Merge branch 'fio-c++-engine' of https://github.com/tchaikov/fio
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17
18 #define LOG_MSEC_SLACK  1
19
20 struct fio_sem *stat_sem;
21
22 void clear_rusage_stat(struct thread_data *td)
23 {
24         struct thread_stat *ts = &td->ts;
25
26         fio_getrusage(&td->ru_start);
27         ts->usr_time = ts->sys_time = 0;
28         ts->ctx = 0;
29         ts->minf = ts->majf = 0;
30 }
31
32 void update_rusage_stat(struct thread_data *td)
33 {
34         struct thread_stat *ts = &td->ts;
35
36         fio_getrusage(&td->ru_end);
37         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
38                                         &td->ru_end.ru_utime);
39         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
40                                         &td->ru_end.ru_stime);
41         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
42                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
43         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
44         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
45
46         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
47 }
48
49 /*
50  * Given a latency, return the index of the corresponding bucket in
51  * the structure tracking percentiles.
52  *
53  * (1) find the group (and error bits) that the value (latency)
54  * belongs to by looking at its MSB. (2) find the bucket number in the
55  * group by looking at the index bits.
56  *
57  */
58 static unsigned int plat_val_to_idx(unsigned long long val)
59 {
60         unsigned int msb, error_bits, base, offset, idx;
61
62         /* Find MSB starting from bit 0 */
63         if (val == 0)
64                 msb = 0;
65         else
66                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
67
68         /*
69          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
70          * all bits of the sample as index
71          */
72         if (msb <= FIO_IO_U_PLAT_BITS)
73                 return val;
74
75         /* Compute the number of error bits to discard*/
76         error_bits = msb - FIO_IO_U_PLAT_BITS;
77
78         /* Compute the number of buckets before the group */
79         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
80
81         /*
82          * Discard the error bits and apply the mask to find the
83          * index for the buckets in the group
84          */
85         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
86
87         /* Make sure the index does not exceed (array size - 1) */
88         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
89                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
90
91         return idx;
92 }
93
94 /*
95  * Convert the given index of the bucket array to the value
96  * represented by the bucket
97  */
98 static unsigned long long plat_idx_to_val(unsigned int idx)
99 {
100         unsigned int error_bits;
101         unsigned long long k, base;
102
103         assert(idx < FIO_IO_U_PLAT_NR);
104
105         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
106          * all bits of the sample as index */
107         if (idx < (FIO_IO_U_PLAT_VAL << 1))
108                 return idx;
109
110         /* Find the group and compute the minimum value of that group */
111         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
112         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
113
114         /* Find its bucket number of the group */
115         k = idx % FIO_IO_U_PLAT_VAL;
116
117         /* Return the mean of the range of the bucket */
118         return base + ((k + 0.5) * (1 << error_bits));
119 }
120
121 static int double_cmp(const void *a, const void *b)
122 {
123         const fio_fp64_t fa = *(const fio_fp64_t *) a;
124         const fio_fp64_t fb = *(const fio_fp64_t *) b;
125         int cmp = 0;
126
127         if (fa.u.f > fb.u.f)
128                 cmp = 1;
129         else if (fa.u.f < fb.u.f)
130                 cmp = -1;
131
132         return cmp;
133 }
134
135 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
136                                    fio_fp64_t *plist, unsigned long long **output,
137                                    unsigned long long *maxv, unsigned long long *minv)
138 {
139         unsigned long long sum = 0;
140         unsigned int len, i, j = 0;
141         unsigned int oval_len = 0;
142         unsigned long long *ovals = NULL;
143         bool is_last;
144
145         *minv = -1ULL;
146         *maxv = 0;
147
148         len = 0;
149         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
150                 len++;
151
152         if (!len)
153                 return 0;
154
155         /*
156          * Sort the percentile list. Note that it may already be sorted if
157          * we are using the default values, but since it's a short list this
158          * isn't a worry. Also note that this does not work for NaN values.
159          */
160         if (len > 1)
161                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
162
163         /*
164          * Calculate bucket values, note down max and min values
165          */
166         is_last = false;
167         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
168                 sum += io_u_plat[i];
169                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
170                         assert(plist[j].u.f <= 100.0);
171
172                         if (j == oval_len) {
173                                 oval_len += 100;
174                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
175                         }
176
177                         ovals[j] = plat_idx_to_val(i);
178                         if (ovals[j] < *minv)
179                                 *minv = ovals[j];
180                         if (ovals[j] > *maxv)
181                                 *maxv = ovals[j];
182
183                         is_last = (j == len - 1) != 0;
184                         if (is_last)
185                                 break;
186
187                         j++;
188                 }
189         }
190
191         *output = ovals;
192         return len;
193 }
194
195 /*
196  * Find and display the p-th percentile of clat
197  */
198 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
199                                   fio_fp64_t *plist, unsigned int precision,
200                                   const char *pre, struct buf_output *out)
201 {
202         unsigned int divisor, len, i, j = 0;
203         unsigned long long minv, maxv;
204         unsigned long long *ovals;
205         int per_line, scale_down, time_width;
206         bool is_last;
207         char fmt[32];
208
209         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210         if (!len || !ovals)
211                 goto out;
212
213         /*
214          * We default to nsecs, but if the value range is such that we
215          * should scale down to usecs or msecs, do that.
216          */
217         if (minv > 2000000 && maxv > 99999999ULL) {
218                 scale_down = 2;
219                 divisor = 1000000;
220                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
221         } else if (minv > 2000 && maxv > 99999) {
222                 scale_down = 1;
223                 divisor = 1000;
224                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
225         } else {
226                 scale_down = 0;
227                 divisor = 1;
228                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
229         }
230
231
232         time_width = max(5, (int) (log10(maxv / divisor) + 1));
233         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
234                         precision, time_width);
235         /* fmt will be something like " %5.2fth=[%4llu]%c" */
236         per_line = (80 - 7) / (precision + 10 + time_width);
237
238         for (j = 0; j < len; j++) {
239                 /* for formatting */
240                 if (j != 0 && (j % per_line) == 0)
241                         log_buf(out, "     |");
242
243                 /* end of the list */
244                 is_last = (j == len - 1) != 0;
245
246                 for (i = 0; i < scale_down; i++)
247                         ovals[j] = (ovals[j] + 999) / 1000;
248
249                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
250
251                 if (is_last)
252                         break;
253
254                 if ((j % per_line) == per_line - 1)     /* for formatting */
255                         log_buf(out, "\n");
256         }
257
258 out:
259         if (ovals)
260                 free(ovals);
261 }
262
263 bool calc_lat(struct io_stat *is, unsigned long long *min,
264               unsigned long long *max, double *mean, double *dev)
265 {
266         double n = (double) is->samples;
267
268         if (n == 0)
269                 return false;
270
271         *min = is->min_val;
272         *max = is->max_val;
273         *mean = is->mean.u.f;
274
275         if (n > 1.0)
276                 *dev = sqrt(is->S.u.f / (n - 1.0));
277         else
278                 *dev = 0;
279
280         return true;
281 }
282
283 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
284 {
285         char *io, *agg, *min, *max;
286         char *ioalt, *aggalt, *minalt, *maxalt;
287         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
288         int i;
289
290         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
291
292         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
293                 const int i2p = is_power_of_2(rs->kb_base);
294
295                 if (!rs->max_run[i])
296                         continue;
297
298                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
299                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
300                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
301                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
302                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
303                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
307                                 rs->unified_rw_rep ? "  MIXED" : str[i],
308                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
309                                 (unsigned long long) rs->min_run[i],
310                                 (unsigned long long) rs->max_run[i]);
311
312                 free(io);
313                 free(agg);
314                 free(min);
315                 free(max);
316                 free(ioalt);
317                 free(aggalt);
318                 free(minalt);
319                 free(maxalt);
320         }
321 }
322
323 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
324 {
325         int i;
326
327         /*
328          * Do depth distribution calculations
329          */
330         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
331                 if (total) {
332                         io_u_dist[i] = (double) map[i] / (double) total;
333                         io_u_dist[i] *= 100.0;
334                         if (io_u_dist[i] < 0.1 && map[i])
335                                 io_u_dist[i] = 0.1;
336                 } else
337                         io_u_dist[i] = 0.0;
338         }
339 }
340
341 static void stat_calc_lat(struct thread_stat *ts, double *dst,
342                           uint64_t *src, int nr)
343 {
344         unsigned long total = ddir_rw_sum(ts->total_io_u);
345         int i;
346
347         /*
348          * Do latency distribution calculations
349          */
350         for (i = 0; i < nr; i++) {
351                 if (total) {
