                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2483                 opt_lists[j] = &td->opt_list;
2484
2485                 idx++;
2486
2487                 if (ts->groupid == -1) {
2488                         /*
2489                          * These are per-group shared already
2490                          */
2491                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2492                         if (td->o.description)
2493                                 snprintf(ts->description,
2494                                          sizeof(ts->description), "%s",
2495                                          td->o.description);
2496                         else
2497                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2498
2499                         /*
2500                          * If multiple entries in this group, this is
2501                          * the first member.
2502                          */
2503                         ts->thread_number = td->thread_number;
2504                         ts->groupid = td->groupid;
2505
2506                         /*
2507                          * first pid in group, not very useful...
2508                          */
2509                         ts->pid = td->pid;
2510
2511                         ts->kb_base = td->o.kb_base;
2512                         ts->unit_base = td->o.unit_base;
2513                         ts->sig_figs = td->o.sig_figs;
2514                         ts->unified_rw_rep = td->o.unified_rw_rep;
2515                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2516                         log_info("fio: kb_base differs for jobs in group, using"
2517                                  " %u as the base\n", ts->kb_base);
2518                         kb_base_warned = true;
2519                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2520                         log_info("fio: unit_base differs for jobs in group, using"
2521                                  " %u as the base\n", ts->unit_base);
2522                         unit_base_warned = true;
2523                 }
2524
2525                 ts->continue_on_error = td->o.continue_on_error;
2526                 ts->total_err_count += td->total_err_count;
2527                 ts->first_error = td->first_error;
2528                 if (!ts->error) {
2529                         if (!td->error && td->o.continue_on_error &&
2530                             td->first_error) {
2531                                 ts->error = td->first_error;
2532                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2533                                          td->verror);
2534                         } else  if (td->error) {
2535                                 ts->error = td->error;
2536                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2537                                          td->verror);
2538                         }
2539                 }
2540
2541                 ts->latency_depth = td->latency_qd;
2542                 ts->latency_target = td->o.latency_target;
2543                 ts->latency_percentile = td->o.latency_percentile;
2544                 ts->latency_window = td->o.latency_window;
2545
2546                 ts->nr_block_infos = td->ts.nr_block_infos;
2547                 for (k = 0; k < ts->nr_block_infos; k++)
2548                         ts->block_infos[k] = td->ts.block_infos[k];
2549
2550                 sum_thread_stats(ts, &td->ts);
2551
2552                 ts->members++;
2553
2554                 if (td->o.ss_dur) {
2555                         ts->ss_state = td->ss.state;
2556                         ts->ss_dur = td->ss.dur;
2557                         ts->ss_head = td->ss.head;
2558                         ts->ss_bw_data = td->ss.bw_data;
2559                         ts->ss_iops_data = td->ss.iops_data;
2560                         ts->ss_limit.u.f = td->ss.limit;
2561                         ts->ss_slope.u.f = td->ss.slope;
2562                         ts->ss_deviation.u.f = td->ss.deviation;
2563                         ts->ss_criterion.u.f = td->ss.criterion;
2564                 }
2565                 else
2566                         ts->ss_dur = ts->ss_state = 0;
2567         }
2568
2569         for (i = 0; i < nr_ts; i++) {
2570                 unsigned long long bw;
2571
2572                 ts = &threadstats[i];
2573                 if (ts->groupid == -1)
2574                         continue;
2575                 rs = &runstats[ts->groupid];
2576                 rs->kb_base = ts->kb_base;
2577                 rs->unit_base = ts->unit_base;
2578                 rs->sig_figs = ts->sig_figs;
2579                 rs->unified_rw_rep |= ts->unified_rw_rep;
2580
2581                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2582                         if (!ts->runtime[j])
2583                                 continue;
2584                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2585                                 rs->min_run[j] = ts->runtime[j];
2586                         if (ts->runtime[j] > rs->max_run[j])
2587                                 rs->max_run[j] = ts->runtime[j];
2588
2589                         bw = 0;
2590                         if (ts->runtime[j])
