Add support for resetting zones periodically
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18
19 #define LOG_MSEC_SLACK  1
20
21 struct fio_sem *stat_sem;
22
23 void clear_rusage_stat(struct thread_data *td)
24 {
25         struct thread_stat *ts = &td->ts;
26
27         fio_getrusage(&td->ru_start);
28         ts->usr_time = ts->sys_time = 0;
29         ts->ctx = 0;
30         ts->minf = ts->majf = 0;
31 }
32
33 void update_rusage_stat(struct thread_data *td)
34 {
35         struct thread_stat *ts = &td->ts;
36
37         fio_getrusage(&td->ru_end);
38         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39                                         &td->ru_end.ru_utime);
40         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41                                         &td->ru_end.ru_stime);
42         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48 }
49
50 /*
51  * Given a latency, return the index of the corresponding bucket in
52  * the structure tracking percentiles.
53  *
54  * (1) find the group (and error bits) that the value (latency)
55  * belongs to by looking at its MSB. (2) find the bucket number in the
56  * group by looking at the index bits.
57  *
58  */
59 static unsigned int plat_val_to_idx(unsigned long long val)
60 {
61         unsigned int msb, error_bits, base, offset, idx;
62
63         /* Find MSB starting from bit 0 */
64         if (val == 0)
65                 msb = 0;
66         else
67                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69         /*
70          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71          * all bits of the sample as index
72          */
73         if (msb <= FIO_IO_U_PLAT_BITS)
74                 return val;
75
76         /* Compute the number of error bits to discard*/
77         error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79         /* Compute the number of buckets before the group */
80         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82         /*
83          * Discard the error bits and apply the mask to find the
84          * index for the buckets in the group
85          */
86         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88         /* Make sure the index does not exceed (array size - 1) */
89         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92         return idx;
93 }
94
95 /*
96  * Convert the given index of the bucket array to the value
97  * represented by the bucket
98  */
99 static unsigned long long plat_idx_to_val(unsigned int idx)
100 {
101         unsigned int error_bits;
102         unsigned long long k, base;
103
104         assert(idx < FIO_IO_U_PLAT_NR);
105
106         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107          * all bits of the sample as index */
108         if (idx < (FIO_IO_U_PLAT_VAL << 1))
109                 return idx;
110
111         /* Find the group and compute the minimum value of that group */
112         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115         /* Find its bucket number of the group */
116         k = idx % FIO_IO_U_PLAT_VAL;
117
118         /* Return the mean of the range of the bucket */
119         return base + ((k + 0.5) * (1 << error_bits));
120 }
121
122 static int double_cmp(const void *a, const void *b)
123 {
124         const fio_fp64_t fa = *(const fio_fp64_t *) a;
125         const fio_fp64_t fb = *(const fio_fp64_t *) b;
126         int cmp = 0;
127
128         if (fa.u.f > fb.u.f)
129                 cmp = 1;
130         else if (fa.u.f < fb.u.f)
131                 cmp = -1;
132
133         return cmp;
134 }
135
136 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137                                    fio_fp64_t *plist, unsigned long long **output,
138                                    unsigned long long *maxv, unsigned long long *minv)
139 {
140         unsigned long long sum = 0;
141         unsigned int len, i, j = 0;
142         unsigned int oval_len = 0;
143         unsigned long long *ovals = NULL;
144         bool is_last;
145
146         *minv = -1ULL;
147         *maxv = 0;
148
149         len = 0;
150         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151                 len++;
152
153         if (!len)
154                 return 0;
155
156         /*
157          * Sort the percentile list. Note that it may already be sorted if
158          * we are using the default values, but since it's a short list this
159          * isn't a worry. Also note that this does not work for NaN values.
160          */
161         if (len > 1)
162                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
163
164         /*
165          * Calculate bucket values, note down max and min values
166          */
167         is_last = false;
168         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
169                 sum += io_u_plat[i];
170                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
171                         assert(plist[j].u.f <= 100.0);
172
173                         if (j == oval_len) {
174                                 oval_len += 100;
175                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
176                         }
177
178                         ovals[j] = plat_idx_to_val(i);
179                         if (ovals[j] < *minv)
180                                 *minv = ovals[j];
181                         if (ovals[j] > *maxv)
182                                 *maxv = ovals[j];
183
184                         is_last = (j == len - 1) != 0;
185                         if (is_last)
186                                 break;
187
188                         j++;
189                 }
190         }
191
192         *output = ovals;
193         return len;
194 }
195
196 /*
197  * Find and display the p-th percentile of clat
198  */
199 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
200                                   fio_fp64_t *plist, unsigned int precision,
201                                   const char *pre, struct buf_output *out)
202 {
203         unsigned int divisor, len, i, j = 0;
204         unsigned long long minv, maxv;
205         unsigned long long *ovals;
206         int per_line, scale_down, time_width;
207         bool is_last;
208         char fmt[32];
209
210         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211         if (!len || !ovals)
212                 goto out;
213
214         /*
215          * We default to nsecs, but if the value range is such that we
216          * should scale down to usecs or msecs, do that.
217          */
218         if (minv > 2000000 && maxv > 99999999ULL) {
219                 scale_down = 2;
220                 divisor = 1000000;
221                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
222         } else if (minv > 2000 && maxv > 99999) {
223                 scale_down = 1;
224                 divisor = 1000;
225                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
226         } else {
227                 scale_down = 0;
228                 divisor = 1;
229                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
230         }
231
232
233         time_width = max(5, (int) (log10(maxv / divisor) + 1));
234         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235                         precision, time_width);
236         /* fmt will be something like " %5.2fth=[%4llu]%c" */
237         per_line = (80 - 7) / (precision + 10 + time_width);
238
239         for (j = 0; j < len; j++) {
240                 /* for formatting */
241                 if (j != 0 && (j % per_line) == 0)
242                         log_buf(out, "     |");
243
244                 /* end of the list */
245                 is_last = (j == len - 1) != 0;
246
247                 for (i = 0; i < scale_down; i++)
248                         ovals[j] = (ovals[j] + 999) / 1000;
249
250                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252                 if (is_last)
253                         break;
254
255                 if ((j % per_line) == per_line - 1)     /* for formatting */
256                         log_buf(out, "\n");
257         }
258
259 out:
260         if (ovals)
261                 free(ovals);
262 }
263
264 bool calc_lat(struct io_stat *is, unsigned long long *min,
265               unsigned long long *max, double *mean, double *dev)
266 {
267         double n = (double) is->samples;
268
269         if (n == 0)
270                 return false;
271
272         *min = is->min_val;
273         *max = is->max_val;
274         *mean = is->mean.u.f;
275
276         if (n > 1.0)
277                 *dev = sqrt(is->S.u.f / (n - 1.0));
278         else
279                 *dev = 0;
280
281         return true;
282 }
283
284 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285 {
286         char *io, *agg, *min, *max;
287         char *ioalt, *aggalt, *minalt, *maxalt;
288         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
289         int i;
290
291         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294                 const int i2p = is_power_of_2(rs->kb_base);
295
296                 if (!rs->max_run[i])
297                         continue;
298
299                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
300                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
301                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
302                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
303                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
304                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308                                 rs->unified_rw_rep ? "  MIXED" : str[i],
309                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310                                 (unsigned long long) rs->min_run[i],
311                                 (unsigned long long) rs->max_run[i]);
312
313                 free(io);
314                 free(agg);
315                 free(min);
316                 free(max);
317                 free(ioalt);
318                 free(aggalt);
319                 free(minalt);
320                 free(maxalt);
321         }
322 }
323
324 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
325 {
326         int i;
327
328         /*
329          * Do depth distribution calculations
330          */
331         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332                 if (total) {
333                         io_u_dist[i] = (double) map[i] / (double) total;
334                         io_u_dist[i] *= 100.0;
335                         if (io_u_dist[i] < 0.1 && map[i])
336                                 io_u_dist[i] = 0.1;
337                 } else
338                         io_u_dist[i] = 0.0;
339         }
340 }
341
342 static void stat_calc_lat(struct thread_stat *ts, double *dst,
343                           uint64_t *src, int nr)
344 {
345         unsigned long total = ddir_rw_sum(ts->total_io_u);
346         int i;
347
348         /*
349          * Do latency distribution calculations
350          */
351         for (i = 0; i < nr; i++) {
352                 if (total) {
353                         dst[i] = (double) src[i] / (double) total;
354                         dst[i] *= 100.0;
355                         if (dst[i] < 0.01 && src[i])
356                                 dst[i] = 0.01;
357                 } else
358                         dst[i] = 0.0;
359         }
360 }
361
362 /*
363  * To keep the terse format unaltered, add all of the ns latency
364  * buckets to the first us latency bucket
365  */
366 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367 {
368         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369         int i;
370
371         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374                 ntotal += ts->io_u_lat_n[i];
375
376         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377 }
378
379 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380 {
381         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382 }
383
384 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385 {
386         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387 }
388
389 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390 {
391         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392 }
393
394 static void display_lat(const char *name, unsigned long long min,
395                         unsigned long long max, double mean, double dev,
396                         struct buf_output *out)
397 {
398         const char *base = "(nsec)";
399         char *minp, *maxp;
400
401         if (nsec_to_msec(&min, &max, &mean, &dev))
402                 base = "(msec)";
403         else if (nsec_to_usec(&min, &max, &mean, &dev))
404                 base = "(usec)";
405
406         minp = num2str(min, 6, 1, 0, N2S_NONE);
407         maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
410                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412         free(minp);
413         free(maxp);
414 }
415
416 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417                              int ddir, struct buf_output *out)
418 {
419         const char *str[] = { " read", "write", " trim", "sync" };
420         unsigned long runt;
421         unsigned long long min, max, bw, iops;
422         double mean, dev;
423         char *io_p, *bw_p, *bw_p_alt, *iops_p, *zbd_w_st = NULL;
424         int i2p;
425
426         if (ddir_sync(ddir)) {
427                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
429                         display_lat(str[ddir], min, max, mean, dev, out);
430                         show_clat_percentiles(ts->io_u_sync_plat,
431                                                 ts->sync_stat.samples,
432                                                 ts->percentile_list,
433                                                 ts->percentile_precision,
434                                                 str[ddir], out);
435                 }
436                 return;
437         }
438
439         assert(ddir_rw(ddir));
440
441         if (!ts->runtime[ddir])
442                 return;
443
444         i2p = is_power_of_2(rs->kb_base);
445         runt = ts->runtime[ddir];
446
447         bw = (1000 * ts->io_bytes[ddir]) / runt;
448         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454         if (ddir == DDIR_WRITE)
455                 zbd_w_st = zbd_write_status(ts);
456
457         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
458                         rs->unified_rw_rep ? "mixed" : str[ddir],
459                         iops_p, bw_p, bw_p_alt, io_p,
460                         (unsigned long long) ts->runtime[ddir],