352                         dst[i] = (double) src[i] / (double) total;
353                         dst[i] *= 100.0;
354                         if (dst[i] < 0.01 && src[i])
355                                 dst[i] = 0.01;
356                 } else
357                         dst[i] = 0.0;
358         }
359 }
360
361 /*
362  * To keep the terse format unaltered, add all of the ns latency
363  * buckets to the first us latency bucket
364  */
365 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
366 {
367         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
368         int i;
369
370         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
371
372         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
373                 ntotal += ts->io_u_lat_n[i];
374
375         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
376 }
377
378 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
379 {
380         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
381 }
382
383 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
384 {
385         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
386 }
387
388 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
389 {
390         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
391 }
392
393 static void display_lat(const char *name, unsigned long long min,
394                         unsigned long long max, double mean, double dev,
395                         struct buf_output *out)
396 {
397         const char *base = "(nsec)";
398         char *minp, *maxp;
399
400         if (nsec_to_msec(&min, &max, &mean, &dev))
401                 base = "(msec)";
402         else if (nsec_to_usec(&min, &max, &mean, &dev))
403                 base = "(usec)";
404
405         minp = num2str(min, 6, 1, 0, N2S_NONE);
406         maxp = num2str(max, 6, 1, 0, N2S_NONE);
407
408         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
409                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
410
411         free(minp);
412         free(maxp);
413 }
414
415 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
416                              int ddir, struct buf_output *out)
417 {
418         const char *str[] = { " read", "write", " trim", "sync" };
419         unsigned long runt;
420         unsigned long long min, max, bw, iops;
421         double mean, dev;
422         char *io_p, *bw_p, *bw_p_alt, *iops_p;
423         int i2p;
424
425         if (ddir_sync(ddir)) {
426                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
427                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
428                         display_lat(str[ddir], min, max, mean, dev, out);
429                         show_clat_percentiles(ts->io_u_sync_plat,
430                                                 ts->sync_stat.samples,
431                                                 ts->percentile_list,
432                                                 ts->percentile_precision,
433                                                 str[ddir], out);
434                 }
435                 return;
436         }
437
438         assert(ddir_rw(ddir));
439
440         if (!ts->runtime[ddir])
441                 return;
442
443         i2p = is_power_of_2(rs->kb_base);
444         runt = ts->runtime[ddir];
445
446         bw = (1000 * ts->io_bytes[ddir]) / runt;
447         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
448         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
449         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
450
451         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
452         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
453
454         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
455                         rs->unified_rw_rep ? "mixed" : str[ddir],
456                         iops_p, bw_p, bw_p_alt, io_p,
457                         (unsigned long long) ts->runtime[ddir]);
458
459         free(io_p);
460         free(bw_p);
461         free(bw_p_alt);
462         free(iops_p);
463
464         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
465                 display_lat("slat", min, max, mean, dev, out);
466         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
467                 display_lat("clat", min, max, mean, dev, out);
468         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
469                 display_lat(" lat", min, max, mean, dev, out);
470
471         if (ts->clat_percentiles || ts->lat_percentiles) {
472                 const char *name = ts->clat_percentiles ? "clat" : " lat";
473                 uint64_t samples;
474
475                 if (ts->clat_percentiles)
476                         samples = ts->clat_stat[ddir].samples;
477                 else
478                         samples = ts->lat_stat[ddir].samples;
479
480                 show_clat_percentiles(ts->io_u_plat[ddir],
481                                         samples,
482                                         ts->percentile_list,
483                                         ts->percentile_precision, name, out);
484         }
485         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
486                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
487                 const char *bw_str;
488
489                 if ((rs->unit_base == 1) && i2p)
490                         bw_str = "Kibit";
491                 else if (rs->unit_base == 1)
492                         bw_str = "kbit";
493                 else if (i2p)
494                         bw_str = "KiB";
495                 else
496                         bw_str = "kB";
497
498                 if (rs->agg[ddir]) {
499                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
500                         if (p_of_agg > 100.0)
501                                 p_of_agg = 100.0;
502                 }
503
504                 if (rs->unit_base == 1) {
505                         min *= 8.0;
506                         max *= 8.0;
507                         mean *= 8.0;
508                         dev *= 8.0;
509                 }
510
511                 if (mean > fkb_base * fkb_base) {
512                         min /= fkb_base;
513                         max /= fkb_base;
514                         mean /= fkb_base;
515                         dev /= fkb_base;
516                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
517                 }
518
519                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
520                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
521                         bw_str, min, max, p_of_agg, mean, dev,
522                         (&ts->bw_stat[ddir])->samples);
523         }
524         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
525                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
526                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
527                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
528         }
529 }
530
531 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
532                      const char *msg, struct buf_output *out)
533 {
534         bool new_line = true, shown = false;
535         int i, line = 0;
536
537         for (i = 0; i < nr; i++) {
538                 if (io_u_lat[i] <= 0.0)
539                         continue;
540                 shown = true;
541                 if (new_line) {
542                         if (line)
543                                 log_buf(out, "\n");
544                         log_buf(out, "  lat (%s)   : ", msg);
545                         new_line = false;
546                         line = 0;
547                 }
548                 if (line)
549                         log_buf(out, ", ");
550                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
551                 line++;
552                 if (line == 5)
553                         new_line = true;
554         }
555
556         if (shown)
557                 log_buf(out, "\n");
558
559         return true;
560 }
561
562 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
563 {
564         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
565                                  "250=", "500=", "750=", "1000=", };
566
567         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
568 }
569
570 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
571 {
572         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
573                                  "250=", "500=", "750=", "1000=", };
574
575         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
576 }
577
578 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
579 {
580         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
581                                  "250=", "500=", "750=", "1000=", "2000=",
582                                  ">=2000=", };
583
584         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
585 }
586
587 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
588 {
589         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
590         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
591         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
592
593         stat_calc_lat_n(ts, io_u_lat_n);
594         stat_calc_lat_u(ts, io_u_lat_u);
595         stat_calc_lat_m(ts, io_u_lat_m);
596
597         show_lat_n(io_u_lat_n, out);
598         show_lat_u(io_u_lat_u, out);
599         show_lat_m(io_u_lat_m, out);
600 }
601
602 static int block_state_category(int block_state)
603 {
604         switch (block_state) {
605         case BLOCK_STATE_UNINIT:
606                 return 0;
607         case BLOCK_STATE_TRIMMED:
608         case BLOCK_STATE_WRITTEN:
609                 return 1;
610         case BLOCK_STATE_WRITE_FAILURE:
611         case BLOCK_STATE_TRIM_FAILURE:
612                 return 2;
613         default:
614                 /* Silence compile warning on some BSDs and have a return */
615                 assert(0);
616                 return -1;
617         }
618 }
619
620 static int compare_block_infos(const void *bs1, const void *bs2)
621 {
622         uint64_t block1 = *(uint64_t *)bs1;
623         uint64_t block2 = *(uint64_t *)bs2;
624         int state1 = BLOCK_INFO_STATE(block1);
625         int state2 = BLOCK_INFO_STATE(block2);
626         int bscat1 = block_state_category(state1);
627         int bscat2 = block_state_category(state2);
628         int cycles1 = BLOCK_INFO_TRIMS(block1);
629         int cycles2 = BLOCK_INFO_TRIMS(block2);
630
631         if (bscat1 < bscat2)
632                 return -1;
633         if (bscat1 > bscat2)
634                 return 1;
635
636         if (cycles1 < cycles2)
637                 return -1;
638         if (cycles1 > cycles2)
639                 return 1;
640
641         if (state1 < state2)
642                 return -1;
643         if (state1 > state2)
644                 return 1;
645
646         assert(block1 == block2);
647         return 0;
648 }
649
650 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
651                                   fio_fp64_t *plist, unsigned int **percentiles,
652                                   unsigned int *types)
653 {
654         int len = 0;
655         int i, nr_uninit;
656
657         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
658
659         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
660                 len++;
661
662         if (!len)
663                 return 0;
664
665         /*
666          * Sort the percentile list. Note that it may already be sorted if
667          * we are using the default values, but since it's a short list this
668          * isn't a worry. Also note that this does not work for NaN values.