2591                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2592                         if (bw < rs->min_bw[j])
2593                                 rs->min_bw[j] = bw;
2594                         if (bw > rs->max_bw[j])
2595                                 rs->max_bw[j] = bw;
2596
2597                         rs->iobytes[j] += ts->io_bytes[j];
2598                 }
2599         }
2600
2601         for (i = 0; i < groupid + 1; i++) {
2602                 enum fio_ddir ddir;
2603
2604                 rs = &runstats[i];
2605
2606                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2607                         if (rs->max_run[ddir])
2608                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2609                                                 rs->max_run[ddir];
2610                 }
2611         }
2612
2613         for (i = 0; i < FIO_OUTPUT_NR; i++)
2614                 buf_output_init(&output[i]);
2615
2616         /*
2617          * don't overwrite last signal output
2618          */
2619         if (output_format & FIO_OUTPUT_NORMAL)
2620                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2621         if (output_format & FIO_OUTPUT_JSON) {
2622                 struct thread_data *global;
2623                 char time_buf[32];
2624                 struct timeval now;
2625                 unsigned long long ms_since_epoch;
2626                 time_t tv_sec;
2627
2628                 gettimeofday(&now, NULL);
2629                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2630                                  (unsigned long long)(now.tv_usec) / 1000;
2631
2632                 tv_sec = now.tv_sec;
2633                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2634                 if (time_buf[strlen(time_buf) - 1] == '\n')
2635                         time_buf[strlen(time_buf) - 1] = '\0';
2636
2637                 root = json_create_object();
2638                 json_object_add_value_string(root, "fio version", fio_version_string);
2639                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2640                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2641                 json_object_add_value_string(root, "time", time_buf);
2642                 global = get_global_options();
2643                 json_add_job_opts(root, "global options", &global->opt_list);
2644                 array = json_create_array();
2645                 json_object_add_value_array(root, "jobs", array);
2646         }
2647
2648         if (is_backend)
2649                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2650
2651         for (i = 0; i < nr_ts; i++) {
2652                 ts = &threadstats[i];
2653                 rs = &runstats[ts->groupid];
2654
2655                 if (is_backend) {
2656                         fio_server_send_job_options(opt_lists[i], i);
2657                         fio_server_send_ts(ts, rs);
2658                 } else {
2659                         if (output_format & FIO_OUTPUT_TERSE)
2660                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2661                         if (output_format & FIO_OUTPUT_JSON) {
2662                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2663                                 json_array_add_value_object(array, tmp);
2664                         }
2665                         if (output_format & FIO_OUTPUT_NORMAL)
2666                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2667                 }
2668         }
2669         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2670                 /* disk util stats, if any */
2671                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2672
2673                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2674
2675                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2676                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2677                 json_free_object(root);
2678         }
2679
2680         for (i = 0; i < groupid + 1; i++) {
2681                 rs = &runstats[i];
2682
2683                 rs->groupid = i;
2684                 if (is_backend)
2685                         fio_server_send_gs(rs);
2686                 else if (output_format & FIO_OUTPUT_NORMAL)
2687                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2688         }
2689
2690         if (is_backend)
2691                 fio_server_send_du();
2692         else if (output_format & FIO_OUTPUT_NORMAL) {
2693                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2694                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2695         }
2696
2697         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2698                 struct buf_output *out = &output[i];
2699
2700                 log_info_buf(out->buf, out->buflen);
2701                 buf_output_free(out);
2702         }
2703
2704         fio_idle_prof_cleanup();
2705
2706         log_info_flush();
2707         free(runstats);
2708
2709         /* free arrays allocated by sum_thread_stats(), if any */
2710         for (i = 0; i < nr_ts; i++) {
2711                 ts = &threadstats[i];
2712                 free_clat_prio_stats(ts);
2713         }
2714         free(threadstats);
2715         free(opt_lists);
2716 }
2717
2718 int __show_running_run_stats(void)