461                         zbd_w_st ? : "");
462
463         free(zbd_w_st);
464         free(io_p);
465         free(bw_p);
466         free(bw_p_alt);
467         free(iops_p);
468
469         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
470                 display_lat("slat", min, max, mean, dev, out);
471         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
472                 display_lat("clat", min, max, mean, dev, out);
473         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
474                 display_lat(" lat", min, max, mean, dev, out);
475
476         if (ts->clat_percentiles || ts->lat_percentiles) {
477                 const char *name = ts->clat_percentiles ? "clat" : " lat";
478                 uint64_t samples;
479
480                 if (ts->clat_percentiles)
481                         samples = ts->clat_stat[ddir].samples;
482                 else
483                         samples = ts->lat_stat[ddir].samples;
484
485                 show_clat_percentiles(ts->io_u_plat[ddir],
486                                         samples,
487                                         ts->percentile_list,
488                                         ts->percentile_precision, name, out);
489         }
490         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
491                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
492                 const char *bw_str;
493
494                 if ((rs->unit_base == 1) && i2p)
495                         bw_str = "Kibit";
496                 else if (rs->unit_base == 1)
497                         bw_str = "kbit";
498                 else if (i2p)
499                         bw_str = "KiB";
500                 else
501                         bw_str = "kB";
502
503                 if (rs->agg[ddir]) {
504                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
505                         if (p_of_agg > 100.0)
506                                 p_of_agg = 100.0;
507                 }
508
509                 if (rs->unit_base == 1) {
510                         min *= 8.0;
511                         max *= 8.0;
512                         mean *= 8.0;
513                         dev *= 8.0;
514                 }
515
516                 if (mean > fkb_base * fkb_base) {
517                         min /= fkb_base;
518                         max /= fkb_base;
519                         mean /= fkb_base;
520                         dev /= fkb_base;
521                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
522                 }
523
524                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
525                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
526                         bw_str, min, max, p_of_agg, mean, dev,
527                         (&ts->bw_stat[ddir])->samples);
528         }
529         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
530                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
531                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
532                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
533         }
534 }
535
536 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
537                      const char *msg, struct buf_output *out)
538 {
539         bool new_line = true, shown = false;
540         int i, line = 0;
541
542         for (i = 0; i < nr; i++) {
543                 if (io_u_lat[i] <= 0.0)
544                         continue;
545                 shown = true;
546                 if (new_line) {
547                         if (line)
548                                 log_buf(out, "\n");
549                         log_buf(out, "  lat (%s)   : ", msg);
550                         new_line = false;
551                         line = 0;
552                 }
553                 if (line)
554                         log_buf(out, ", ");
555                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
556                 line++;
557                 if (line == 5)
558                         new_line = true;
559         }
560
561         if (shown)
562                 log_buf(out, "\n");
563
564         return true;
565 }
566
567 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
568 {
569         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
570                                  "250=", "500=", "750=", "1000=", };
571
572         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
573 }
574
575 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
576 {
577         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
578                                  "250=", "500=", "750=", "1000=", };
579
580         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
581 }
582
583 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
584 {
585         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
586                                  "250=", "500=", "750=", "1000=", "2000=",
587                                  ">=2000=", };
588
589         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
590 }
591
592 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
593 {
594         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
595         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
596         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
597
598         stat_calc_lat_n(ts, io_u_lat_n);
599         stat_calc_lat_u(ts, io_u_lat_u);
600         stat_calc_lat_m(ts, io_u_lat_m);
601
602         show_lat_n(io_u_lat_n, out);
603         show_lat_u(io_u_lat_u, out);
604         show_lat_m(io_u_lat_m, out);
605 }
606
607 static int block_state_category(int block_state)
608 {
609         switch (block_state) {
610         case BLOCK_STATE_UNINIT:
611                 return 0;
612         case BLOCK_STATE_TRIMMED:
613         case BLOCK_STATE_WRITTEN:
614                 return 1;
615         case BLOCK_STATE_WRITE_FAILURE:
616         case BLOCK_STATE_TRIM_FAILURE:
617                 return 2;
618         default:
619                 /* Silence compile warning on some BSDs and have a return */
620                 assert(0);
621                 return -1;
622         }
623 }
624
625 static int compare_block_infos(const void *bs1, const void *bs2)
626 {
627         uint64_t block1 = *(uint64_t *)bs1;
628         uint64_t block2 = *(uint64_t *)bs2;
629         int state1 = BLOCK_INFO_STATE(block1);
630         int state2 = BLOCK_INFO_STATE(block2);
631         int bscat1 = block_state_category(state1);
632         int bscat2 = block_state_category(state2);
633         int cycles1 = BLOCK_INFO_TRIMS(block1);
634         int cycles2 = BLOCK_INFO_TRIMS(block2);
635
636         if (bscat1 < bscat2)
637                 return -1;
638         if (bscat1 > bscat2)
639                 return 1;
640
641         if (cycles1 < cycles2)
642                 return -1;
643         if (cycles1 > cycles2)
644                 return 1;
645
646         if (state1 < state2)
647                 return -1;
648         if (state1 > state2)
649                 return 1;
650
651         assert(block1 == block2);
652         return 0;
653 }
654
655 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
656                                   fio_fp64_t *plist, unsigned int **percentiles,
657                                   unsigned int *types)
658 {
659         int len = 0;
660         int i, nr_uninit;
661
662         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
663
664         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
665                 len++;
666
667         if (!len)
668                 return 0;
669
670         /*
671          * Sort the percentile list. Note that it may already be sorted if
672          * we are using the default values, but since it's a short list this
673          * isn't a worry. Also note that this does not work for NaN values.
674          */
675         if (len > 1)
676                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
677
678         /* Start only after the uninit entries end */
679         for (nr_uninit = 0;
680              nr_uninit < nr_block_infos
681                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
682              nr_uninit ++)
683                 ;
684
685         if (nr_uninit == nr_block_infos)
686                 return 0;
687
688         *percentiles = calloc(len, sizeof(**percentiles));
689
690         for (i = 0; i < len; i++) {
691                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
692                                 + nr_uninit;
693                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
694         }
695
696         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
697         for (i = 0; i < nr_block_infos; i++)
698                 types[BLOCK_INFO_STATE(block_infos[i])]++;
699
700         return len;
701 }
702
703 static const char *block_state_names[] = {
704         [BLOCK_STATE_UNINIT] = "unwritten",
705         [BLOCK_STATE_TRIMMED] = "trimmed",
706         [BLOCK_STATE_WRITTEN] = "written",
707         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
708         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
709 };
710
711 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
712                              fio_fp64_t *plist, struct buf_output *out)
713 {
714         int len, pos, i;
715         unsigned int *percentiles = NULL;
716         unsigned int block_state_counts[BLOCK_STATE_COUNT];
717
718         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
719                                      &percentiles, block_state_counts);
720
721         log_buf(out, "  block lifetime percentiles :\n   |");
722         pos = 0;
723         for (i = 0; i < len; i++) {
724                 uint32_t block_info = percentiles[i];
725 #define LINE_LENGTH     75
726                 char str[LINE_LENGTH];
727                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
728                                      plist[i].u.f, block_info,
729                                      i == len - 1 ? '\n' : ',');
730                 assert(strln < LINE_LENGTH);
731                 if (pos + strln > LINE_LENGTH) {
732                         pos = 0;
733                         log_buf(out, "\n   |");
734                 }
735                 log_buf(out, "%s", str);
736                 pos += strln;
737 #undef LINE_LENGTH
738         }
739         if (percentiles)
740                 free(percentiles);
741
742         log_buf(out, "        states               :");
743         for (i = 0; i < BLOCK_STATE_COUNT; i++)
744                 log_buf(out, " %s=%u%c",
745                          block_state_names[i], block_state_counts[i],
746                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
747 }
748
749 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
750 {
751         char *p1, *p1alt, *p2;
752         unsigned long long bw_mean, iops_mean;
753         const int i2p = is_power_of_2(ts->kb_base);
754
755         if (!ts->ss_dur)
756                 return;
757
758         bw_mean = steadystate_bw_mean(ts);
759         iops_mean = steadystate_iops_mean(ts);
760
761         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
762         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
763         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
764
765         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
766                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
767                 p1, p1alt, p2,
768                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
769                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
770                 ts->ss_criterion.u.f,
771                 ts->ss_state & FIO_SS_PCT ? "%" : "");
772
773         free(p1);
774         free(p1alt);
775         free(p2);
776 }
777
778 static void show_thread_status_normal(struct thread_stat *ts,
779                                       struct group_run_stats *rs,
780                                       struct buf_output *out)
781 {
782         double usr_cpu, sys_cpu;
783         unsigned long runtime;
784         double io_u_dist[FIO_IO_U_MAP_NR];
785         time_t time_p;
786         char time_buf[32];
787
788         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
789                 return;
790                 
791         memset(time_buf, 0, sizeof(time_buf));
792
793         time(&time_p);
794         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
795
796         if (!ts->error) {
797                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
798                                         ts->name, ts->groupid, ts->members,
799                                         ts->error, (int) ts->pid, time_buf);
800         } else {
801                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
802                                         ts->name, ts->groupid, ts->members,
803                                         ts->error, ts->verror, (int) ts->pid,
804                                         time_buf);
805         }
806
807         if (strlen(ts->description))
808                 log_buf(out, "  Description  : [%s]\n", ts->description);
809
810         if (ts->io_bytes[DDIR_READ])
811                 show_ddir_status(rs, ts, DDIR_READ, out);
812         if (ts->io_bytes[DDIR_WRITE])
813                 show_ddir_status(rs, ts, DDIR_WRITE, out);
814         if (ts->io_bytes[DDIR_TRIM])
815                 show_ddir_status(rs, ts, DDIR_TRIM, out);
816
817         show_latencies(ts, out);
818
819         if (ts->sync_stat.samples)
820                 show_ddir_status(rs, ts, DDIR_SYNC, out);
821
822         runtime = ts->total_run_time;
823         if (runtime) {
824                 double runt = (double) runtime;
825
826                 usr_cpu = (double) ts->usr_time * 100 / runt;
827                 sys_cpu = (double) ts->sys_time * 100 / runt;
828         } else {
829                 usr_cpu = 0;
830                 sys_cpu = 0;
831         }
832
833         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
834                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
835                         (unsigned long long) ts->ctx,
836                         (unsigned long long) ts->majf,
837                         (unsigned long long) ts->minf);
838
839         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
840         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
841                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
842                                         io_u_dist[1], io_u_dist[2],
843                                         io_u_dist[3], io_u_dist[4],
844                                         io_u_dist[5], io_u_dist[6]);
845