669          */
670         if (len > 1)
671                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
672
673         /* Start only after the uninit entries end */
674         for (nr_uninit = 0;
675              nr_uninit < nr_block_infos
676                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
677              nr_uninit ++)
678                 ;
679
680         if (nr_uninit == nr_block_infos)
681                 return 0;
682
683         *percentiles = calloc(len, sizeof(**percentiles));
684
685         for (i = 0; i < len; i++) {
686                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
687                                 + nr_uninit;
688                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
689         }
690
691         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
692         for (i = 0; i < nr_block_infos; i++)
693                 types[BLOCK_INFO_STATE(block_infos[i])]++;
694
695         return len;
696 }
697
698 static const char *block_state_names[] = {
699         [BLOCK_STATE_UNINIT] = "unwritten",
700         [BLOCK_STATE_TRIMMED] = "trimmed",
701         [BLOCK_STATE_WRITTEN] = "written",
702         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
703         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
704 };
705
706 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
707                              fio_fp64_t *plist, struct buf_output *out)
708 {
709         int len, pos, i;
710         unsigned int *percentiles = NULL;
711         unsigned int block_state_counts[BLOCK_STATE_COUNT];
712
713         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
714                                      &percentiles, block_state_counts);
715
716         log_buf(out, "  block lifetime percentiles :\n   |");
717         pos = 0;
718         for (i = 0; i < len; i++) {
719                 uint32_t block_info = percentiles[i];
720 #define LINE_LENGTH     75
721                 char str[LINE_LENGTH];
722                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
723                                      plist[i].u.f, block_info,
724                                      i == len - 1 ? '\n' : ',');
725                 assert(strln < LINE_LENGTH);
726                 if (pos + strln > LINE_LENGTH) {
727                         pos = 0;
728                         log_buf(out, "\n   |");
729                 }
730                 log_buf(out, "%s", str);
731                 pos += strln;
732 #undef LINE_LENGTH
733         }
734         if (percentiles)
735                 free(percentiles);
736
737         log_buf(out, "        states               :");
738         for (i = 0; i < BLOCK_STATE_COUNT; i++)
739                 log_buf(out, " %s=%u%c",
740                          block_state_names[i], block_state_counts[i],
741                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
742 }
743
744 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
745 {
746         char *p1, *p1alt, *p2;
747         unsigned long long bw_mean, iops_mean;
748         const int i2p = is_power_of_2(ts->kb_base);
749
750         if (!ts->ss_dur)
751                 return;
752
753         bw_mean = steadystate_bw_mean(ts);
754         iops_mean = steadystate_iops_mean(ts);
755
756         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
757         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
758         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
759
760         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
761                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
762                 p1, p1alt, p2,
763                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
764                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
765                 ts->ss_criterion.u.f,
766                 ts->ss_state & FIO_SS_PCT ? "%" : "");
767
768         free(p1);
769         free(p1alt);
770         free(p2);
771 }
772
773 static void show_thread_status_normal(struct thread_stat *ts,
774                                       struct group_run_stats *rs,
775                                       struct buf_output *out)
776 {
777         double usr_cpu, sys_cpu;
778         unsigned long runtime;
779         double io_u_dist[FIO_IO_U_MAP_NR];
780         time_t time_p;
781         char time_buf[32];
782
783         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
784                 return;
785                 
786         memset(time_buf, 0, sizeof(time_buf));
787
788         time(&time_p);
789         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
790
791         if (!ts->error) {
792                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
793                                         ts->name, ts->groupid, ts->members,
794                                         ts->error, (int) ts->pid, time_buf);
795         } else {
796                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
797                                         ts->name, ts->groupid, ts->members,
798                                         ts->error, ts->verror, (int) ts->pid,
799                                         time_buf);
800         }
801
802         if (strlen(ts->description))
803                 log_buf(out, "  Description  : [%s]\n", ts->description);
804
805         if (ts->io_bytes[DDIR_READ])
806                 show_ddir_status(rs, ts, DDIR_READ, out);
807         if (ts->io_bytes[DDIR_WRITE])
808                 show_ddir_status(rs, ts, DDIR_WRITE, out);
809         if (ts->io_bytes[DDIR_TRIM])
810                 show_ddir_status(rs, ts, DDIR_TRIM, out);
811
812         show_latencies(ts, out);
813
814         if (ts->sync_stat.samples)
815                 show_ddir_status(rs, ts, DDIR_SYNC, out);
816
817         runtime = ts->total_run_time;
818         if (runtime) {
819                 double runt = (double) runtime;
820
821                 usr_cpu = (double) ts->usr_time * 100 / runt;
822                 sys_cpu = (double) ts->sys_time * 100 / runt;
823         } else {
824                 usr_cpu = 0;
825                 sys_cpu = 0;
826         }
827
828         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
829                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
830                         (unsigned long long) ts->ctx,
831                         (unsigned long long) ts->majf,
832                         (unsigned long long) ts->minf);
833
834         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
835         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
836                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
837                                         io_u_dist[1], io_u_dist[2],
838                                         io_u_dist[3], io_u_dist[4],
839                                         io_u_dist[5], io_u_dist[6]);
840
841         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
842         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
843                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
844                                         io_u_dist[1], io_u_dist[2],
845                                         io_u_dist[3], io_u_dist[4],
846                                         io_u_dist[5], io_u_dist[6]);
847         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
848         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
849                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
850                                         io_u_dist[1], io_u_dist[2],
851                                         io_u_dist[3], io_u_dist[4],
852                                         io_u_dist[5], io_u_dist[6]);
853         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
854                                  " short=%llu,%llu,%llu,0"
855                                  " dropped=%llu,%llu,%llu,0\n",
856                                         (unsigned long long) ts->total_io_u[0],
857                                         (unsigned long long) ts->total_io_u[1],
858                                         (unsigned long long) ts->total_io_u[2],
859                                         (unsigned long long) ts->total_io_u[3],
860                                         (unsigned long long) ts->short_io_u[0],
861                                         (unsigned long long) ts->short_io_u[1],
862                                         (unsigned long long) ts->short_io_u[2],
863                                         (unsigned long long) ts->drop_io_u[0],
864                                         (unsigned long long) ts->drop_io_u[1],
865                                         (unsigned long long) ts->drop_io_u[2]);
866         if (ts->continue_on_error) {
867                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
868                                         (unsigned long long)ts->total_err_count,
869                                         ts->first_error,
870                                         strerror(ts->first_error));
871         }
872         if (ts->latency_depth) {
873                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
874                                         (unsigned long long)ts->latency_target,
875                                         (unsigned long long)ts->latency_window,
876                                         ts->latency_percentile.u.f,
877                                         ts->latency_depth);
878         }
879
880         if (ts->nr_block_infos)
881                 show_block_infos(ts->nr_block_infos, ts->block_infos,
882                                   ts->percentile_list, out);
883
884         if (ts->ss_dur)
885                 show_ss_normal(ts, out);
886 }
887
888 static void show_ddir_status_terse(struct thread_stat *ts,
889                                    struct group_run_stats *rs, int ddir,
890                                    int ver, struct buf_output *out)
891 {
892         unsigned long long min, max, minv, maxv, bw, iops;
893         unsigned long long *ovals = NULL;
894         double mean, dev;
895         unsigned int len;
896         int i, bw_stat;
897
898         assert(ddir_rw(ddir));
899
900         iops = bw = 0;
901         if (ts->runtime[ddir]) {
902                 uint64_t runt = ts->runtime[ddir];
903
904                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
905                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
906         }
907
908         log_buf(out, ";%llu;%llu;%llu;%llu",
909                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
910                                         (unsigned long long) ts->runtime[ddir]);
911
912         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
913                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
914         else
915                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
916
917         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
918                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
919         else
920                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
921
922         if (ts->clat_percentiles || ts->lat_percentiles) {
923                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
924                                         ts->clat_stat[ddir].samples,
925                                         ts->percentile_list, &ovals, &maxv,
926                                         &minv);
927         } else
928                 len = 0;
929
930         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
931                 if (i >= len) {
932                         log_buf(out, ";0%%=0");
933                         continue;
934                 }
935                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
936         }
937
938         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
939                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
940         else
941                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
942
943         if (ovals)
944                 free(ovals);
945
946         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
947         if (bw_stat) {
948                 double p_of_agg = 100.0;
949
950                 if (rs->agg[ddir]) {
951                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
952                         if (p_of_agg > 100.0)
953                                 p_of_agg = 100.0;
954                 }
955
956                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
957         } else
958                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
959
960         if (ver == 5) {
961                 if (bw_stat)
962                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
963                 else
964                         log_buf(out, ";%lu", 0UL);
965
966                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
967                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
968                                 mean, dev, (&ts->iops_stat[ddir])->samples);
969                 else
970                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
971         }
972 }
973
974 static void add_ddir_status_json(struct thread_stat *ts,
975                 struct group_run_stats *rs, int ddir, struct json_object *parent)
976 {
977         unsigned long long min, max, minv, maxv;
978         unsigned long long bw_bytes, bw;
979         unsigned long long *ovals = NULL;
980         double mean, dev, iops;
981         unsigned int len;
982         int i;
983         const char *ddirname[] = { "read", "write", "trim", "sync" };
984         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
985         char buf[120];
986         double p_of_agg = 100.0;
987
988         assert(ddir_rw(ddir) || ddir_sync(ddir));
989
990         if (ts->unified_rw_rep && ddir != DDIR_READ)
991                 return;
992
993         dir_object = json_create_object();
994         json_object_add_value_object(parent,
995                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
996
997         if (ddir_rw(ddir)) {
998                 bw_bytes = 0;
999                 bw = 0;
1000                 iops = 0.0;
1001                 if (ts->runtime[ddir]) {
1002                         uint64_t runt = ts->runtime[ddir];
1003
1004                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1005                         bw = bw_bytes / 1024; /* KiB/s */
1006                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1007                 }
1008
1009                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1010                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1011                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1012                 json_object_add_value_int(dir_object, "bw", bw);
1013                 json_object_add_value_float(dir_object, "iops", iops);
1014                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1015                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1016                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1017                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1018
1019                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1020                         min = max = 0;
1021                         mean = dev = 0.0;
1022                 }
1023                 tmp_object = json_create_object();
1024                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1025                 json_object_add_value_int(tmp_object, "min", min);
1026                 json_object_add_value_int(tmp_object, "max", max);
1027                 json_object_add_value_float(tmp_object, "mean", mean);
1028                 json_object_add_value_float(tmp_object, "stddev", dev);
1029
1030                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1031                         min = max = 0;
1032                         mean = dev = 0.0;
1033                 }
1034                 tmp_object = json_create_object();
1035                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1036                 json_object_add_value_int(tmp_object, "min", min);
1037                 json_object_add_value_int(tmp_object, "max", max);
1038                 json_object_add_value_float(tmp_object, "mean", mean);
1039                 json_object_add_value_float(tmp_object, "stddev", dev);
1040         } else {
1041                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1042                         min = max = 0;
1043                         mean = dev = 0.0;
1044                 }
1045
1046                 tmp_object = json_create_object();
1047                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1048                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1049                 json_object_add_value_int(tmp_object, "min", min);
1050                 json_object_add_value_int(tmp_object, "max", max);
1051                 json_object_add_value_float(tmp_object, "mean", mean);
1052                 json_object_add_value_float(tmp_object, "stddev", dev);
1053         }
1054
1055         if (ts->clat_percentiles || ts->lat_percentiles) {
1056                 if (ddir_rw(ddir)) {