2719 {
2720         struct thread_data *td;
2721         unsigned long long *rt;
2722         struct timespec ts;
2723         int i;
2724
2725         fio_sem_down(stat_sem);
2726
2727         rt = malloc(thread_number * sizeof(unsigned long long));
2728         fio_gettime(&ts, NULL);
2729
2730         for_each_td(td, i) {
2731                 td->update_rusage = 1;
2732                 for_each_rw_ddir(ddir) {
2733                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2734                 }
2735                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2736
2737                 rt[i] = mtime_since(&td->start, &ts);
2738                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2739                         td->ts.runtime[DDIR_READ] += rt[i];
2740                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2741                         td->ts.runtime[DDIR_WRITE] += rt[i];
2742                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2743                         td->ts.runtime[DDIR_TRIM] += rt[i];
2744         }
2745
2746         for_each_td(td, i) {
2747                 if (td->runstate >= TD_EXITED)
2748                         continue;
2749                 if (td->rusage_sem) {
2750                         td->update_rusage = 1;
2751                         fio_sem_down(td->rusage_sem);
2752                 }
2753                 td->update_rusage = 0;
2754         }
2755
2756         __show_run_stats();
2757
2758         for_each_td(td, i) {
2759                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2760                         td->ts.runtime[DDIR_READ] -= rt[i];
2761                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2762                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2763                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2764                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2765         }
2766
2767         free(rt);
2768         fio_sem_up(stat_sem);
2769
2770         return 0;
2771 }
2772
2773 static bool status_file_disabled;
2774
2775 #define FIO_STATUS_FILE         "fio-dump-status"
2776
2777 static int check_status_file(void)
2778 {
2779         struct stat sb;
2780         const char *temp_dir;
2781         char fio_status_file_path[PATH_MAX];
2782
2783         if (status_file_disabled)
2784                 return 0;
2785
2786         temp_dir = getenv("TMPDIR");
2787         if (temp_dir == NULL) {
2788                 temp_dir = getenv("TEMP");
2789                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2790                         temp_dir = NULL;
2791         }
2792         if (temp_dir == NULL)
2793                 temp_dir = "/tmp";
2794 #ifdef __COVERITY__
2795         __coverity_tainted_data_sanitize__(temp_dir);
2796 #endif
2797
2798         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2799
2800         if (stat(fio_status_file_path, &sb))
2801                 return 0;
2802
2803         if (unlink(fio_status_file_path) < 0) {
2804                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2805                                                         strerror(errno));
2806                 log_err("fio: disabling status file updates\n");
2807                 status_file_disabled = true;
2808         }
2809
2810         return 1;
2811 }
2812
2813 void check_for_running_stats(void)
2814 {
2815         if (check_status_file()) {
2816                 show_running_run_stats();
2817                 return;
2818         }
2819 }
2820
2821 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2822 {
2823         double val = data;
2824         double delta;
2825
2826         if (data > is->max_val)
2827                 is->max_val = data;
2828         if (data < is->min_val)
2829                 is->min_val = data;
2830
2831         delta = val - is->mean.u.f;
2832         if (delta) {
2833                 is->mean.u.f += delta / (is->samples + 1.0);
2834                 is->S.u.f += delta * (val - is->mean.u.f);
2835         }
2836
2837         is->samples++;
2838 }
2839
2840 static inline void add_stat_prio_sample(struct clat_prio_stat *clat_prio,
2841                                         unsigned short clat_prio_index,
2842                                         unsigned long long nsec)
2843 {
2844         if (clat_prio)
2845                 add_stat_sample(&clat_prio[clat_prio_index].clat_stat, nsec);
2846 }
2847
2848 /*
2849  * Return a struct io_logs, which is added to the tail of the log
2850  * list for 'iolog'.
2851  */
2852 static struct io_logs *get_new_log(struct io_log *iolog)
2853 {
2854         size_t new_samples;
2855         struct io_logs *cur_log;
2856
2857         /*
2858          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2859          * forever
2860          */
2861         if (!iolog->cur_log_max) {
2862                 new_samples = iolog->td->o.log_entries;
2863         } else {
2864                 new_samples = iolog->cur_log_max * 2;
2865                 if (new_samples > MAX_LOG_ENTRIES)
2866                         new_samples = MAX_LOG_ENTRIES;
2867         }
2868
2869         cur_log = smalloc(sizeof(*cur_log));
2870         if (cur_log) {
2871                 INIT_FLIST_HEAD(&cur_log->list);