846         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
847         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
848                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
849                                         io_u_dist[1], io_u_dist[2],
850                                         io_u_dist[3], io_u_dist[4],
851                                         io_u_dist[5], io_u_dist[6]);
852         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
853         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
854                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
855                                         io_u_dist[1], io_u_dist[2],
856                                         io_u_dist[3], io_u_dist[4],
857                                         io_u_dist[5], io_u_dist[6]);
858         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
859                                  " short=%llu,%llu,%llu,0"
860                                  " dropped=%llu,%llu,%llu,0\n",
861                                         (unsigned long long) ts->total_io_u[0],
862                                         (unsigned long long) ts->total_io_u[1],
863                                         (unsigned long long) ts->total_io_u[2],
864                                         (unsigned long long) ts->total_io_u[3],
865                                         (unsigned long long) ts->short_io_u[0],
866                                         (unsigned long long) ts->short_io_u[1],
867                                         (unsigned long long) ts->short_io_u[2],
868                                         (unsigned long long) ts->drop_io_u[0],
869                                         (unsigned long long) ts->drop_io_u[1],
870                                         (unsigned long long) ts->drop_io_u[2]);
871         if (ts->continue_on_error) {
872                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
873                                         (unsigned long long)ts->total_err_count,
874                                         ts->first_error,
875                                         strerror(ts->first_error));
876         }
877         if (ts->latency_depth) {
878                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
879                                         (unsigned long long)ts->latency_target,
880                                         (unsigned long long)ts->latency_window,
881                                         ts->latency_percentile.u.f,
882                                         ts->latency_depth);
883         }
884
885         if (ts->nr_block_infos)
886                 show_block_infos(ts->nr_block_infos, ts->block_infos,
887                                   ts->percentile_list, out);
888
889         if (ts->ss_dur)
890                 show_ss_normal(ts, out);
891 }
892
893 static void show_ddir_status_terse(struct thread_stat *ts,
894                                    struct group_run_stats *rs, int ddir,
895                                    int ver, struct buf_output *out)
896 {
897         unsigned long long min, max, minv, maxv, bw, iops;
898         unsigned long long *ovals = NULL;
899         double mean, dev;
900         unsigned int len;
901         int i, bw_stat;
902
903         assert(ddir_rw(ddir));
904
905         iops = bw = 0;
906         if (ts->runtime[ddir]) {
907                 uint64_t runt = ts->runtime[ddir];
908
909                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
910                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
911         }
912
913         log_buf(out, ";%llu;%llu;%llu;%llu",
914                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
915                                         (unsigned long long) ts->runtime[ddir]);
916
917         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
918                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
919         else
920                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
921
922         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
923                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
924         else
925                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
926
927         if (ts->clat_percentiles || ts->lat_percentiles) {
928                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
929                                         ts->clat_stat[ddir].samples,
930                                         ts->percentile_list, &ovals, &maxv,
931                                         &minv);
932         } else
933                 len = 0;
934
935         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
936                 if (i >= len) {
937                         log_buf(out, ";0%%=0");
938                         continue;
939                 }
940                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
941         }
942
943         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
944                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
945         else
946                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
947
948         if (ovals)
949                 free(ovals);
950
951         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
952         if (bw_stat) {
953                 double p_of_agg = 100.0;
954
955                 if (rs->agg[ddir]) {
956                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
957                         if (p_of_agg > 100.0)
958                                 p_of_agg = 100.0;
959                 }
960
961                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
962         } else
963                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
964
965         if (ver == 5) {
966                 if (bw_stat)
967                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
968                 else
969                         log_buf(out, ";%lu", 0UL);
970
971                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
972                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
973                                 mean, dev, (&ts->iops_stat[ddir])->samples);
974                 else
975                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
976         }
977 }
978
979 static void add_ddir_status_json(struct thread_stat *ts,
980                 struct group_run_stats *rs, int ddir, struct json_object *parent)
981 {
982         unsigned long long min, max, minv, maxv;
983         unsigned long long bw_bytes, bw;
984         unsigned long long *ovals = NULL;
985         double mean, dev, iops;
986         unsigned int len;
987         int i;
988         const char *ddirname[] = { "read", "write", "trim", "sync" };
989         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
990         char buf[120];
991         double p_of_agg = 100.0;
992
993         assert(ddir_rw(ddir) || ddir_sync(ddir));
994
995         if (ts->unified_rw_rep && ddir != DDIR_READ)
996                 return;
997
998         dir_object = json_create_object();
999         json_object_add_value_object(parent,
1000                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
1001
1002         if (ddir_rw(ddir)) {
1003                 bw_bytes = 0;
1004                 bw = 0;
1005                 iops = 0.0;
1006                 if (ts->runtime[ddir]) {
1007                         uint64_t runt = ts->runtime[ddir];
1008
1009                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1010                         bw = bw_bytes / 1024; /* KiB/s */
1011                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1012                 }
1013
1014                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1015                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1016                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1017                 json_object_add_value_int(dir_object, "bw", bw);
1018                 json_object_add_value_float(dir_object, "iops", iops);
1019                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1020                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1021                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1022                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1023
1024                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1025                         min = max = 0;
1026                         mean = dev = 0.0;
1027                 }
1028                 tmp_object = json_create_object();
1029                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1030                 json_object_add_value_int(tmp_object, "min", min);
1031                 json_object_add_value_int(tmp_object, "max", max);
1032                 json_object_add_value_float(tmp_object, "mean", mean);
1033                 json_object_add_value_float(tmp_object, "stddev", dev);
1034
1035                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1036                         min = max = 0;
1037                         mean = dev = 0.0;
1038                 }
1039                 tmp_object = json_create_object();
1040                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1041                 json_object_add_value_int(tmp_object, "min", min);
1042                 json_object_add_value_int(tmp_object, "max", max);
1043                 json_object_add_value_float(tmp_object, "mean", mean);
1044                 json_object_add_value_float(tmp_object, "stddev", dev);
1045         } else {
1046                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1047                         min = max = 0;
1048                         mean = dev = 0.0;
1049                 }
1050
1051                 tmp_object = json_create_object();
1052                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1053                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1054                 json_object_add_value_int(tmp_object, "min", min);
1055                 json_object_add_value_int(tmp_object, "max", max);
1056                 json_object_add_value_float(tmp_object, "mean", mean);
1057                 json_object_add_value_float(tmp_object, "stddev", dev);
1058         }
1059
1060         if (ts->clat_percentiles || ts->lat_percentiles) {
1061                 if (ddir_rw(ddir)) {
1062                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1063                                         ts->clat_stat[ddir].samples,
1064                                         ts->percentile_list, &ovals, &maxv,
1065                                         &minv);
1066                 } else {
1067                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1068                                         ts->sync_stat.samples,
1069                                         ts->percentile_list, &ovals, &maxv,
1070                                         &minv);
1071                 }
1072
1073                 if (len > FIO_IO_U_LIST_MAX_LEN)
1074                         len = FIO_IO_U_LIST_MAX_LEN;
1075         } else
1076                 len = 0;
1077
1078         percentile_object = json_create_object();
1079         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1080         for (i = 0; i < len; i++) {
1081                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1082                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1083         }
1084
1085         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1086                 clat_bins_object = json_create_object();
1087                 if (ts->clat_percentiles)
1088                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1089
1090                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1091                         if (ddir_rw(ddir)) {
1092                                 if (ts->io_u_plat[ddir][i]) {
1093                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1094                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1095                                 }
1096                         } else {
1097                                 if (ts->io_u_sync_plat[i]) {
1098                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1099                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1100                                 }
1101                         }
1102                 }
1103         }
1104
1105         if (!ddir_rw(ddir))
1106                 return;
1107
1108         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1109                 min = max = 0;
1110                 mean = dev = 0.0;
1111         }
1112         tmp_object = json_create_object();
1113         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1114         json_object_add_value_int(tmp_object, "min", min);
1115         json_object_add_value_int(tmp_object, "max", max);
1116         json_object_add_value_float(tmp_object, "mean", mean);
1117         json_object_add_value_float(tmp_object, "stddev", dev);
1118         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1119                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1120
1121         if (ovals)
1122                 free(ovals);
1123
1124         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1125                 if (rs->agg[ddir]) {
1126                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1127                         if (p_of_agg > 100.0)
1128                                 p_of_agg = 100.0;
1129                 }
1130         } else {
1131                 min = max = 0;
1132                 p_of_agg = mean = dev = 0.0;
1133         }
1134         json_object_add_value_int(dir_object, "bw_min", min);
1135         json_object_add_value_int(dir_object, "bw_max", max);
1136         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1137         json_object_add_value_float(dir_object, "bw_mean", mean);
1138         json_object_add_value_float(dir_object, "bw_dev", dev);
1139         json_object_add_value_int(dir_object, "bw_samples",
1140                                 (&ts->bw_stat[ddir])->samples);
1141
1142         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1143                 min = max = 0;
1144                 mean = dev = 0.0;
1145         }
1146         json_object_add_value_int(dir_object, "iops_min", min);
1147         json_object_add_value_int(dir_object, "iops_max", max);
1148         json_object_add_value_float(dir_object, "iops_mean", mean);
1149         json_object_add_value_float(dir_object, "iops_stddev", dev);
1150         json_object_add_value_int(dir_object, "iops_samples",