1057                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1058                                         ts->clat_stat[ddir].samples,
1059                                         ts->percentile_list, &ovals, &maxv,
1060                                         &minv);
1061                 } else {
1062                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1063                                         ts->sync_stat.samples,
1064                                         ts->percentile_list, &ovals, &maxv,
1065                                         &minv);
1066                 }
1067
1068                 if (len > FIO_IO_U_LIST_MAX_LEN)
1069                         len = FIO_IO_U_LIST_MAX_LEN;
1070         } else
1071                 len = 0;
1072
1073         percentile_object = json_create_object();
1074         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1075         for (i = 0; i < len; i++) {
1076                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1077                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1078         }
1079
1080         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1081                 clat_bins_object = json_create_object();
1082                 if (ts->clat_percentiles)
1083                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1084
1085                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1086                         if (ddir_rw(ddir)) {
1087                                 if (ts->io_u_plat[ddir][i]) {
1088                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1089                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1090                                 }
1091                         } else {
1092                                 if (ts->io_u_sync_plat[i]) {
1093                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1094                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1095                                 }
1096                         }
1097                 }
1098         }
1099
1100         if (!ddir_rw(ddir))
1101                 return;
1102
1103         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1104                 min = max = 0;
1105                 mean = dev = 0.0;
1106         }
1107         tmp_object = json_create_object();
1108         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1109         json_object_add_value_int(tmp_object, "min", min);
1110         json_object_add_value_int(tmp_object, "max", max);
1111         json_object_add_value_float(tmp_object, "mean", mean);
1112         json_object_add_value_float(tmp_object, "stddev", dev);
1113         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1114                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1115
1116         if (ovals)
1117                 free(ovals);
1118
1119         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1120                 if (rs->agg[ddir]) {
1121                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1122                         if (p_of_agg > 100.0)
1123                                 p_of_agg = 100.0;
1124                 }
1125         } else {
1126                 min = max = 0;
1127                 p_of_agg = mean = dev = 0.0;
1128         }
1129         json_object_add_value_int(dir_object, "bw_min", min);
1130         json_object_add_value_int(dir_object, "bw_max", max);
1131         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1132         json_object_add_value_float(dir_object, "bw_mean", mean);
1133         json_object_add_value_float(dir_object, "bw_dev", dev);
1134         json_object_add_value_int(dir_object, "bw_samples",
1135                                 (&ts->bw_stat[ddir])->samples);
1136
1137         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1138                 min = max = 0;
1139                 mean = dev = 0.0;
1140         }
1141         json_object_add_value_int(dir_object, "iops_min", min);
1142         json_object_add_value_int(dir_object, "iops_max", max);
1143         json_object_add_value_float(dir_object, "iops_mean", mean);
1144         json_object_add_value_float(dir_object, "iops_stddev", dev);
1145         json_object_add_value_int(dir_object, "iops_samples",
1146                                 (&ts->iops_stat[ddir])->samples);
1147 }
1148
1149 static void show_thread_status_terse_all(struct thread_stat *ts,
1150                                          struct group_run_stats *rs, int ver,
1151                                          struct buf_output *out)
1152 {
1153         double io_u_dist[FIO_IO_U_MAP_NR];
1154         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1155         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1156         double usr_cpu, sys_cpu;
1157         int i;
1158
1159         /* General Info */
1160         if (ver == 2)
1161                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1162         else
1163                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1164                         ts->name, ts->groupid, ts->error);
1165
1166         /* Log Read Status */
1167         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1168         /* Log Write Status */
1169         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1170         /* Log Trim Status */
1171         if (ver == 2 || ver == 4 || ver == 5)
1172                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1173
1174         /* CPU Usage */
1175         if (ts->total_run_time) {
1176                 double runt = (double) ts->total_run_time;
1177
1178                 usr_cpu = (double) ts->usr_time * 100 / runt;
1179                 sys_cpu = (double) ts->sys_time * 100 / runt;
1180         } else {
1181                 usr_cpu = 0;
1182                 sys_cpu = 0;
1183         }
1184
1185         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1186                                                 (unsigned long long) ts->ctx,
1187                                                 (unsigned long long) ts->majf,
1188                                                 (unsigned long long) ts->minf);
1189
1190         /* Calc % distribution of IO depths, usecond, msecond latency */
1191         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1192         stat_calc_lat_nu(ts, io_u_lat_u);
1193         stat_calc_lat_m(ts, io_u_lat_m);
1194
1195         /* Only show fixed 7 I/O depth levels*/
1196         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1197                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1198                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1199
1200         /* Microsecond latency */
1201         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1202                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1203         /* Millisecond latency */
1204         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1205                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1206
1207         /* disk util stats, if any */
1208         if (ver >= 3)
1209                 show_disk_util(1, NULL, out);
1210
1211         /* Additional output if continue_on_error set - default off*/
1212         if (ts->continue_on_error)
1213                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1214         if (ver == 2)
1215                 log_buf(out, "\n");
1216
1217         /* Additional output if description is set */
1218         if (strlen(ts->description))
1219                 log_buf(out, ";%s", ts->description);
1220
1221         log_buf(out, "\n");
1222 }
1223
1224 static void json_add_job_opts(struct json_object *root, const char *name,
1225                               struct flist_head *opt_list)
1226 {
1227         struct json_object *dir_object;
1228         struct flist_head *entry;
1229         struct print_option *p;
1230
1231         if (flist_empty(opt_list))
1232                 return;
1233
1234         dir_object = json_create_object();
1235         json_object_add_value_object(root, name, dir_object);
1236
1237         flist_for_each(entry, opt_list) {
1238                 const char *pos = "";
1239
1240                 p = flist_entry(entry, struct print_option, list);
1241                 if (p->value)
1242                         pos = p->value;
1243                 json_object_add_value_string(dir_object, p->name, pos);
1244         }
1245 }
1246
1247 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1248                                                    struct group_run_stats *rs,
1249                                                    struct flist_head *opt_list)
1250 {
1251         struct json_object *root, *tmp;
1252         struct jobs_eta *je;
1253         double io_u_dist[FIO_IO_U_MAP_NR];
1254         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1255         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1256         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1257         double usr_cpu, sys_cpu;
1258         int i;
1259         size_t size;
1260
1261         root = json_create_object();
1262         json_object_add_value_string(root, "jobname", ts->name);
1263         json_object_add_value_int(root, "groupid", ts->groupid);
1264         json_object_add_value_int(root, "error", ts->error);
1265
1266         /* ETA Info */
1267         je = get_jobs_eta(true, &size);
1268         if (je) {
1269                 json_object_add_value_int(root, "eta", je->eta_sec);
1270                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1271         }
1272
1273         if (opt_list)
1274                 json_add_job_opts(root, "job options", opt_list);
1275
1276         add_ddir_status_json(ts, rs, DDIR_READ, root);
1277         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1278         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1279         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1280
1281         /* CPU Usage */
1282         if (ts->total_run_time) {
1283                 double runt = (double) ts->total_run_time;
1284
1285                 usr_cpu = (double) ts->usr_time * 100 / runt;
1286                 sys_cpu = (double) ts->sys_time * 100 / runt;
1287         } else {
1288                 usr_cpu = 0;
1289                 sys_cpu = 0;
1290         }
1291         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1292         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1293         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1294         json_object_add_value_int(root, "ctx", ts->ctx);
1295         json_object_add_value_int(root, "majf", ts->majf);
1296         json_object_add_value_int(root, "minf", ts->minf);
1297
1298
1299         /* Calc % distribution of IO depths, usecond, msecond latency */
1300         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1301         stat_calc_lat_n(ts, io_u_lat_n);
1302         stat_calc_lat_u(ts, io_u_lat_u);
1303         stat_calc_lat_m(ts, io_u_lat_m);
1304
1305         tmp = json_create_object();
1306         json_object_add_value_object(root, "iodepth_level", tmp);
1307         /* Only show fixed 7 I/O depth levels*/
1308         for (i = 0; i < 7; i++) {
1309                 char name[20];
1310                 if (i < 6)
1311                         snprintf(name, 20, "%d", 1 << i);
1312                 else
1313                         snprintf(name, 20, ">=%d", 1 << i);
1314                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1315         }
1316
1317         /* Nanosecond latency */
1318         tmp = json_create_object();
1319         json_object_add_value_object(root, "latency_ns", tmp);
1320         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1321                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1322                                  "250", "500", "750", "1000", };
1323                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1324         }
1325         /* Microsecond latency */
1326         tmp = json_create_object();
1327         json_object_add_value_object(root, "latency_us", tmp);
1328         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1329                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1330                                  "250", "500", "750", "1000", };
1331                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1332         }
1333         /* Millisecond latency */
1334         tmp = json_create_object();
1335         json_object_add_value_object(root, "latency_ms", tmp);
1336         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1337                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1338                                  "250", "500", "750", "1000", "2000",
1339                                  ">=2000", };
1340                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1341         }
1342
1343         /* Additional output if continue_on_error set - default off*/
1344         if (ts->continue_on_error) {
1345                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1346                 json_object_add_value_int(root, "first_error", ts->first_error);
1347         }
1348
1349         if (ts->latency_depth) {
1350                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1351                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1352                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1353                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1354         }
1355
1356         /* Additional output if description is set */
1357         if (strlen(ts->description))
1358                 json_object_add_value_string(root, "desc", ts->description);
1359
1360         if (ts->nr_block_infos) {
1361                 /* Block error histogram and types */
1362                 int len;
1363                 unsigned int *percentiles = NULL;
1364                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1365
1366                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1367                                              ts->percentile_list,
1368                                              &percentiles, block_state_counts);
1369
1370                 if (len) {
1371                         struct json_object *block, *percentile_object, *states;
1372                         int state;
1373                         block = json_create_object();
1374                         json_object_add_value_object(root, "block", block);
1375
1376                         percentile_object = json_create_object();
1377                         json_object_add_value_object(block, "percentiles",
1378                                                      percentile_object);
1379                         for (i = 0; i < len; i++) {
1380                                 char buf[20];
1381                                 snprintf(buf, sizeof(buf), "%f",
1382                                          ts->percentile_list[i].u.f);
1383                                 json_object_add_value_int(percentile_object,
1384                                                           (const char *)buf,
1385                                                           percentiles[i]);
1386                         }
1387
1388                         states = json_create_object();
1389                         json_object_add_value_object(block, "states", states);
1390                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1391                                 json_object_add_value_int(states,
1392                                         block_state_names[state],
1393                                         block_state_counts[state]);
1394                         }
1395                         free(percentiles);
1396                 }
1397         }
1398
1399         if (ts->ss_dur) {
1400                 struct json_object *data;
1401                 struct json_array *iops, *bw;
1402                 int j, k, l;
1403                 char ss_buf[64];
1404
1405                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1406                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1407                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1408                         (float) ts->ss_limit.u.f,
1409                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1410
1411                 tmp = json_create_object();
1412                 json_object_add_value_object(root, "steadystate", tmp);
1413                 json_object_add_value_string(tmp, "ss", ss_buf);
1414                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1415                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1416
1417                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1418                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1419                 json_object_add_value_string(tmp, "criterion", ss_buf);
1420                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1421                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1422
1423                 data = json_create_object();
1424                 json_object_add_value_object(tmp, "data", data);
1425                 bw = json_create_array();
1426                 iops = json_create_array();
1427
1428                 /*
1429                 ** if ss was attained or the buffer is not full,
1430                 ** ss->head points to the first element in the list.