2872                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2873                 if (cur_log->log) {
2874                         cur_log->nr_samples = 0;
2875                         cur_log->max_samples = new_samples;
2876                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2877                         iolog->cur_log_max = new_samples;
2878                         return cur_log;
2879                 }
2880                 sfree(cur_log);
2881         }
2882
2883         return NULL;
2884 }
2885
2886 /*
2887  * Add and return a new log chunk, or return current log if big enough
2888  */
2889 static struct io_logs *regrow_log(struct io_log *iolog)
2890 {
2891         struct io_logs *cur_log;
2892         int i;
2893
2894         if (!iolog || iolog->disabled)
2895                 goto disable;
2896
2897         cur_log = iolog_cur_log(iolog);
2898         if (!cur_log) {
2899                 cur_log = get_new_log(iolog);
2900                 if (!cur_log)
2901                         return NULL;
2902         }
2903
2904         if (cur_log->nr_samples < cur_log->max_samples)
2905                 return cur_log;
2906
2907         /*
2908          * No room for a new sample. If we're compressing on the fly, flush
2909          * out the current chunk
2910          */
2911         if (iolog->log_gz) {
2912                 if (iolog_cur_flush(iolog, cur_log)) {
2913                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2914                         return NULL;
2915                 }
2916         }
2917
2918         /*
2919          * Get a new log array, and add to our list
2920          */
2921         cur_log = get_new_log(iolog);
2922         if (!cur_log) {
2923                 log_err("fio: failed extending iolog! Will stop logging.\n");
2924                 return NULL;
2925         }
2926
2927         if (!iolog->pending || !iolog->pending->nr_samples)
2928                 return cur_log;
2929
2930         /*
2931          * Flush pending items to new log
2932          */
2933         for (i = 0; i < iolog->pending->nr_samples; i++) {
2934                 struct io_sample *src, *dst;
2935
2936                 src = get_sample(iolog, iolog->pending, i);
2937                 dst = get_sample(iolog, cur_log, i);
2938                 memcpy(dst, src, log_entry_sz(iolog));
2939         }
2940         cur_log->nr_samples = iolog->pending->nr_samples;
2941
2942         iolog->pending->nr_samples = 0;
2943         return cur_log;
2944 disable:
2945         if (iolog)
2946                 iolog->disabled = true;
2947         return NULL;
2948 }
2949
2950 void regrow_logs(struct thread_data *td)
2951 {
2952         regrow_log(td->slat_log);
2953         regrow_log(td->clat_log);
2954         regrow_log(td->clat_hist_log);
2955         regrow_log(td->lat_log);
2956         regrow_log(td->bw_log);
2957         regrow_log(td->iops_log);
2958         td->flags &= ~TD_F_REGROW_LOGS;
2959 }
2960
2961 void regrow_agg_logs(void)
2962 {
2963         enum fio_ddir ddir;
2964
2965         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2966                 regrow_log(agg_io_log[ddir]);
2967 }
2968
2969 static struct io_logs *get_cur_log(struct io_log *iolog)
2970 {
2971         struct io_logs *cur_log;
2972
2973         cur_log = iolog_cur_log(iolog);
2974         if (!cur_log) {
2975                 cur_log = get_new_log(iolog);
2976                 if (!cur_log)
2977                         return NULL;
2978         }
2979
2980         if (cur_log->nr_samples < cur_log->max_samples)
2981                 return cur_log;
2982
2983         /*
2984          * Out of space. If we're in IO offload mode, or we're not doing
2985          * per unit logging (hence logging happens outside of the IO thread
2986          * as well), add a new log chunk inline. If we're doing inline
2987          * submissions, flag 'td' as needing a log regrow and we'll take
2988          * care of it on the submission side.
2989          */
2990         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2991             !per_unit_log(iolog))
2992                 return regrow_log(iolog);
2993
2994         if (iolog->td)
2995                 iolog->td->flags |= TD_F_REGROW_LOGS;
2996         if (iolog->pending)
2997                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2998         return iolog->pending;
2999 }
3000
3001 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
3002                              enum fio_ddir ddir, unsigned long long bs,
3003                              unsigned long t, uint64_t offset,
3004                              unsigned int priority)
3005 {
3006         struct io_logs *cur_log;
3007
3008         if (iolog->disabled)
3009                 return;
3010         if (flist_empty(&iolog->io_logs))
3011                 iolog->avg_last[ddir] = t;
3012
3013         cur_log = get_cur_log(iolog);
3014         if (cur_log) {
3015                 struct io_sample *s;
3016
3017                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
3018
3019                 s->data = data;
3020                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
3021                 io_sample_set_ddir(iolog, s, ddir);
3022                 s->bs = bs;
3023                 s->priority = priority;
3024
3025                 if (iolog->log_offset) {
3026                         struct io_sample_offset *so = (void *) s;