1151                                 (&ts->iops_stat[ddir])->samples);
1152 }
1153
1154 static void show_thread_status_terse_all(struct thread_stat *ts,
1155                                          struct group_run_stats *rs, int ver,
1156                                          struct buf_output *out)
1157 {
1158         double io_u_dist[FIO_IO_U_MAP_NR];
1159         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1160         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1161         double usr_cpu, sys_cpu;
1162         int i;
1163
1164         /* General Info */
1165         if (ver == 2)
1166                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1167         else
1168                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1169                         ts->name, ts->groupid, ts->error);
1170
1171         /* Log Read Status */
1172         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1173         /* Log Write Status */
1174         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1175         /* Log Trim Status */
1176         if (ver == 2 || ver == 4 || ver == 5)
1177                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1178
1179         /* CPU Usage */
1180         if (ts->total_run_time) {
1181                 double runt = (double) ts->total_run_time;
1182
1183                 usr_cpu = (double) ts->usr_time * 100 / runt;
1184                 sys_cpu = (double) ts->sys_time * 100 / runt;
1185         } else {
1186                 usr_cpu = 0;
1187                 sys_cpu = 0;
1188         }
1189
1190         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1191                                                 (unsigned long long) ts->ctx,
1192                                                 (unsigned long long) ts->majf,
1193                                                 (unsigned long long) ts->minf);
1194
1195         /* Calc % distribution of IO depths, usecond, msecond latency */
1196         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1197         stat_calc_lat_nu(ts, io_u_lat_u);
1198         stat_calc_lat_m(ts, io_u_lat_m);
1199
1200         /* Only show fixed 7 I/O depth levels*/
1201         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1202                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1203                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1204
1205         /* Microsecond latency */
1206         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1207                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1208         /* Millisecond latency */
1209         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1210                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1211
1212         /* disk util stats, if any */
1213         if (ver >= 3 && is_running_backend())
1214                 show_disk_util(1, NULL, out);
1215
1216         /* Additional output if continue_on_error set - default off*/
1217         if (ts->continue_on_error)
1218                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1219         if (ver == 2)
1220                 log_buf(out, "\n");
1221
1222         /* Additional output if description is set */
1223         if (strlen(ts->description))
1224                 log_buf(out, ";%s", ts->description);
1225
1226         log_buf(out, "\n");
1227 }
1228
1229 static void json_add_job_opts(struct json_object *root, const char *name,
1230                               struct flist_head *opt_list)
1231 {
1232         struct json_object *dir_object;
1233         struct flist_head *entry;
1234         struct print_option *p;
1235
1236         if (flist_empty(opt_list))
1237                 return;
1238
1239         dir_object = json_create_object();
1240         json_object_add_value_object(root, name, dir_object);
1241
1242         flist_for_each(entry, opt_list) {
1243                 const char *pos = "";
1244
1245                 p = flist_entry(entry, struct print_option, list);
1246                 if (p->value)
1247                         pos = p->value;
1248                 json_object_add_value_string(dir_object, p->name, pos);
1249         }
1250 }
1251
1252 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1253                                                    struct group_run_stats *rs,
1254                                                    struct flist_head *opt_list)
1255 {
1256         struct json_object *root, *tmp;
1257         struct jobs_eta *je;
1258         double io_u_dist[FIO_IO_U_MAP_NR];
1259         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1260         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1261         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1262         double usr_cpu, sys_cpu;
1263         int i;
1264         size_t size;
1265
1266         root = json_create_object();
1267         json_object_add_value_string(root, "jobname", ts->name);
1268         json_object_add_value_int(root, "groupid", ts->groupid);
1269         json_object_add_value_int(root, "error", ts->error);
1270
1271         /* ETA Info */
1272         je = get_jobs_eta(true, &size);
1273         if (je) {
1274                 json_object_add_value_int(root, "eta", je->eta_sec);
1275                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1276         }
1277
1278         if (opt_list)
1279                 json_add_job_opts(root, "job options", opt_list);
1280
1281         add_ddir_status_json(ts, rs, DDIR_READ, root);
1282         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1283         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1284         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1285
1286         /* CPU Usage */
1287         if (ts->total_run_time) {
1288                 double runt = (double) ts->total_run_time;
1289
1290                 usr_cpu = (double) ts->usr_time * 100 / runt;
1291                 sys_cpu = (double) ts->sys_time * 100 / runt;
1292         } else {
1293                 usr_cpu = 0;
1294                 sys_cpu = 0;
1295         }
1296         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1297         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1298         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1299         json_object_add_value_int(root, "ctx", ts->ctx);
1300         json_object_add_value_int(root, "majf", ts->majf);
1301         json_object_add_value_int(root, "minf", ts->minf);
1302
1303         /* Calc % distribution of IO depths */
1304         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1305         tmp = json_create_object();
1306         json_object_add_value_object(root, "iodepth_level", tmp);
1307         /* Only show fixed 7 I/O depth levels*/
1308         for (i = 0; i < 7; i++) {
1309                 char name[20];
1310                 if (i < 6)
1311                         snprintf(name, 20, "%d", 1 << i);
1312                 else
1313                         snprintf(name, 20, ">=%d", 1 << i);
1314                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1315         }
1316
1317         /* Calc % distribution of submit IO depths */
1318         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1319         tmp = json_create_object();
1320         json_object_add_value_object(root, "iodepth_submit", tmp);
1321         /* Only show fixed 7 I/O depth levels*/
1322         for (i = 0; i < 7; i++) {
1323                 char name[20];
1324                 if (i == 0)
1325                         snprintf(name, 20, "0");
1326                 else if (i < 6)
1327                         snprintf(name, 20, "%d", 1 << (i+1));
1328                 else
1329                         snprintf(name, 20, ">=%d", 1 << i);
1330                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1331         }
1332
1333         /* Calc % distribution of completion IO depths */
1334         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1335         tmp = json_create_object();
1336         json_object_add_value_object(root, "iodepth_complete", tmp);
1337         /* Only show fixed 7 I/O depth levels*/
1338         for (i = 0; i < 7; i++) {
1339                 char name[20];
1340                 if (i == 0)
1341                         snprintf(name, 20, "0");
1342                 else if (i < 6)
1343                         snprintf(name, 20, "%d", 1 << (i+1));
1344                 else
1345                         snprintf(name, 20, ">=%d", 1 << i);
1346                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1347         }
1348
1349         /* Calc % distribution of nsecond, usecond, msecond latency */
1350         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1351         stat_calc_lat_n(ts, io_u_lat_n);
1352         stat_calc_lat_u(ts, io_u_lat_u);
1353         stat_calc_lat_m(ts, io_u_lat_m);
1354
1355         /* Nanosecond latency */
1356         tmp = json_create_object();
1357         json_object_add_value_object(root, "latency_ns", tmp);
1358         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1359                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1360                                  "250", "500", "750", "1000", };
1361                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1362         }
1363         /* Microsecond latency */
1364         tmp = json_create_object();
1365         json_object_add_value_object(root, "latency_us", tmp);
1366         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1367                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1368                                  "250", "500", "750", "1000", };
1369                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1370         }
1371         /* Millisecond latency */
1372         tmp = json_create_object();
1373         json_object_add_value_object(root, "latency_ms", tmp);
1374         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1375                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1376                                  "250", "500", "750", "1000", "2000",
1377                                  ">=2000", };
1378                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1379         }
1380
1381         /* Additional output if continue_on_error set - default off*/
1382         if (ts->continue_on_error) {
1383                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1384                 json_object_add_value_int(root, "first_error", ts->first_error);
1385         }
1386
1387         if (ts->latency_depth) {
1388                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1389                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1390                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1391                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1392         }
1393
1394         /* Additional output if description is set */
1395         if (strlen(ts->description))
1396                 json_object_add_value_string(root, "desc", ts->description);
1397
1398         if (ts->nr_block_infos) {
1399                 /* Block error histogram and types */
1400                 int len;
1401                 unsigned int *percentiles = NULL;
1402                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1403
1404                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1405                                              ts->percentile_list,
1406                                              &percentiles, block_state_counts);
1407
1408                 if (len) {
1409                         struct json_object *block, *percentile_object, *states;
1410                         int state;
1411                         block = json_create_object();
1412                         json_object_add_value_object(root, "block", block);
1413
1414                         percentile_object = json_create_object();
1415                         json_object_add_value_object(block, "percentiles",
1416                                                      percentile_object);
1417                         for (i = 0; i < len; i++) {
1418                                 char buf[20];
1419                                 snprintf(buf, sizeof(buf), "%f",
1420                                          ts->percentile_list[i].u.f);
1421                                 json_object_add_value_int(percentile_object,
1422                                                           (const char *)buf,
1423                                                           percentiles[i]);
1424                         }
1425
1426                         states = json_create_object();
1427                         json_object_add_value_object(block, "states", states);
1428                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1429                                 json_object_add_value_int(states,
1430                                         block_state_names[state],
1431                                         block_state_counts[state]);
1432                         }
1433                         free(percentiles);
1434                 }
1435         }
1436
1437         if (ts->ss_dur) {
1438                 struct json_object *data;
1439                 struct json_array *iops, *bw;
1440                 int j, k, l;
1441                 char ss_buf[64];
1442
1443                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1444                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1445                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1446                         (float) ts->ss_limit.u.f,
1447                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1448
1449                 tmp = json_create_object();
1450                 json_object_add_value_object(root, "steadystate", tmp);
1451                 json_object_add_value_string(tmp, "ss", ss_buf);
1452                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1453                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1454
1455                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1456                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1457                 json_object_add_value_string(tmp, "criterion", ss_buf);
1458                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1459                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1460
1461                 data = json_create_object();
1462                 json_object_add_value_object(tmp, "data", data);
1463                 bw = json_create_array();
1464                 iops = json_create_array();
1465
1466                 /*
1467                 ** if ss was attained or the buffer is not full,
1468                 ** ss->head points to the first element in the list.