1431                 ** otherwise it actually points to the second element
1432                 ** in the list
1433                 */
1434                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1435                         j = ts->ss_head;
1436                 else
1437                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1438                 for (l = 0; l < ts->ss_dur; l++) {
1439                         k = (j + l) % ts->ss_dur;
1440                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1441                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1442                 }
1443                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1444                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1445                 json_object_add_value_array(data, "iops", iops);
1446                 json_object_add_value_array(data, "bw", bw);
1447         }
1448
1449         return root;
1450 }
1451
1452 static void show_thread_status_terse(struct thread_stat *ts,
1453                                      struct group_run_stats *rs,
1454                                      struct buf_output *out)
1455 {
1456         if (terse_version >= 2 && terse_version <= 5)
1457                 show_thread_status_terse_all(ts, rs, terse_version, out);
1458         else
1459                 log_err("fio: bad terse version!? %d\n", terse_version);
1460 }
1461
1462 struct json_object *show_thread_status(struct thread_stat *ts,
1463                                        struct group_run_stats *rs,
1464                                        struct flist_head *opt_list,
1465                                        struct buf_output *out)
1466 {
1467         struct json_object *ret = NULL;
1468
1469         if (output_format & FIO_OUTPUT_TERSE)
1470                 show_thread_status_terse(ts, rs,  out);
1471         if (output_format & FIO_OUTPUT_JSON)
1472                 ret = show_thread_status_json(ts, rs, opt_list);
1473         if (output_format & FIO_OUTPUT_NORMAL)
1474                 show_thread_status_normal(ts, rs,  out);
1475
1476         return ret;
1477 }
1478
1479 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1480 {
1481         double mean, S;
1482
1483         if (src->samples == 0)
1484                 return;
1485
1486         dst->min_val = min(dst->min_val, src->min_val);
1487         dst->max_val = max(dst->max_val, src->max_val);
1488
1489         /*
1490          * Compute new mean and S after the merge
1491          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1492          *  #Parallel_algorithm>
1493          */
1494         if (first) {
1495                 mean = src->mean.u.f;
1496                 S = src->S.u.f;
1497         } else {
1498                 double delta = src->mean.u.f - dst->mean.u.f;
1499
1500                 mean = ((src->mean.u.f * src->samples) +
1501                         (dst->mean.u.f * dst->samples)) /
1502                         (dst->samples + src->samples);
1503
1504                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1505                         (dst->samples * src->samples) /
1506                         (dst->samples + src->samples);
1507         }
1508
1509         dst->samples += src->samples;
1510         dst->mean.u.f = mean;
1511         dst->S.u.f = S;
1512 }
1513
1514 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1515 {
1516         int i;
1517
1518         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1519                 if (dst->max_run[i] < src->max_run[i])
1520                         dst->max_run[i] = src->max_run[i];
1521                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1522                         dst->min_run[i] = src->min_run[i];
1523                 if (dst->max_bw[i] < src->max_bw[i])
1524                         dst->max_bw[i] = src->max_bw[i];
1525                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1526                         dst->min_bw[i] = src->min_bw[i];
1527
1528                 dst->iobytes[i] += src->iobytes[i];
1529                 dst->agg[i] += src->agg[i];
1530         }
1531
1532         if (!dst->kb_base)
1533                 dst->kb_base = src->kb_base;
1534         if (!dst->unit_base)
1535                 dst->unit_base = src->unit_base;
1536         if (!dst->sig_figs)
1537                 dst->sig_figs = src->sig_figs;
1538 }
1539
1540 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1541                       bool first)
1542 {
1543         int l, k;
1544
1545         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1546                 if (!dst->unified_rw_rep) {
1547                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1548                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1549                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1550                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1551                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1552
1553                         dst->io_bytes[l] += src->io_bytes[l];
1554
1555                         if (dst->runtime[l] < src->runtime[l])
1556                                 dst->runtime[l] = src->runtime[l];
1557                 } else {
1558                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1559                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1560                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1561                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1562                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1563
1564                         dst->io_bytes[0] += src->io_bytes[l];
1565
1566                         if (dst->runtime[0] < src->runtime[l])
1567                                 dst->runtime[0] = src->runtime[l];
1568
1569                         /*
1570                          * We're summing to the same destination, so override
1571                          * 'first' after the first iteration of the loop
1572                          */
1573                         first = false;
1574                 }
1575         }
1576
1577         sum_stat(&dst->sync_stat, &src->sync_stat, first);
1578         dst->usr_time += src->usr_time;
1579         dst->sys_time += src->sys_time;
1580         dst->ctx += src->ctx;
1581         dst->majf += src->majf;
1582         dst->minf += src->minf;
1583
1584         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1585                 dst->io_u_map[k] += src->io_u_map[k];
1586                 dst->io_u_submit[k] += src->io_u_submit[k];
1587                 dst->io_u_complete[k] += src->io_u_complete[k];
1588         }
1589         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1590                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1591                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1592                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1593         }
1594         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1595                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1596
1597         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1598                 if (!dst->unified_rw_rep) {
1599                         dst->total_io_u[k] += src->total_io_u[k];
1600                         dst->short_io_u[k] += src->short_io_u[k];
1601                         dst->drop_io_u[k] += src->drop_io_u[k];
1602                 } else {
1603                         dst->total_io_u[0] += src->total_io_u[k];
1604                         dst->short_io_u[0] += src->short_io_u[k];
1605                         dst->drop_io_u[0] += src->drop_io_u[k];
1606                 }
1607         }
1608
1609         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1610
1611         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1612                 int m;
1613
1614                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1615                         if (!dst->unified_rw_rep)
1616                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1617                         else
1618                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1619                 }
1620         }
1621
1622         dst->total_run_time += src->total_run_time;
1623         dst->total_submit += src->total_submit;
1624         dst->total_complete += src->total_complete;
1625 }
1626
1627 void init_group_run_stat(struct group_run_stats *gs)
1628 {
1629         int i;
1630         memset(gs, 0, sizeof(*gs));
1631
1632         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1633                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1634 }
1635
1636 void init_thread_stat(struct thread_stat *ts)
1637 {
1638         int j;
1639
1640         memset(ts, 0, sizeof(*ts));
1641
1642         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1643                 ts->lat_stat[j].min_val = -1UL;
1644                 ts->clat_stat[j].min_val = -1UL;
1645                 ts->slat_stat[j].min_val = -1UL;
1646                 ts->bw_stat[j].min_val = -1UL;
1647                 ts->iops_stat[j].min_val = -1UL;
1648         }
1649         ts->sync_stat.min_val = -1UL;
1650         ts->groupid = -1;
1651 }
1652
1653 void __show_run_stats(void)
1654 {
1655         struct group_run_stats *runstats, *rs;
1656         struct thread_data *td;
1657         struct thread_stat *threadstats, *ts;
1658         int i, j, k, nr_ts, last_ts, idx;
1659         bool kb_base_warned = false;
1660         bool unit_base_warned = false;
1661         struct json_object *root = NULL;
1662         struct json_array *array = NULL;
1663         struct buf_output output[FIO_OUTPUT_NR];
1664         struct flist_head **opt_lists;
1665
1666         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1667
1668         for (i = 0; i < groupid + 1; i++)
1669                 init_group_run_stat(&runstats[i]);
1670
1671         /*
1672          * find out how many threads stats we need. if group reporting isn't
1673          * enabled, it's one-per-td.