3027
3028                         so->offset = offset;
3029                 }
3030
3031                 cur_log->nr_samples++;
3032                 return;
3033         }
3034
3035         iolog->disabled = true;
3036 }
3037
3038 static inline void reset_io_stat(struct io_stat *ios)
3039 {
3040         ios->min_val = -1ULL;
3041         ios->max_val = ios->samples = 0;
3042         ios->mean.u.f = ios->S.u.f = 0;
3043 }
3044
3045 static inline void reset_io_u_plat(uint64_t *io_u_plat)
3046 {
3047         int i;
3048
3049         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
3050                 io_u_plat[i] = 0;
3051 }
3052
3053 static inline void reset_clat_prio_stats(struct thread_stat *ts)
3054 {
3055         enum fio_ddir ddir;
3056         int i;
3057
3058         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3059                 if (!ts->clat_prio[ddir])
3060                         continue;
3061
3062                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
3063                         reset_io_stat(&ts->clat_prio[ddir][i].clat_stat);
3064                         reset_io_u_plat(ts->clat_prio[ddir][i].io_u_plat);
3065                 }
3066         }
3067 }
3068
3069 void reset_io_stats(struct thread_data *td)
3070 {
3071         struct thread_stat *ts = &td->ts;
3072         int i, j;
3073
3074         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
3075                 reset_io_stat(&ts->clat_stat[i]);
3076                 reset_io_stat(&ts->slat_stat[i]);
3077                 reset_io_stat(&ts->lat_stat[i]);
3078                 reset_io_stat(&ts->bw_stat[i]);
3079                 reset_io_stat(&ts->iops_stat[i]);
3080
3081                 ts->io_bytes[i] = 0;
3082                 ts->runtime[i] = 0;
3083                 ts->total_io_u[i] = 0;
3084                 ts->short_io_u[i] = 0;
3085                 ts->drop_io_u[i] = 0;
3086         }
3087
3088         for (i = 0; i < FIO_LAT_CNT; i++)
3089                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
3090                         reset_io_u_plat(ts->io_u_plat[i][j]);
3091
3092         reset_clat_prio_stats(ts);
3093
3094         ts->total_io_u[DDIR_SYNC] = 0;
3095         reset_io_u_plat(ts->io_u_sync_plat);
3096
3097         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
3098                 ts->io_u_map[i] = 0;
3099                 ts->io_u_submit[i] = 0;
3100                 ts->io_u_complete[i] = 0;
3101         }
3102
3103         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
3104                 ts->io_u_lat_n[i] = 0;
3105         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
3106                 ts->io_u_lat_u[i] = 0;
3107         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
3108                 ts->io_u_lat_m[i] = 0;
3109
3110         ts->total_submit = 0;
3111         ts->total_complete = 0;
3112         ts->nr_zone_resets = 0;
3113         ts->cachehit = ts->cachemiss = 0;
3114 }
3115
3116 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
3117                               unsigned long elapsed, bool log_max)
3118 {
3119         /*
3120          * Note an entry in the log. Use the mean from the logged samples,
3121          * making sure to properly round up. Only write a log entry if we
3122          * had actual samples done.
3123          */
3124         if (iolog->avg_window[ddir].samples) {
3125                 union io_sample_data data;
3126
3127                 if (log_max)
3128                         data.val = iolog->avg_window[ddir].max_val;
3129                 else
3130                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
3131
3132                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
3133         }
3134
3135         reset_io_stat(&iolog->avg_window[ddir]);
3136 }
3137
3138 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
3139                              bool log_max)
3140 {
3141         enum fio_ddir ddir;
3142
3143         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
3144                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
3145 }
3146
3147 static unsigned long add_log_sample(struct thread_data *td,
3148                                     struct io_log *iolog,
3149                                     union io_sample_data data,
3150                                     enum fio_ddir ddir, unsigned long long bs,
3151                                     uint64_t offset, unsigned int ioprio)
3152 {
3153         unsigned long elapsed, this_window;
3154
3155         if (!ddir_rw(ddir))
3156                 return 0;
3157
3158         elapsed = mtime_since_now(&td->epoch);
3159
3160         /*
3161          * If no time averaging, just add the log sample.
3162          */
3163         if (!iolog->avg_msec) {
3164                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3165                                  ioprio);
3166                 return 0;
3167         }
3168
3169         /*
3170          * Add the sample. If the time period has passed, then
3171          * add that entry to the log and clear.
3172          */
3173         add_stat_sample(&iolog->avg_window[ddir], data.val);
3174
3175         /*
3176          * If period hasn't passed, adding the above sample is all we
3177          * need to do.