1469                 ** otherwise it actually points to the second element
1470                 ** in the list
1471                 */
1472                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1473                         j = ts->ss_head;
1474                 else
1475                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1476                 for (l = 0; l < ts->ss_dur; l++) {
1477                         k = (j + l) % ts->ss_dur;
1478                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1479                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1480                 }
1481                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1482                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1483                 json_object_add_value_array(data, "iops", iops);
1484                 json_object_add_value_array(data, "bw", bw);
1485         }
1486
1487         return root;
1488 }
1489
1490 static void show_thread_status_terse(struct thread_stat *ts,
1491                                      struct group_run_stats *rs,
1492                                      struct buf_output *out)
1493 {
1494         if (terse_version >= 2 && terse_version <= 5)
1495                 show_thread_status_terse_all(ts, rs, terse_version, out);
1496         else
1497                 log_err("fio: bad terse version!? %d\n", terse_version);
1498 }
1499
1500 struct json_object *show_thread_status(struct thread_stat *ts,
1501                                        struct group_run_stats *rs,
1502                                        struct flist_head *opt_list,
1503                                        struct buf_output *out)
1504 {
1505         struct json_object *ret = NULL;
1506
1507         if (output_format & FIO_OUTPUT_TERSE)
1508                 show_thread_status_terse(ts, rs,  out);
1509         if (output_format & FIO_OUTPUT_JSON)
1510                 ret = show_thread_status_json(ts, rs, opt_list);
1511         if (output_format & FIO_OUTPUT_NORMAL)
1512                 show_thread_status_normal(ts, rs,  out);
1513
1514         return ret;
1515 }
1516
1517 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1518 {
1519         double mean, S;
1520
1521         if (src->samples == 0)
1522                 return;
1523
1524         dst->min_val = min(dst->min_val, src->min_val);
1525         dst->max_val = max(dst->max_val, src->max_val);
1526
1527         /*
1528          * Compute new mean and S after the merge
1529          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1530          *  #Parallel_algorithm>
1531          */
1532         if (first) {
1533                 mean = src->mean.u.f;
1534                 S = src->S.u.f;
1535         } else {
1536                 double delta = src->mean.u.f - dst->mean.u.f;
1537
1538                 mean = ((src->mean.u.f * src->samples) +
1539                         (dst->mean.u.f * dst->samples)) /
1540                         (dst->samples + src->samples);
1541
1542                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1543                         (dst->samples * src->samples) /
1544                         (dst->samples + src->samples);
1545         }
1546
1547         dst->samples += src->samples;
1548         dst->mean.u.f = mean;
1549         dst->S.u.f = S;
1550 }
1551
1552 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1553 {
1554         int i;
1555
1556         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1557                 if (dst->max_run[i] < src->max_run[i])
1558                         dst->max_run[i] = src->max_run[i];
1559                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1560                         dst->min_run[i] = src->min_run[i];
1561                 if (dst->max_bw[i] < src->max_bw[i])
1562                         dst->max_bw[i] = src->max_bw[i];
1563                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1564                         dst->min_bw[i] = src->min_bw[i];
1565
1566                 dst->iobytes[i] += src->iobytes[i];
1567                 dst->agg[i] += src->agg[i];
1568         }
1569
1570         if (!dst->kb_base)
1571                 dst->kb_base = src->kb_base;
1572         if (!dst->unit_base)
1573                 dst->unit_base = src->unit_base;
1574         if (!dst->sig_figs)
1575                 dst->sig_figs = src->sig_figs;
1576 }
1577
1578 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1579                       bool first)
1580 {
1581         int l, k;
1582
1583         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1584                 if (!dst->unified_rw_rep) {
1585                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1586                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1587                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1588                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1589                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1590
1591                         dst->io_bytes[l] += src->io_bytes[l];
1592
1593                         if (dst->runtime[l] < src->runtime[l])
1594                                 dst->runtime[l] = src->runtime[l];
1595                 } else {
1596                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1597                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1598                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1599                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1600                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1601
1602                         dst->io_bytes[0] += src->io_bytes[l];
1603
1604                         if (dst->runtime[0] < src->runtime[l])
1605                                 dst->runtime[0] = src->runtime[l];
1606
1607                         /*
1608                          * We're summing to the same destination, so override
1609                          * 'first' after the first iteration of the loop
1610                          */
1611                         first = false;
1612                 }
1613         }
1614
1615         sum_stat(&dst->sync_stat, &src->sync_stat, first);
1616         dst->usr_time += src->usr_time;
1617         dst->sys_time += src->sys_time;
1618         dst->ctx += src->ctx;
1619         dst->majf += src->majf;
1620         dst->minf += src->minf;
1621
1622         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1623                 dst->io_u_map[k] += src->io_u_map[k];
1624                 dst->io_u_submit[k] += src->io_u_submit[k];
1625                 dst->io_u_complete[k] += src->io_u_complete[k];
1626         }
1627         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1628                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1629                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1630                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1631         }
1632         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1633                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1634
1635         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1636                 if (!dst->unified_rw_rep) {
1637                         dst->total_io_u[k] += src->total_io_u[k];
1638                         dst->short_io_u[k] += src->short_io_u[k];
1639                         dst->drop_io_u[k] += src->drop_io_u[k];
1640                 } else {
1641                         dst->total_io_u[0] += src->total_io_u[k];
1642                         dst->short_io_u[0] += src->short_io_u[k];
1643                         dst->drop_io_u[0] += src->drop_io_u[k];
1644                 }
1645         }
1646
1647         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1648
1649         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1650                 int m;
1651
1652                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1653                         if (!dst->unified_rw_rep)
1654                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1655                         else
1656                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1657                 }
1658         }
1659
1660         dst->total_run_time += src->total_run_time;
1661         dst->total_submit += src->total_submit;
1662         dst->total_complete += src->total_complete;
1663         dst->nr_zone_resets += src->nr_zone_resets;
1664 }
1665
1666 void init_group_run_stat(struct group_run_stats *gs)
1667 {
1668         int i;
1669         memset(gs, 0, sizeof(*gs));
1670
1671         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1672                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1673 }
1674
1675 void init_thread_stat(struct thread_stat *ts)
1676 {
1677         int j;
1678
1679         memset(ts, 0, sizeof(*ts));
1680
1681         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1682                 ts->lat_stat[j].min_val = -1UL;
1683                 ts->clat_stat[j].min_val = -1UL;
1684                 ts->slat_stat[j].min_val = -1UL;
1685                 ts->bw_stat[j].min_val = -1UL;
1686                 ts->iops_stat[j].min_val = -1UL;
1687         }
1688         ts->sync_stat.min_val = -1UL;
1689         ts->groupid = -1;
1690 }
1691
1692 void __show_run_stats(void)
1693 {
1694         struct group_run_stats *runstats, *rs;
1695         struct thread_data *td;
1696         struct thread_stat *threadstats, *ts;
1697         int i, j, k, nr_ts, last_ts, idx;
1698         bool kb_base_warned = false;
1699         bool unit_base_warned = false;
1700         struct json_object *root = NULL;
1701         struct json_array *array = NULL;
1702         struct buf_output output[FIO_OUTPUT_NR];
1703         struct flist_head **opt_lists;
1704
1705         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1706
1707         for (i = 0; i < groupid + 1; i++)
1708                 init_group_run_stat(&runstats[i]);
1709
1710         /*
1711          * find out how many threads stats we need. if group reporting isn't
1712          * enabled, it's one-per-td.
1713          */
1714         nr_ts = 0;
1715         last_ts = -1;
1716         for_each_td(td, i) {
1717                 if (!td->o.group_reporting) {
1718                         nr_ts++;
1719                         continue;
1720                 }
1721                 if (last_ts == td->groupid)
1722                         continue;
1723                 if (!td->o.stats)
1724                         continue;
1725
1726                 last_ts = td->groupid;
1727                 nr_ts++;
1728         }
1729
1730         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1731         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1732
1733         for (i = 0; i < nr_ts; i++) {
1734                 init_thread_stat(&threadstats[i]);
1735                 opt_lists[i] = NULL;
1736         }
1737
1738         j = 0;
1739         last_ts = -1;
1740         idx = 0;
1741         for_each_td(td, i) {
1742                 if (!td->o.stats)
1743                         continue;
1744                 if (idx && (!td->o.group_reporting ||
1745                     (td->o.group_reporting && last_ts != td->groupid))) {
1746                         idx = 0;
1747                         j++;
1748                 }
1749
1750                 last_ts = td->groupid;
1751
1752                 ts = &threadstats[j];
1753
1754                 ts->clat_percentiles = td->o.clat_percentiles;
1755                 ts->lat_percentiles = td->o.lat_percentiles;
1756                 ts->percentile_precision = td->o.percentile_precision;
1757                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1758                 opt_lists[j] = &td->opt_list;
1759
1760                 idx++;
1761                 ts->members++;
1762
1763                 if (ts->groupid == -1) {
1764                         /*
1765                          * These are per-group shared already
1766                          */
1767                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1768                         if (td->o.description)
1769                                 strncpy(ts->description, td->o.description,
1770                                                 FIO_JOBDESC_SIZE - 1);
1771                         else
1772                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1773
1774                         /*
1775                          * If multiple entries in this group, this is
1776                          * the first member.