1674          */
1675         nr_ts = 0;
1676         last_ts = -1;
1677         for_each_td(td, i) {
1678                 if (!td->o.group_reporting) {
1679                         nr_ts++;
1680                         continue;
1681                 }
1682                 if (last_ts == td->groupid)
1683                         continue;
1684                 if (!td->o.stats)
1685                         continue;
1686
1687                 last_ts = td->groupid;
1688                 nr_ts++;
1689         }
1690
1691         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1692         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1693
1694         for (i = 0; i < nr_ts; i++) {
1695                 init_thread_stat(&threadstats[i]);
1696                 opt_lists[i] = NULL;
1697         }
1698
1699         j = 0;
1700         last_ts = -1;
1701         idx = 0;
1702         for_each_td(td, i) {
1703                 if (!td->o.stats)
1704                         continue;
1705                 if (idx && (!td->o.group_reporting ||
1706                     (td->o.group_reporting && last_ts != td->groupid))) {
1707                         idx = 0;
1708                         j++;
1709                 }
1710
1711                 last_ts = td->groupid;
1712
1713                 ts = &threadstats[j];
1714
1715                 ts->clat_percentiles = td->o.clat_percentiles;
1716                 ts->lat_percentiles = td->o.lat_percentiles;
1717                 ts->percentile_precision = td->o.percentile_precision;
1718                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1719                 opt_lists[j] = &td->opt_list;
1720
1721                 idx++;
1722                 ts->members++;
1723
1724                 if (ts->groupid == -1) {
1725                         /*
1726                          * These are per-group shared already
1727                          */
1728                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1729                         if (td->o.description)
1730                                 strncpy(ts->description, td->o.description,
1731                                                 FIO_JOBDESC_SIZE - 1);
1732                         else
1733                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1734
1735                         /*
1736                          * If multiple entries in this group, this is
1737                          * the first member.
1738                          */
1739                         ts->thread_number = td->thread_number;
1740                         ts->groupid = td->groupid;
1741
1742                         /*
1743                          * first pid in group, not very useful...
1744                          */
1745                         ts->pid = td->pid;
1746
1747                         ts->kb_base = td->o.kb_base;
1748                         ts->unit_base = td->o.unit_base;
1749                         ts->sig_figs = td->o.sig_figs;
1750                         ts->unified_rw_rep = td->o.unified_rw_rep;
1751                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1752                         log_info("fio: kb_base differs for jobs in group, using"
1753                                  " %u as the base\n", ts->kb_base);
1754                         kb_base_warned = true;
1755                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1756                         log_info("fio: unit_base differs for jobs in group, using"
1757                                  " %u as the base\n", ts->unit_base);
1758                         unit_base_warned = true;
1759                 }
1760
1761                 ts->continue_on_error = td->o.continue_on_error;
1762                 ts->total_err_count += td->total_err_count;
1763                 ts->first_error = td->first_error;
1764                 if (!ts->error) {
1765                         if (!td->error && td->o.continue_on_error &&
1766                             td->first_error) {
1767                                 ts->error = td->first_error;
1768                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1769                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1770                         } else  if (td->error) {
1771                                 ts->error = td->error;
1772                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1773                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1774                         }
1775                 }
1776
1777                 ts->latency_depth = td->latency_qd;
1778                 ts->latency_target = td->o.latency_target;
1779                 ts->latency_percentile = td->o.latency_percentile;
1780                 ts->latency_window = td->o.latency_window;
1781
1782                 ts->nr_block_infos = td->ts.nr_block_infos;
1783                 for (k = 0; k < ts->nr_block_infos; k++)
1784                         ts->block_infos[k] = td->ts.block_infos[k];
1785
1786                 sum_thread_stats(ts, &td->ts, idx == 1);
1787
1788                 if (td->o.ss_dur) {
1789                         ts->ss_state = td->ss.state;
1790                         ts->ss_dur = td->ss.dur;
1791                         ts->ss_head = td->ss.head;
1792                         ts->ss_bw_data = td->ss.bw_data;
1793                         ts->ss_iops_data = td->ss.iops_data;
1794                         ts->ss_limit.u.f = td->ss.limit;
1795                         ts->ss_slope.u.f = td->ss.slope;
1796                         ts->ss_deviation.u.f = td->ss.deviation;
1797                         ts->ss_criterion.u.f = td->ss.criterion;
1798                 }
1799                 else
1800                         ts->ss_dur = ts->ss_state = 0;
1801         }
1802
1803         for (i = 0; i < nr_ts; i++) {
1804                 unsigned long long bw;
1805
1806                 ts = &threadstats[i];
1807                 if (ts->groupid == -1)
1808                         continue;
1809                 rs = &runstats[ts->groupid];
1810                 rs->kb_base = ts->kb_base;
1811                 rs->unit_base = ts->unit_base;
1812                 rs->sig_figs = ts->sig_figs;
1813                 rs->unified_rw_rep += ts->unified_rw_rep;
1814
1815                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1816                         if (!ts->runtime[j])
1817                                 continue;
1818                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1819                                 rs->min_run[j] = ts->runtime[j];
1820                         if (ts->runtime[j] > rs->max_run[j])
1821                                 rs->max_run[j] = ts->runtime[j];
1822
1823                         bw = 0;
1824                         if (ts->runtime[j])
1825                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1826                         if (bw < rs->min_bw[j])
1827                                 rs->min_bw[j] = bw;
1828                         if (bw > rs->max_bw[j])
1829                                 rs->max_bw[j] = bw;
1830
1831                         rs->iobytes[j] += ts->io_bytes[j];
1832                 }
1833         }
1834
1835         for (i = 0; i < groupid + 1; i++) {
1836                 int ddir;
1837
1838                 rs = &runstats[i];
1839
1840                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1841                         if (rs->max_run[ddir])
1842                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1843                                                 rs->max_run[ddir];
1844                 }
1845         }
1846
1847         for (i = 0; i < FIO_OUTPUT_NR; i++)
1848                 buf_output_init(&output[i]);
1849
1850         /*
1851          * don't overwrite last signal output
1852          */
1853         if (output_format & FIO_OUTPUT_NORMAL)
1854                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1855         if (output_format & FIO_OUTPUT_JSON) {
1856                 struct thread_data *global;
1857                 char time_buf[32];
1858                 struct timeval now;
1859                 unsigned long long ms_since_epoch;
1860                 time_t tv_sec;
1861
1862                 gettimeofday(&now, NULL);
1863                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1864                                  (unsigned long long)(now.tv_usec) / 1000;
1865
1866                 tv_sec = now.tv_sec;
1867                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1868                 if (time_buf[strlen(time_buf) - 1] == '\n')
1869                         time_buf[strlen(time_buf) - 1] = '\0';
1870
1871                 root = json_create_object();
1872                 json_object_add_value_string(root, "fio version", fio_version_string);
1873                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1874                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1875                 json_object_add_value_string(root, "time", time_buf);
1876                 global = get_global_options();
1877                 json_add_job_opts(root, "global options", &global->opt_list);
1878                 array = json_create_array();
1879                 json_object_add_value_array(root, "jobs", array);
1880         }
1881
1882         if (is_backend)
1883                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1884
1885         for (i = 0; i < nr_ts; i++) {
1886                 ts = &threadstats[i];
1887                 rs = &runstats[ts->groupid];
1888
1889                 if (is_backend) {
1890                         fio_server_send_job_options(opt_lists[i], i);
1891                         fio_server_send_ts(ts, rs);
1892                 } else {
1893                         if (output_format & FIO_OUTPUT_TERSE)
1894                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1895                         if (output_format & FIO_OUTPUT_JSON) {
1896                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1897                                 json_array_add_value_object(array, tmp);
1898                         }
1899                         if (output_format & FIO_OUTPUT_NORMAL)
1900                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1901                 }
1902         }
1903         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1904                 /* disk util stats, if any */
1905                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1906
1907                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1908