3178          */
3179         this_window = elapsed - iolog->avg_last[ddir];
3180         if (elapsed < iolog->avg_last[ddir])
3181                 return iolog->avg_last[ddir] - elapsed;
3182         else if (this_window < iolog->avg_msec) {
3183                 unsigned long diff = iolog->avg_msec - this_window;
3184
3185                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3186                         return diff;
3187         }
3188
3189         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3190
3191         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3192
3193         return iolog->avg_msec;
3194 }
3195
3196 void finalize_logs(struct thread_data *td, bool unit_logs)
3197 {
3198         unsigned long elapsed;
3199
3200         elapsed = mtime_since_now(&td->epoch);
3201
3202         if (td->clat_log && unit_logs)
3203                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3204         if (td->slat_log && unit_logs)
3205                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3206         if (td->lat_log && unit_logs)
3207                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3208         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3209                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3210         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3211                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3212 }
3213
3214 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3215                     unsigned long long bs)
3216 {
3217         struct io_log *iolog;
3218
3219         if (!ddir_rw(ddir))
3220                 return;
3221
3222         iolog = agg_io_log[ddir];
3223         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3224 }
3225
3226 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3227 {
3228         unsigned int idx = plat_val_to_idx(nsec);
3229         assert(idx < FIO_IO_U_PLAT_NR);
3230
3231         ts->io_u_sync_plat[idx]++;
3232         add_stat_sample(&ts->sync_stat, nsec);
3233 }
3234
3235 static inline void add_lat_percentile_sample(struct thread_stat *ts,
3236                                              unsigned long long nsec,
3237                                              enum fio_ddir ddir,
3238                                              enum fio_lat lat)
3239 {
3240         unsigned int idx = plat_val_to_idx(nsec);
3241         assert(idx < FIO_IO_U_PLAT_NR);
3242
3243         ts->io_u_plat[lat][ddir][idx]++;
3244 }
3245
3246 static inline void
3247 add_lat_percentile_prio_sample(struct thread_stat *ts, unsigned long long nsec,
3248                                enum fio_ddir ddir,
3249                                unsigned short clat_prio_index)
3250 {
3251         unsigned int idx = plat_val_to_idx(nsec);
3252
3253         if (ts->clat_prio[ddir])
3254                 ts->clat_prio[ddir][clat_prio_index].io_u_plat[idx]++;
3255 }
3256
3257 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3258                      unsigned long long nsec, unsigned long long bs,
3259                      uint64_t offset, unsigned int ioprio,
3260                      unsigned short clat_prio_index)
3261 {
3262         const bool needs_lock = td_async_processing(td);
3263         unsigned long elapsed, this_window;
3264         struct thread_stat *ts = &td->ts;
3265         struct io_log *iolog = td->clat_hist_log;
3266
3267         if (needs_lock)
3268                 __td_io_u_lock(td);
3269
3270         add_stat_sample(&ts->clat_stat[ddir], nsec);
3271
3272         /*
3273          * When lat_percentiles=1 (default 0), the reported per priority
3274          * percentiles and stats are used for describing total latency values,
3275          * even though the variable names themselves start with clat_.
3276          *
3277          * Because of the above definition, add a prio stat sample only when
3278          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3279          * when lat_percentiles=1.
3280          */
3281         if (!ts->lat_percentiles)
3282                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3283                                      nsec);
3284
3285         if (td->clat_log)
3286                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3287                                offset, ioprio);
3288
3289         if (ts->clat_percentiles) {
3290                 /*
3291                  * Because of the above definition, add a prio lat percentile
3292                  * sample only when lat_percentiles=0. add_lat_sample() will add
3293                  * the prio lat percentile sample when lat_percentiles=1.
3294                  */
3295                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3296                 if (!ts->lat_percentiles)
3297                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3298                                                        clat_prio_index);
3299         }
3300
3301         if (iolog && iolog->hist_msec) {
3302                 struct io_hist *hw = &iolog->hist_window[ddir];
3303
3304                 hw->samples++;
3305                 elapsed = mtime_since_now(&td->epoch);
3306                 if (!hw->hist_last)
3307                         hw->hist_last = elapsed;
3308                 this_window = elapsed - hw->hist_last;
3309
3310                 if (this_window >= iolog->hist_msec) {
3311                         uint64_t *io_u_plat;
3312                         struct io_u_plat_entry *dst;
3313
3314                         /*
3315                          * Make a byte-for-byte copy of the latency histogram
3316                          * stored in td->ts.io_u_plat[ddir], recording it in a
3317                          * log sample. Note that the matching call to free() is
3318                          * located in iolog.c after printing this sample to the
3319                          * log file.