1777                          */
1778                         ts->thread_number = td->thread_number;
1779                         ts->groupid = td->groupid;
1780
1781                         /*
1782                          * first pid in group, not very useful...
1783                          */
1784                         ts->pid = td->pid;
1785
1786                         ts->kb_base = td->o.kb_base;
1787                         ts->unit_base = td->o.unit_base;
1788                         ts->sig_figs = td->o.sig_figs;
1789                         ts->unified_rw_rep = td->o.unified_rw_rep;
1790                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1791                         log_info("fio: kb_base differs for jobs in group, using"
1792                                  " %u as the base\n", ts->kb_base);
1793                         kb_base_warned = true;
1794                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1795                         log_info("fio: unit_base differs for jobs in group, using"
1796                                  " %u as the base\n", ts->unit_base);
1797                         unit_base_warned = true;
1798                 }
1799
1800                 ts->continue_on_error = td->o.continue_on_error;
1801                 ts->total_err_count += td->total_err_count;
1802                 ts->first_error = td->first_error;
1803                 if (!ts->error) {
1804                         if (!td->error && td->o.continue_on_error &&
1805                             td->first_error) {
1806                                 ts->error = td->first_error;
1807                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1808                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1809                         } else  if (td->error) {
1810                                 ts->error = td->error;
1811                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1812                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1813                         }
1814                 }
1815
1816                 ts->latency_depth = td->latency_qd;
1817                 ts->latency_target = td->o.latency_target;
1818                 ts->latency_percentile = td->o.latency_percentile;
1819                 ts->latency_window = td->o.latency_window;
1820
1821                 ts->nr_block_infos = td->ts.nr_block_infos;
1822                 for (k = 0; k < ts->nr_block_infos; k++)
1823                         ts->block_infos[k] = td->ts.block_infos[k];
1824
1825                 sum_thread_stats(ts, &td->ts, idx == 1);
1826
1827                 if (td->o.ss_dur) {
1828                         ts->ss_state = td->ss.state;
1829                         ts->ss_dur = td->ss.dur;
1830                         ts->ss_head = td->ss.head;
1831                         ts->ss_bw_data = td->ss.bw_data;
1832                         ts->ss_iops_data = td->ss.iops_data;
1833                         ts->ss_limit.u.f = td->ss.limit;
1834                         ts->ss_slope.u.f = td->ss.slope;
1835                         ts->ss_deviation.u.f = td->ss.deviation;
1836                         ts->ss_criterion.u.f = td->ss.criterion;
1837                 }
1838                 else
1839                         ts->ss_dur = ts->ss_state = 0;
1840         }
1841
1842         for (i = 0; i < nr_ts; i++) {
1843                 unsigned long long bw;
1844
1845                 ts = &threadstats[i];
1846                 if (ts->groupid == -1)
1847                         continue;
1848                 rs = &runstats[ts->groupid];
1849                 rs->kb_base = ts->kb_base;
1850                 rs->unit_base = ts->unit_base;
1851                 rs->sig_figs = ts->sig_figs;
1852                 rs->unified_rw_rep += ts->unified_rw_rep;
1853
1854                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1855                         if (!ts->runtime[j])
1856                                 continue;
1857                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1858                                 rs->min_run[j] = ts->runtime[j];
1859                         if (ts->runtime[j] > rs->max_run[j])
1860                                 rs->max_run[j] = ts->runtime[j];
1861
1862                         bw = 0;
1863                         if (ts->runtime[j])
1864                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1865                         if (bw < rs->min_bw[j])
1866                                 rs->min_bw[j] = bw;
1867                         if (bw > rs->max_bw[j])
1868                                 rs->max_bw[j] = bw;
1869
1870                         rs->iobytes[j] += ts->io_bytes[j];
1871                 }
1872         }
1873
1874         for (i = 0; i < groupid + 1; i++) {
1875                 int ddir;
1876
1877                 rs = &runstats[i];
1878
1879                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1880                         if (rs->max_run[ddir])
1881                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1882                                                 rs->max_run[ddir];
1883                 }
1884         }
1885
1886         for (i = 0; i < FIO_OUTPUT_NR; i++)
1887                 buf_output_init(&output[i]);
1888
1889         /*
1890          * don't overwrite last signal output
1891          */
1892         if (output_format & FIO_OUTPUT_NORMAL)
1893                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1894         if (output_format & FIO_OUTPUT_JSON) {
1895                 struct thread_data *global;
1896                 char time_buf[32];
1897                 struct timeval now;
1898                 unsigned long long ms_since_epoch;
1899                 time_t tv_sec;
1900
1901                 gettimeofday(&now, NULL);
1902                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1903                                  (unsigned long long)(now.tv_usec) / 1000;
1904
1905                 tv_sec = now.tv_sec;
1906                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1907                 if (time_buf[strlen(time_buf) - 1] == '\n')
1908                         time_buf[strlen(time_buf) - 1] = '\0';
1909
1910                 root = json_create_object();
1911                 json_object_add_value_string(root, "fio version", fio_version_string);
1912                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1913                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1914                 json_object_add_value_string(root, "time", time_buf);
1915                 global = get_global_options();
1916                 json_add_job_opts(root, "global options", &global->opt_list);
1917                 array = json_create_array();
1918                 json_object_add_value_array(root, "jobs", array);
1919         }
1920
1921         if (is_backend)
1922                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1923
1924         for (i = 0; i < nr_ts; i++) {
1925                 ts = &threadstats[i];
1926                 rs = &runstats[ts->groupid];
1927
1928                 if (is_backend) {
1929                         fio_server_send_job_options(opt_lists[i], i);
1930                         fio_server_send_ts(ts, rs);
1931                         if (output_format & FIO_OUTPUT_TERSE)
1932                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1933                 } else {
1934                         if (output_format & FIO_OUTPUT_TERSE)
1935                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1936                         if (output_format & FIO_OUTPUT_JSON) {
1937                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1938                                 json_array_add_value_object(array, tmp);
1939                         }
1940                         if (output_format & FIO_OUTPUT_NORMAL)
1941                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1942                 }
1943         }
1944         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1945                 /* disk util stats, if any */
1946                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1947
1948                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1949
1950                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1951                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1952                 json_free_object(root);
1953         }
1954
1955         for (i = 0; i < groupid + 1; i++) {
1956                 rs = &runstats[i];
1957
1958                 rs->groupid = i;
1959                 if (is_backend)
1960                         fio_server_send_gs(rs);
1961                 else if (output_format & FIO_OUTPUT_NORMAL)
1962                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1963         }
1964
1965         if (is_backend)
1966                 fio_server_send_du();
1967         else if (output_format & FIO_OUTPUT_NORMAL) {
1968                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1969                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1970         }
1971
1972         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1973                 struct buf_output *out = &output[i];
1974
1975                 log_info_buf(out->buf, out->buflen);
1976                 buf_output_free(out);
1977         }
1978
1979         fio_idle_prof_cleanup();
1980
1981         log_info_flush();
1982         free(runstats);
1983         free(threadstats);
1984         free(opt_lists);
1985 }
1986
1987 void __show_running_run_stats(void)
1988 {
1989         struct thread_data *td;
1990         unsigned long long *rt;
1991         struct timespec ts;
1992         int i;
1993
1994         fio_sem_down(stat_sem);
1995
1996         rt = malloc(thread_number * sizeof(unsigned long long));
1997         fio_gettime(&ts, NULL);
1998
1999         for_each_td(td, i) {
2000                 td->update_rusage = 1;
2001                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2002                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2003                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2004                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2005
2006                 rt[i] = mtime_since(&td->start, &ts);
2007                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2008                         td->ts.runtime[DDIR_READ] += rt[i];
2009                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2010                         td->ts.runtime[DDIR_WRITE] += rt[i];
2011                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2012                         td->ts.runtime[DDIR_TRIM] += rt[i];
2013         }
2014
2015         for_each_td(td, i) {
2016                 if (td->runstate >= TD_EXITED)
2017                         continue;
2018                 if (td->rusage_sem) {
2019                         td->update_rusage = 1;
2020                         fio_sem_down(td->rusage_sem);
2021                 }
2022                 td->update_rusage = 0;
2023         }
2024
2025         __show_run_stats();
2026
2027         for_each_td(td, i) {
2028                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2029                         td->ts.runtime[DDIR_READ] -= rt[i];
2030                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2031                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2032                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2033                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2034         }
2035
2036         free(rt);
2037         fio_sem_up(stat_sem);
2038 }
2039
2040 static bool status_interval_init;
2041 static struct timespec status_time;
2042 static bool status_file_disabled;
2043
2044 #define FIO_STATUS_FILE         "fio-dump-status"
2045
2046 static int check_status_file(void)
2047 {
2048         struct stat sb;
2049         const char *temp_dir;
2050         char fio_status_file_path[PATH_MAX];
2051
2052         if (status_file_disabled)
2053                 return 0;
2054
2055         temp_dir = getenv("TMPDIR");
2056         if (temp_dir == NULL) {
2057                 temp_dir = getenv("TEMP");
2058                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2059                         temp_dir = NULL;
2060         }
2061         if (temp_dir == NULL)
2062                 temp_dir = "/tmp";
2063
2064         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2065
2066         if (stat(fio_status_file_path, &sb))
2067                 return 0;
2068
2069         if (unlink(fio_status_file_path) < 0) {
2070                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2071                                                         strerror(errno));
2072                 log_err("fio: disabling status file updates\n");
2073                 status_file_disabled = true;
2074         }
2075
2076         return 1;
2077 }
2078
2079 void check_for_running_stats(void)
2080 {
2081         if (status_interval) {
2082                 if (!status_interval_init) {
2083                         fio_gettime(&status_time, NULL);
2084                         status_interval_init = true;
2085                 } else if (mtime_since_now(&status_time) >= status_interval) {
2086                         show_running_run_stats();
2087                         fio_gettime(&status_time, NULL);
2088                         return;
2089                 }
2090         }
2091         if (check_status_file()) {
2092                 show_running_run_stats();
2093                 return;
2094         }
2095 }
2096
2097 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2098 {
2099         double val = data;
2100         double delta;
2101
2102         if (data > is->max_val)
2103                 is->max_val = data;
2104         if (data < is->min_val)
2105                 is->min_val = data;
2106
2107         delta = val - is->mean.u.f;
2108         if (delta) {
2109                 is->mean.u.f += delta / (is->samples + 1.0);
2110                 is->S.u.f += delta * (val - is->mean.u.f);
2111         }
2112
2113         is->samples++;
2114 }
2115
2116 /*
2117  * Return a struct io_logs, which is added to the tail of the log
2118  * list for 'iolog'.