1909                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1910                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1911                 json_free_object(root);
1912         }
1913
1914         for (i = 0; i < groupid + 1; i++) {
1915                 rs = &runstats[i];
1916
1917                 rs->groupid = i;
1918                 if (is_backend)
1919                         fio_server_send_gs(rs);
1920                 else if (output_format & FIO_OUTPUT_NORMAL)
1921                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1922         }
1923
1924         if (is_backend)
1925                 fio_server_send_du();
1926         else if (output_format & FIO_OUTPUT_NORMAL) {
1927                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1928                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1929         }
1930
1931         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1932                 struct buf_output *out = &output[i];
1933
1934                 log_info_buf(out->buf, out->buflen);
1935                 buf_output_free(out);
1936         }
1937
1938         fio_idle_prof_cleanup();
1939
1940         log_info_flush();
1941         free(runstats);
1942         free(threadstats);
1943         free(opt_lists);
1944 }
1945
1946 void __show_running_run_stats(void)
1947 {
1948         struct thread_data *td;
1949         unsigned long long *rt;
1950         struct timespec ts;
1951         int i;
1952
1953         fio_sem_down(stat_sem);
1954
1955         rt = malloc(thread_number * sizeof(unsigned long long));
1956         fio_gettime(&ts, NULL);
1957
1958         for_each_td(td, i) {
1959                 td->update_rusage = 1;
1960                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1961                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1962                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1963                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1964
1965                 rt[i] = mtime_since(&td->start, &ts);
1966                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1967                         td->ts.runtime[DDIR_READ] += rt[i];
1968                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1969                         td->ts.runtime[DDIR_WRITE] += rt[i];
1970                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1971                         td->ts.runtime[DDIR_TRIM] += rt[i];
1972         }
1973
1974         for_each_td(td, i) {
1975                 if (td->runstate >= TD_EXITED)
1976                         continue;
1977                 if (td->rusage_sem) {
1978                         td->update_rusage = 1;
1979                         fio_sem_down(td->rusage_sem);
1980                 }
1981                 td->update_rusage = 0;
1982         }
1983
1984         __show_run_stats();
1985
1986         for_each_td(td, i) {
1987                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1988                         td->ts.runtime[DDIR_READ] -= rt[i];
1989                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1990                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1991                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1992                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1993         }
1994
1995         free(rt);
1996         fio_sem_up(stat_sem);
1997 }
1998
1999 static bool status_interval_init;
2000 static struct timespec status_time;
2001 static bool status_file_disabled;
2002
2003 #define FIO_STATUS_FILE         "fio-dump-status"
2004
2005 static int check_status_file(void)
2006 {
2007         struct stat sb;
2008         const char *temp_dir;
2009         char fio_status_file_path[PATH_MAX];
2010
2011         if (status_file_disabled)
2012                 return 0;
2013
2014         temp_dir = getenv("TMPDIR");
2015         if (temp_dir == NULL) {
2016                 temp_dir = getenv("TEMP");
2017                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2018                         temp_dir = NULL;
2019         }
2020         if (temp_dir == NULL)
2021                 temp_dir = "/tmp";
2022
2023         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2024
2025         if (stat(fio_status_file_path, &sb))
2026                 return 0;
2027
2028         if (unlink(fio_status_file_path) < 0) {
2029                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2030                                                         strerror(errno));
2031                 log_err("fio: disabling status file updates\n");
2032                 status_file_disabled = true;
2033         }
2034
2035         return 1;
2036 }
2037
2038 void check_for_running_stats(void)
2039 {
2040         if (status_interval) {
2041                 if (!status_interval_init) {
2042                         fio_gettime(&status_time, NULL);
2043                         status_interval_init = true;
2044                 } else if (mtime_since_now(&status_time) >= status_interval) {
2045                         show_running_run_stats();
2046                         fio_gettime(&status_time, NULL);
2047                         return;
2048                 }
2049         }
2050         if (check_status_file()) {
2051                 show_running_run_stats();
2052                 return;
2053         }
2054 }
2055
2056 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2057 {
2058         double val = data;
2059         double delta;
2060
2061         if (data > is->max_val)
2062                 is->max_val = data;
2063         if (data < is->min_val)
2064                 is->min_val = data;
2065
2066         delta = val - is->mean.u.f;
2067         if (delta) {
2068                 is->mean.u.f += delta / (is->samples + 1.0);
2069                 is->S.u.f += delta * (val - is->mean.u.f);
2070         }
2071
2072         is->samples++;
2073 }
2074
2075 /*
2076  * Return a struct io_logs, which is added to the tail of the log
2077  * list for 'iolog'.
2078  */
2079 static struct io_logs *get_new_log(struct io_log *iolog)
2080 {
2081         size_t new_size, new_samples;
2082         struct io_logs *cur_log;
2083
2084         /*
2085          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2086          * forever
2087          */
2088         if (!iolog->cur_log_max)
2089                 new_samples = DEF_LOG_ENTRIES;
2090         else {
2091                 new_samples = iolog->cur_log_max * 2;
2092                 if (new_samples > MAX_LOG_ENTRIES)
2093                         new_samples = MAX_LOG_ENTRIES;
2094         }
2095
2096         new_size = new_samples * log_entry_sz(iolog);
2097
2098         cur_log = smalloc(sizeof(*cur_log));
2099         if (cur_log) {
2100                 INIT_FLIST_HEAD(&cur_log->list);
2101                 cur_log->log = malloc(new_size);
2102                 if (cur_log->log) {
2103                         cur_log->nr_samples = 0;
2104                         cur_log->max_samples = new_samples;
2105                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2106                         iolog->cur_log_max = new_samples;
2107                         return cur_log;
2108                 }
2109                 sfree(cur_log);
2110         }
2111
2112         return NULL;
2113 }
2114
2115 /*
2116  * Add and return a new log chunk, or return current log if big enough
2117  */
2118 static struct io_logs *regrow_log(struct io_log *iolog)
2119 {
2120         struct io_logs *cur_log;
2121         int i;
2122
2123         if (!iolog || iolog->disabled)
2124                 goto disable;
2125
2126         cur_log = iolog_cur_log(iolog);
2127         if (!cur_log) {
2128                 cur_log = get_new_log(iolog);
2129                 if (!cur_log)
2130                         return NULL;
2131         }
2132
2133         if (cur_log->nr_samples < cur_log->max_samples)
2134                 return cur_log;
2135
2136         /*
2137          * No room for a new sample. If we're compressing on the fly, flush
2138          * out the current chunk
2139          */
2140         if (iolog->log_gz) {
2141                 if (iolog_cur_flush(iolog, cur_log)) {
2142                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2143                         return NULL;
2144                 }
2145         }
2146
2147         /*
2148          * Get a new log array, and add to our list
2149          */
2150         cur_log = get_new_log(iolog);
2151         if (!cur_log) {
2152                 log_err("fio: failed extending iolog! Will stop logging.\n");
2153                 return NULL;
2154         }
2155
2156         if (!iolog->pending || !iolog->pending->nr_samples)
2157                 return cur_log;
2158
2159         /*
2160          * Flush pending items to new log
2161          */
2162         for (i = 0; i < iolog->pending->nr_samples; i++) {
2163                 struct io_sample *src, *dst;
2164
2165                 src = get_sample(iolog, iolog->pending, i);
2166                 dst = get_sample(iolog, cur_log, i);
2167                 memcpy(dst, src, log_entry_sz(iolog));
2168         }
2169         cur_log->nr_samples = iolog->pending->nr_samples;
2170
2171         iolog->pending->nr_samples = 0;
2172         return cur_log;
2173 disable:
2174         if (iolog)
2175                 iolog->disabled = true;
2176         return NULL;
2177 }
2178
2179 void regrow_logs(struct thread_data *td)
2180 {
2181         regrow_log(td->slat_log);
2182         regrow_log(td->clat_log);
2183         regrow_log(td->clat_hist_log);
2184         regrow_log(td->lat_log);
2185         regrow_log(td->bw_log);
2186         regrow_log(td->iops_log);
2187         td->flags &= ~TD_F_REGROW_LOGS;
2188 }
2189
2190 static struct io_logs *get_cur_log(struct io_log *iolog)
2191 {
2192         struct io_logs *cur_log;
2193
2194         cur_log = iolog_cur_log(iolog);
2195         if (!cur_log) {
2196                 cur_log = get_new_log(iolog);
2197                 if (!cur_log)
2198                         return NULL;
2199         }
2200
2201         if (cur_log->nr_samples < cur_log->max_samples)
2202                 return cur_log;
2203
2204         /*
2205          * Out of space. If we're in IO offload mode, or we're not doing
2206          * per unit logging (hence logging happens outside of the IO thread
2207          * as well), add a new log chunk inline. If we're doing inline
2208          * submissions, flag 'td' as needing a log regrow and we'll take
2209          * care of it on the submission side.