3320                          */
3321                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3322                         dst = malloc(sizeof(struct io_u_plat_entry));
3323                         memcpy(&(dst->io_u_plat), io_u_plat,
3324                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3325                         flist_add(&dst->list, &hw->list);
3326                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3327                                          elapsed, offset, ioprio);
3328
3329                         /*
3330                          * Update the last time we recorded as being now, minus
3331                          * any drift in time we encountered before actually
3332                          * making the record.
3333                          */
3334                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3335                         hw->samples = 0;
3336                 }
3337         }
3338
3339         if (needs_lock)
3340                 __td_io_u_unlock(td);
3341 }
3342
3343 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3344                      unsigned long long nsec, unsigned long long bs,
3345                      uint64_t offset, unsigned int ioprio)
3346 {
3347         const bool needs_lock = td_async_processing(td);
3348         struct thread_stat *ts = &td->ts;
3349
3350         if (!ddir_rw(ddir))
3351                 return;
3352
3353         if (needs_lock)
3354                 __td_io_u_lock(td);
3355
3356         add_stat_sample(&ts->slat_stat[ddir], nsec);
3357
3358         if (td->slat_log)
3359                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3360                                offset, ioprio);
3361
3362         if (ts->slat_percentiles)
3363                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3364
3365         if (needs_lock)
3366                 __td_io_u_unlock(td);
3367 }
3368
3369 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3370                     unsigned long long nsec, unsigned long long bs,
3371                     uint64_t offset, unsigned int ioprio,
3372                     unsigned short clat_prio_index)
3373 {
3374         const bool needs_lock = td_async_processing(td);
3375         struct thread_stat *ts = &td->ts;
3376
3377         if (!ddir_rw(ddir))
3378                 return;
3379
3380         if (needs_lock)
3381                 __td_io_u_lock(td);
3382
3383         add_stat_sample(&ts->lat_stat[ddir], nsec);
3384
3385         if (td->lat_log)
3386                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3387                                offset, ioprio);
3388
3389         /*
3390          * When lat_percentiles=1 (default 0), the reported per priority
3391          * percentiles and stats are used for describing total latency values,
3392          * even though the variable names themselves start with clat_.
3393          *
3394          * Because of the above definition, add a prio stat and prio lat
3395          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3396          * add the prio stat and prio lat percentile sample when
3397          * lat_percentiles=0.
3398          */
3399         if (ts->lat_percentiles) {
3400                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3401                 add_lat_percentile_prio_sample(ts, nsec, ddir, clat_prio_index);
3402                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3403                                      nsec);
3404         }
3405         if (needs_lock)
3406                 __td_io_u_unlock(td);
3407 }
3408
3409 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3410                    unsigned int bytes, unsigned long long spent)
3411 {
3412         const bool needs_lock = td_async_processing(td);
3413         struct thread_stat *ts = &td->ts;
3414         unsigned long rate;
3415
3416         if (spent)
3417                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3418         else
3419                 rate = 0;
3420
3421         if (needs_lock)
3422                 __td_io_u_lock(td);
3423
3424         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3425
3426         if (td->bw_log)
3427                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3428                                bytes, io_u->offset, io_u->ioprio);
3429
3430         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3431
3432         if (needs_lock)
3433                 __td_io_u_unlock(td);
3434 }
3435
3436 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3437                          struct timespec *t, unsigned int avg_time,
3438                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3439                          struct io_stat *stat, struct io_log *log,
3440                          bool is_kb)
3441 {
3442         const bool needs_lock = td_async_processing(td);
3443         unsigned long spent, rate;
3444         enum fio_ddir ddir;
3445         unsigned long next, next_log;
3446
3447         next_log = avg_time;
3448
3449         spent = mtime_since(parent_tv, t);
3450         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3451                 return avg_time - spent;
3452
3453         if (needs_lock)
3454                 __td_io_u_lock(td);
3455
3456         /*
3457          * Compute both read and write rates for the interval.