2119  */
2120 static struct io_logs *get_new_log(struct io_log *iolog)
2121 {
2122         size_t new_size, new_samples;
2123         struct io_logs *cur_log;
2124
2125         /*
2126          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2127          * forever
2128          */
2129         if (!iolog->cur_log_max)
2130                 new_samples = DEF_LOG_ENTRIES;
2131         else {
2132                 new_samples = iolog->cur_log_max * 2;
2133                 if (new_samples > MAX_LOG_ENTRIES)
2134                         new_samples = MAX_LOG_ENTRIES;
2135         }
2136
2137         new_size = new_samples * log_entry_sz(iolog);
2138
2139         cur_log = smalloc(sizeof(*cur_log));
2140         if (cur_log) {
2141                 INIT_FLIST_HEAD(&cur_log->list);
2142                 cur_log->log = malloc(new_size);
2143                 if (cur_log->log) {
2144                         cur_log->nr_samples = 0;
2145                         cur_log->max_samples = new_samples;
2146                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2147                         iolog->cur_log_max = new_samples;
2148                         return cur_log;
2149                 }
2150                 sfree(cur_log);
2151         }
2152
2153         return NULL;
2154 }
2155
2156 /*
2157  * Add and return a new log chunk, or return current log if big enough
2158  */
2159 static struct io_logs *regrow_log(struct io_log *iolog)
2160 {
2161         struct io_logs *cur_log;
2162         int i;
2163
2164         if (!iolog || iolog->disabled)
2165                 goto disable;
2166
2167         cur_log = iolog_cur_log(iolog);
2168         if (!cur_log) {
2169                 cur_log = get_new_log(iolog);
2170                 if (!cur_log)
2171                         return NULL;
2172         }
2173
2174         if (cur_log->nr_samples < cur_log->max_samples)
2175                 return cur_log;
2176
2177         /*
2178          * No room for a new sample. If we're compressing on the fly, flush
2179          * out the current chunk
2180          */
2181         if (iolog->log_gz) {
2182                 if (iolog_cur_flush(iolog, cur_log)) {
2183                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2184                         return NULL;
2185                 }
2186         }
2187
2188         /*
2189          * Get a new log array, and add to our list
2190          */
2191         cur_log = get_new_log(iolog);
2192         if (!cur_log) {
2193                 log_err("fio: failed extending iolog! Will stop logging.\n");
2194                 return NULL;
2195         }
2196
2197         if (!iolog->pending || !iolog->pending->nr_samples)
2198                 return cur_log;
2199
2200         /*
2201          * Flush pending items to new log
2202          */
2203         for (i = 0; i < iolog->pending->nr_samples; i++) {
2204                 struct io_sample *src, *dst;
2205
2206                 src = get_sample(iolog, iolog->pending, i);
2207                 dst = get_sample(iolog, cur_log, i);
2208                 memcpy(dst, src, log_entry_sz(iolog));
2209         }
2210         cur_log->nr_samples = iolog->pending->nr_samples;
2211
2212         iolog->pending->nr_samples = 0;
2213         return cur_log;
2214 disable:
2215         if (iolog)
2216                 iolog->disabled = true;
2217         return NULL;
2218 }
2219
2220 void regrow_logs(struct thread_data *td)
2221 {
2222         regrow_log(td->slat_log);
2223         regrow_log(td->clat_log);
2224         regrow_log(td->clat_hist_log);
2225         regrow_log(td->lat_log);
2226         regrow_log(td->bw_log);
2227         regrow_log(td->iops_log);
2228         td->flags &= ~TD_F_REGROW_LOGS;
2229 }
2230
2231 static struct io_logs *get_cur_log(struct io_log *iolog)
2232 {
2233         struct io_logs *cur_log;
2234
2235         cur_log = iolog_cur_log(iolog);
2236         if (!cur_log) {
2237                 cur_log = get_new_log(iolog);
2238                 if (!cur_log)
2239                         return NULL;
2240         }
2241
2242         if (cur_log->nr_samples < cur_log->max_samples)
2243                 return cur_log;
2244
2245         /*
2246          * Out of space. If we're in IO offload mode, or we're not doing
2247          * per unit logging (hence logging happens outside of the IO thread
2248          * as well), add a new log chunk inline. If we're doing inline
2249          * submissions, flag 'td' as needing a log regrow and we'll take
2250          * care of it on the submission side.
2251          */
2252         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2253             !per_unit_log(iolog))
2254                 return regrow_log(iolog);
2255
2256         if (iolog->td)
2257                 iolog->td->flags |= TD_F_REGROW_LOGS;
2258         if (iolog->pending)
2259                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2260         return iolog->pending;
2261 }
2262
2263 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2264                              enum fio_ddir ddir, unsigned long long bs,
2265                              unsigned long t, uint64_t offset)
2266 {
2267         struct io_logs *cur_log;
2268
2269         if (iolog->disabled)
2270                 return;
2271         if (flist_empty(&iolog->io_logs))
2272                 iolog->avg_last[ddir] = t;
2273
2274         cur_log = get_cur_log(iolog);
2275         if (cur_log) {
2276                 struct io_sample *s;
2277
2278                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2279
2280                 s->data = data;
2281                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2282                 io_sample_set_ddir(iolog, s, ddir);
2283                 s->bs = bs;
2284
2285                 if (iolog->log_offset) {
2286                         struct io_sample_offset *so = (void *) s;
2287
2288                         so->offset = offset;
2289                 }
2290
2291                 cur_log->nr_samples++;
2292                 return;
2293         }
2294
2295         iolog->disabled = true;
2296 }
2297
2298 static inline void reset_io_stat(struct io_stat *ios)
2299 {
2300         ios->max_val = ios->min_val = ios->samples = 0;
2301         ios->mean.u.f = ios->S.u.f = 0;
2302 }
2303
2304 void reset_io_stats(struct thread_data *td)
2305 {
2306         struct thread_stat *ts = &td->ts;
2307         int i, j;
2308
2309         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2310                 reset_io_stat(&ts->clat_stat[i]);
2311                 reset_io_stat(&ts->slat_stat[i]);
2312                 reset_io_stat(&ts->lat_stat[i]);
2313                 reset_io_stat(&ts->bw_stat[i]);
2314                 reset_io_stat(&ts->iops_stat[i]);
2315
2316                 ts->io_bytes[i] = 0;
2317                 ts->runtime[i] = 0;
2318                 ts->total_io_u[i] = 0;
2319                 ts->short_io_u[i] = 0;
2320                 ts->drop_io_u[i] = 0;
2321
2322                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2323                         ts->io_u_plat[i][j] = 0;
2324                         if (!i)
2325                                 ts->io_u_sync_plat[j] = 0;
2326                 }
2327         }
2328
2329         ts->total_io_u[DDIR_SYNC] = 0;
2330
2331         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2332                 ts->io_u_map[i] = 0;
2333                 ts->io_u_submit[i] = 0;
2334                 ts->io_u_complete[i] = 0;
2335         }
2336
2337         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2338                 ts->io_u_lat_n[i] = 0;
2339         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2340                 ts->io_u_lat_u[i] = 0;
2341         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2342                 ts->io_u_lat_m[i] = 0;
2343
2344         ts->total_submit = 0;
2345         ts->total_complete = 0;
2346         ts->nr_zone_resets = 0;
2347 }
2348
2349 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2350                               unsigned long elapsed, bool log_max)
2351 {
2352         /*
2353          * Note an entry in the log. Use the mean from the logged samples,
2354          * making sure to properly round up. Only write a log entry if we
2355          * had actual samples done.
2356          */
2357         if (iolog->avg_window[ddir].samples) {
2358                 union io_sample_data data;
2359
2360                 if (log_max)
2361                         data.val = iolog->avg_window[ddir].max_val;
2362                 else
2363                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2364
2365                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2366         }
2367
2368         reset_io_stat(&iolog->avg_window[ddir]);
2369 }
2370
2371 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2372                              bool log_max)
2373 {
2374         int ddir;
2375
2376         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2377                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2378 }
2379
2380 static unsigned long add_log_sample(struct thread_data *td,
2381                                     struct io_log *iolog,
2382                                     union io_sample_data data,
2383                                     enum fio_ddir ddir, unsigned long long bs,
2384                                     uint64_t offset)
2385 {
2386         unsigned long elapsed, this_window;
2387
2388         if (!ddir_rw(ddir))
2389                 return 0;
2390
2391         elapsed = mtime_since_now(&td->epoch);
2392
2393         /*
2394          * If no time averaging, just add the log sample.