3458          */
3459         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3460                 uint64_t delta;
3461
3462                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3463                 if (!delta)
3464                         continue; /* No entries for interval */
3465
3466                 if (spent) {
3467                         if (is_kb)
3468                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3469                         else
3470                                 rate = (delta * 1000) / spent;
3471                 } else
3472                         rate = 0;
3473
3474                 add_stat_sample(&stat[ddir], rate);
3475
3476                 if (log) {
3477                         unsigned long long bs = 0;
3478
3479                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3480                                 bs = td->o.min_bs[ddir];
3481
3482                         next = add_log_sample(td, log, sample_val(rate), ddir,
3483                                               bs, 0, 0);
3484                         next_log = min(next_log, next);
3485                 }
3486
3487                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3488         }
3489
3490         *parent_tv = *t;
3491
3492         if (needs_lock)
3493                 __td_io_u_unlock(td);
3494
3495         if (spent <= avg_time)
3496                 next = avg_time;
3497         else
3498                 next = avg_time - (1 + spent - avg_time);
3499
3500         return min(next, next_log);
3501 }
3502
3503 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3504 {
3505         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3506                                 td->this_io_bytes, td->stat_io_bytes,
3507                                 td->ts.bw_stat, td->bw_log, true);
3508 }
3509
3510 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3511                      unsigned int bytes)
3512 {
3513         const bool needs_lock = td_async_processing(td);
3514         struct thread_stat *ts = &td->ts;
3515
3516         if (needs_lock)
3517                 __td_io_u_lock(td);
3518
3519         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3520
3521         if (td->iops_log)
3522                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3523                                bytes, io_u->offset, io_u->ioprio);
3524
3525         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3526
3527         if (needs_lock)
3528                 __td_io_u_unlock(td);
3529 }
3530
3531 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3532 {
3533         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3534                                 td->this_io_blocks, td->stat_io_blocks,
3535                                 td->ts.iops_stat, td->iops_log, false);
3536 }
3537
3538 /*
3539  * Returns msecs to next event
3540  */
3541 int calc_log_samples(void)
3542 {
3543         struct thread_data *td;
3544         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3545         struct timespec now;
3546         int i;
3547         long elapsed_time = 0;
3548
3549         fio_gettime(&now, NULL);
3550
3551         for_each_td(td, i) {
3552                 elapsed_time = mtime_since_now(&td->epoch);
3553
3554                 if (!td->o.stats)
3555                         continue;
3556                 if (in_ramp_time(td) ||
3557                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3558                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3559                         continue;
3560                 }
3561                 if (!td->bw_log ||
3562                         (td->bw_log && !per_unit_log(td->bw_log))) {
3563                         tmp = add_bw_samples(td, &now);
3564
3565                         if (td->bw_log)
3566                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3567                 }
3568                 if (!td->iops_log ||
3569                         (td->iops_log && !per_unit_log(td->iops_log))) {
3570                         tmp = add_iops_samples(td, &now);
3571
3572                         if (td->iops_log)
3573                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3574                 }
3575
3576                 if (tmp < next)
3577                         next = tmp;
3578         }
3579
3580         /* if log_avg_msec_min has not been changed, set it to 0 */
3581         if (log_avg_msec_min == -1U)
3582                 log_avg_msec_min = 0;
3583
3584         if (log_avg_msec_min == 0)
3585                 next_mod = elapsed_time;
3586         else
3587                 next_mod = elapsed_time % log_avg_msec_min;
3588
3589         /* correction to keep the time on the log avg msec boundary */
3590         next = min(next, (log_avg_msec_min - next_mod));
3591
3592         return next == ~0U ? 0 : next;
3593 }
3594
3595 void stat_init(void)
3596 {
3597         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3598 }
3599
3600 void stat_exit(void)
3601 {
3602         /*
3603          * When we have the mutex, we know out-of-band access to it
3604          * have ended.
3605          */
3606         fio_sem_down(stat_sem);
3607         fio_sem_remove(stat_sem);
3608 }
3609
3610 /*
3611  * Called from signal handler. Wake up status thread.
3612  */
3613 void show_running_run_stats(void)
3614 {
3615         helper_do_stat();
3616 }
3617
3618 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3619 {
3620         /* Ignore io_u's which span multiple blocks--they will just get
3621          * inaccurate counts. */
3622         int idx = (io_u->offset - io_u->file->file_offset)
3623                         / td->o.bs[DDIR_TRIM];
3624         uint32_t *info = &td->ts.block_infos[idx];
3625         assert(idx < td->ts.nr_block_infos);
3626         return info;
3627 }
3628