2395          */
2396         if (!iolog->avg_msec) {
2397                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2398                 return 0;
2399         }
2400
2401         /*
2402          * Add the sample. If the time period has passed, then
2403          * add that entry to the log and clear.
2404          */
2405         add_stat_sample(&iolog->avg_window[ddir], data.val);
2406
2407         /*
2408          * If period hasn't passed, adding the above sample is all we
2409          * need to do.
2410          */
2411         this_window = elapsed - iolog->avg_last[ddir];
2412         if (elapsed < iolog->avg_last[ddir])
2413                 return iolog->avg_last[ddir] - elapsed;
2414         else if (this_window < iolog->avg_msec) {
2415                 unsigned long diff = iolog->avg_msec - this_window;
2416
2417                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2418                         return diff;
2419         }
2420
2421         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2422
2423         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2424         return iolog->avg_msec;
2425 }
2426
2427 void finalize_logs(struct thread_data *td, bool unit_logs)
2428 {
2429         unsigned long elapsed;
2430
2431         elapsed = mtime_since_now(&td->epoch);
2432
2433         if (td->clat_log && unit_logs)
2434                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2435         if (td->slat_log && unit_logs)
2436                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2437         if (td->lat_log && unit_logs)
2438                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2439         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2440                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2441         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2442                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2443 }
2444
2445 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2446 {
2447         struct io_log *iolog;
2448
2449         if (!ddir_rw(ddir))
2450                 return;
2451
2452         iolog = agg_io_log[ddir];
2453         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2454 }
2455
2456 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2457 {
2458         unsigned int idx = plat_val_to_idx(nsec);
2459         assert(idx < FIO_IO_U_PLAT_NR);
2460
2461         ts->io_u_sync_plat[idx]++;
2462         add_stat_sample(&ts->sync_stat, nsec);
2463 }
2464
2465 static void add_clat_percentile_sample(struct thread_stat *ts,
2466                                 unsigned long long nsec, enum fio_ddir ddir)
2467 {
2468         unsigned int idx = plat_val_to_idx(nsec);
2469         assert(idx < FIO_IO_U_PLAT_NR);
2470
2471         ts->io_u_plat[ddir][idx]++;
2472 }
2473
2474 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2475                      unsigned long long nsec, unsigned long long bs,
2476                      uint64_t offset)
2477 {
2478         unsigned long elapsed, this_window;
2479         struct thread_stat *ts = &td->ts;
2480         struct io_log *iolog = td->clat_hist_log;
2481
2482         td_io_u_lock(td);
2483
2484         add_stat_sample(&ts->clat_stat[ddir], nsec);
2485
2486         if (td->clat_log)
2487                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2488                                offset);
2489
2490         if (ts->clat_percentiles)
2491                 add_clat_percentile_sample(ts, nsec, ddir);
2492
2493         if (iolog && iolog->hist_msec) {
2494                 struct io_hist *hw = &iolog->hist_window[ddir];
2495
2496                 hw->samples++;
2497                 elapsed = mtime_since_now(&td->epoch);
2498                 if (!hw->hist_last)
2499                         hw->hist_last = elapsed;
2500                 this_window = elapsed - hw->hist_last;
2501                 
2502                 if (this_window >= iolog->hist_msec) {
2503                         uint64_t *io_u_plat;
2504                         struct io_u_plat_entry *dst;
2505
2506                         /*
2507                          * Make a byte-for-byte copy of the latency histogram
2508                          * stored in td->ts.io_u_plat[ddir], recording it in a
2509                          * log sample. Note that the matching call to free() is
2510                          * located in iolog.c after printing this sample to the
2511                          * log file.
2512                          */
2513                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2514                         dst = malloc(sizeof(struct io_u_plat_entry));
2515                         memcpy(&(dst->io_u_plat), io_u_plat,
2516                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2517                         flist_add(&dst->list, &hw->list);
2518                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2519                                                 elapsed, offset);
2520
2521                         /*
2522                          * Update the last time we recorded as being now, minus
2523                          * any drift in time we encountered before actually
2524                          * making the record.
2525                          */
2526                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2527                         hw->samples = 0;
2528                 }
2529         }
2530
2531         td_io_u_unlock(td);
2532 }
2533
2534 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2535                      unsigned long usec, unsigned long long bs, uint64_t offset)
2536 {
2537         struct thread_stat *ts = &td->ts;
2538
2539         if (!ddir_rw(ddir))
2540                 return;
2541
2542         td_io_u_lock(td);
2543
2544         add_stat_sample(&ts->slat_stat[ddir], usec);
2545
2546         if (td->slat_log)
2547                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2548
2549         td_io_u_unlock(td);
2550 }
2551
2552 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2553                     unsigned long long nsec, unsigned long long bs,
2554                     uint64_t offset)
2555 {
2556         struct thread_stat *ts = &td->ts;
2557
2558         if (!ddir_rw(ddir))
2559                 return;
2560
2561         td_io_u_lock(td);
2562
2563         add_stat_sample(&ts->lat_stat[ddir], nsec);
2564
2565         if (td->lat_log)
2566                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2567                                offset);
2568
2569         if (ts->lat_percentiles)
2570                 add_clat_percentile_sample(ts, nsec, ddir);
2571
2572         td_io_u_unlock(td);
2573 }
2574
2575 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2576                    unsigned int bytes, unsigned long long spent)
2577 {
2578         struct thread_stat *ts = &td->ts;
2579         unsigned long rate;
2580
2581         if (spent)
2582                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2583         else
2584                 rate = 0;
2585
2586         td_io_u_lock(td);
2587
2588         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2589
2590         if (td->bw_log)
2591                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2592                                bytes, io_u->offset);
2593
2594         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2595         td_io_u_unlock(td);
2596 }
2597
2598 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2599                          struct timespec *t, unsigned int avg_time,
2600                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2601                          struct io_stat *stat, struct io_log *log,
2602                          bool is_kb)
2603 {
2604         unsigned long spent, rate;
2605         enum fio_ddir ddir;
2606         unsigned long next, next_log;
2607
2608         next_log = avg_time;
2609
2610         spent = mtime_since(parent_tv, t);
2611         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2612                 return avg_time - spent;
2613
2614         td_io_u_lock(td);
2615
2616         /*
2617          * Compute both read and write rates for the interval.
2618          */
2619         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2620                 uint64_t delta;
2621
2622                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2623                 if (!delta)
2624                         continue; /* No entries for interval */
2625
2626                 if (spent) {
2627                         if (is_kb)
2628                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2629                         else
2630                                 rate = (delta * 1000) / spent;
2631                 } else
2632                         rate = 0;
2633
2634                 add_stat_sample(&stat[ddir], rate);
2635
2636                 if (log) {
2637                         unsigned long long bs = 0;
2638
2639                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2640                                 bs = td->o.min_bs[ddir];
2641
2642                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2643                         next_log = min(next_log, next);
2644                 }
2645
2646                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2647         }
2648
2649         timespec_add_msec(parent_tv, avg_time);
2650
2651         td_io_u_unlock(td);
2652
2653         if (spent <= avg_time)
2654                 next = avg_time;
2655         else
2656                 next = avg_time - (1 + spent - avg_time);
2657
2658         return min(next, next_log);
2659 }
2660
2661 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2662 {
2663         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2664                                 td->this_io_bytes, td->stat_io_bytes,
2665                                 td->ts.bw_stat, td->bw_log, true);
2666 }
2667
2668 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2669                      unsigned int bytes)
2670 {
2671         struct thread_stat *ts = &td->ts;
2672
2673         td_io_u_lock(td);
2674
2675         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2676
2677         if (td->iops_log)
2678                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2679                                bytes, io_u->offset);
2680
2681         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2682         td_io_u_unlock(td);
2683 }
2684
2685 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2686 {
2687         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2688                                 td->this_io_blocks, td->stat_io_blocks,
2689                                 td->ts.iops_stat, td->iops_log, false);
2690 }
2691
2692 /*
2693  * Returns msecs to next event
2694  */
2695 int calc_log_samples(void)
2696 {
2697         struct thread_data *td;
2698         unsigned int next = ~0U, tmp;
2699         struct timespec now;
2700         int i;
2701
2702         fio_gettime(&now, NULL);
2703
2704         for_each_td(td, i) {
2705                 if (!td->o.stats)
2706                         continue;
2707                 if (in_ramp_time(td) ||
2708                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2709                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2710                         continue;
2711                 }
2712                 if (!td->bw_log ||
2713                         (td->bw_log && !per_unit_log(td->bw_log))) {
2714                         tmp = add_bw_samples(td, &now);
2715                         if (tmp < next)
2716                                 next = tmp;
2717                 }
2718                 if (!td->iops_log ||
2719                         (td->iops_log && !per_unit_log(td->iops_log))) {
2720                         tmp = add_iops_samples(td, &now);
2721                         if (tmp < next)
2722                                 next = tmp;
2723                 }
2724         }
2725
2726         return next == ~0U ? 0 : next;
2727 }
2728
2729 void stat_init(void)
2730 {
2731         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2732 }
2733
2734 void stat_exit(void)
2735 {
2736         /*
2737          * When we have the mutex, we know out-of-band access to it
2738          * have ended.
2739          */
2740         fio_sem_down(stat_sem);
2741         fio_sem_remove(stat_sem);
2742 }
2743
2744 /*
2745  * Called from signal handler. Wake up status thread.
2746  */
2747 void show_running_run_stats(void)
2748 {
2749         helper_do_stat();
2750 }
2751
2752 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2753 {
2754         /* Ignore io_u's which span multiple blocks--they will just get
2755          * inaccurate counts. */
2756         int idx = (io_u->offset - io_u->file->file_offset)
2757                         / td->o.bs[DDIR_TRIM];
2758         uint32_t *info = &td->ts.block_infos[idx];
2759         assert(idx < td->ts.nr_block_infos);
2760         return info;
2761 }