2210          */
2211         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2212             !per_unit_log(iolog))
2213                 return regrow_log(iolog);
2214
2215         if (iolog->td)
2216                 iolog->td->flags |= TD_F_REGROW_LOGS;
2217         if (iolog->pending)
2218                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2219         return iolog->pending;
2220 }
2221
2222 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2223                              enum fio_ddir ddir, unsigned long long bs,
2224                              unsigned long t, uint64_t offset)
2225 {
2226         struct io_logs *cur_log;
2227
2228         if (iolog->disabled)
2229                 return;
2230         if (flist_empty(&iolog->io_logs))
2231                 iolog->avg_last[ddir] = t;
2232
2233         cur_log = get_cur_log(iolog);
2234         if (cur_log) {
2235                 struct io_sample *s;
2236
2237                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2238
2239                 s->data = data;
2240                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2241                 io_sample_set_ddir(iolog, s, ddir);
2242                 s->bs = bs;
2243
2244                 if (iolog->log_offset) {
2245                         struct io_sample_offset *so = (void *) s;
2246
2247                         so->offset = offset;
2248                 }
2249
2250                 cur_log->nr_samples++;
2251                 return;
2252         }
2253
2254         iolog->disabled = true;
2255 }
2256
2257 static inline void reset_io_stat(struct io_stat *ios)
2258 {
2259         ios->max_val = ios->min_val = ios->samples = 0;
2260         ios->mean.u.f = ios->S.u.f = 0;
2261 }
2262
2263 void reset_io_stats(struct thread_data *td)
2264 {
2265         struct thread_stat *ts = &td->ts;
2266         int i, j;
2267
2268         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2269                 reset_io_stat(&ts->clat_stat[i]);
2270                 reset_io_stat(&ts->slat_stat[i]);
2271                 reset_io_stat(&ts->lat_stat[i]);
2272                 reset_io_stat(&ts->bw_stat[i]);
2273                 reset_io_stat(&ts->iops_stat[i]);
2274
2275                 ts->io_bytes[i] = 0;
2276                 ts->runtime[i] = 0;
2277                 ts->total_io_u[i] = 0;
2278                 ts->short_io_u[i] = 0;
2279                 ts->drop_io_u[i] = 0;
2280
2281                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2282                         ts->io_u_plat[i][j] = 0;
2283                         if (!i)
2284                                 ts->io_u_sync_plat[j] = 0;
2285                 }
2286         }
2287
2288         ts->total_io_u[DDIR_SYNC] = 0;
2289
2290         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2291                 ts->io_u_map[i] = 0;
2292                 ts->io_u_submit[i] = 0;
2293                 ts->io_u_complete[i] = 0;
2294         }
2295
2296         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2297                 ts->io_u_lat_n[i] = 0;
2298         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2299                 ts->io_u_lat_u[i] = 0;
2300         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2301                 ts->io_u_lat_m[i] = 0;
2302
2303         ts->total_submit = 0;
2304         ts->total_complete = 0;
2305 }
2306
2307 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2308                               unsigned long elapsed, bool log_max)
2309 {
2310         /*
2311          * Note an entry in the log. Use the mean from the logged samples,
2312          * making sure to properly round up. Only write a log entry if we
2313          * had actual samples done.
2314          */
2315         if (iolog->avg_window[ddir].samples) {
2316                 union io_sample_data data;
2317
2318                 if (log_max)
2319                         data.val = iolog->avg_window[ddir].max_val;
2320                 else
2321                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2322
2323                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2324         }
2325
2326         reset_io_stat(&iolog->avg_window[ddir]);
2327 }
2328
2329 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2330                              bool log_max)
2331 {
2332         int ddir;
2333
2334         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2335                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2336 }
2337
2338 static unsigned long add_log_sample(struct thread_data *td,
2339                                     struct io_log *iolog,
2340                                     union io_sample_data data,
2341                                     enum fio_ddir ddir, unsigned long long bs,
2342                                     uint64_t offset)
2343 {
2344         unsigned long elapsed, this_window;
2345
2346         if (!ddir_rw(ddir))
2347                 return 0;
2348
2349         elapsed = mtime_since_now(&td->epoch);
2350
2351         /*
2352          * If no time averaging, just add the log sample.
2353          */
2354         if (!iolog->avg_msec) {
2355                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2356                 return 0;
2357         }
2358
2359         /*
2360          * Add the sample. If the time period has passed, then
2361          * add that entry to the log and clear.
2362          */
2363         add_stat_sample(&iolog->avg_window[ddir], data.val);
2364
2365         /*
2366          * If period hasn't passed, adding the above sample is all we
2367          * need to do.
2368          */
2369         this_window = elapsed - iolog->avg_last[ddir];
2370         if (elapsed < iolog->avg_last[ddir])
2371                 return iolog->avg_last[ddir] - elapsed;
2372         else if (this_window < iolog->avg_msec) {
2373                 unsigned long diff = iolog->avg_msec - this_window;
2374
2375                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2376                         return diff;
2377         }
2378
2379         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2380
2381         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2382         return iolog->avg_msec;
2383 }
2384
2385 void finalize_logs(struct thread_data *td, bool unit_logs)
2386 {
2387         unsigned long elapsed;
2388
2389         elapsed = mtime_since_now(&td->epoch);
2390
2391         if (td->clat_log && unit_logs)
2392                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2393         if (td->slat_log && unit_logs)
2394                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2395         if (td->lat_log && unit_logs)
2396                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2397         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2398                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2399         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2400                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2401 }
2402
2403 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2404 {
2405         struct io_log *iolog;
2406
2407         if (!ddir_rw(ddir))
2408                 return;
2409
2410         iolog = agg_io_log[ddir];
2411         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2412 }
2413
2414 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2415 {
2416         unsigned int idx = plat_val_to_idx(nsec);
2417         assert(idx < FIO_IO_U_PLAT_NR);
2418
2419         ts->io_u_sync_plat[idx]++;
2420         add_stat_sample(&ts->sync_stat, nsec);
2421 }
2422
2423 static void add_clat_percentile_sample(struct thread_stat *ts,
2424                                 unsigned long long nsec, enum fio_ddir ddir)
2425 {
2426         unsigned int idx = plat_val_to_idx(nsec);
2427         assert(idx < FIO_IO_U_PLAT_NR);
2428
2429         ts->io_u_plat[ddir][idx]++;
2430 }
2431
2432 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2433                      unsigned long long nsec, unsigned long long bs,
2434                      uint64_t offset)
2435 {
2436         unsigned long elapsed, this_window;
2437         struct thread_stat *ts = &td->ts;
2438         struct io_log *iolog = td->clat_hist_log;
2439
2440         td_io_u_lock(td);
2441
2442         add_stat_sample(&ts->clat_stat[ddir], nsec);
2443
2444         if (td->clat_log)
2445                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2446                                offset);
2447
2448         if (ts->clat_percentiles)
2449                 add_clat_percentile_sample(ts, nsec, ddir);
2450
2451         if (iolog && iolog->hist_msec) {
2452                 struct io_hist *hw = &iolog->hist_window[ddir];
2453
2454                 hw->samples++;
2455                 elapsed = mtime_since_now(&td->epoch);
2456                 if (!hw->hist_last)
2457                         hw->hist_last = elapsed;
2458                 this_window = elapsed - hw->hist_last;
2459                 
2460                 if (this_window >= iolog->hist_msec) {
2461                         uint64_t *io_u_plat;
2462                         struct io_u_plat_entry *dst;
2463
2464                         /*
2465                          * Make a byte-for-byte copy of the latency histogram
2466                          * stored in td->ts.io_u_plat[ddir], recording it in a
2467                          * log sample. Note that the matching call to free() is
2468                          * located in iolog.c after printing this sample to the
2469                          * log file.
2470                          */
2471                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2472                         dst = malloc(sizeof(struct io_u_plat_entry));
2473                         memcpy(&(dst->io_u_plat), io_u_plat,
2474                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2475                         flist_add(&dst->list, &hw->list);
2476                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2477                                                 elapsed, offset);
2478
2479                         /*
2480                          * Update the last time we recorded as being now, minus
2481                          * any drift in time we encountered before actually
2482                          * making the record.
2483                          */
2484                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2485                         hw->samples = 0;
2486                 }
2487         }
2488
2489         td_io_u_unlock(td);
2490 }
2491
2492 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2493                      unsigned long usec, unsigned long long bs, uint64_t offset)
2494 {
2495         struct thread_stat *ts = &td->ts;
2496
2497         if (!ddir_rw(ddir))
2498                 return;
2499
2500         td_io_u_lock(td);
2501
2502         add_stat_sample(&ts->slat_stat[ddir], usec);
2503
2504         if (td->slat_log)
2505                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2506
2507         td_io_u_unlock(td);
2508 }
2509
2510 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2511                     unsigned long long nsec, unsigned long long bs,
2512                     uint64_t offset)
2513 {
2514         struct thread_stat *ts = &td->ts;
2515
2516         if (!ddir_rw(ddir))
2517                 return;
2518
2519         td_io_u_lock(td);
2520
2521         add_stat_sample(&ts->lat_stat[ddir], nsec);
2522
2523         if (td->lat_log)
2524                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2525                                offset);
2526
2527         if (ts->lat_percentiles)
2528                 add_clat_percentile_sample(ts, nsec, ddir);
2529
2530         td_io_u_unlock(td);
2531 }
2532
2533 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2534                    unsigned int bytes, unsigned long long spent)
2535 {
2536         struct thread_stat *ts = &td->ts;
2537         unsigned long rate;
2538
2539         if (spent)
2540                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2541         else
2542                 rate = 0;
2543
2544         td_io_u_lock(td);
2545
2546         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2547
2548         if (td->bw_log)
2549                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2550                                bytes, io_u->offset);
2551
2552         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2553         td_io_u_unlock(td);
2554 }
2555
2556 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2557                          struct timespec *t, unsigned int avg_time,
2558                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2559                          struct io_stat *stat, struct io_log *log,
2560                          bool is_kb)
2561 {
2562         unsigned long spent, rate;
2563         enum fio_ddir ddir;
2564         unsigned long next, next_log;
2565
2566         next_log = avg_time;
2567
2568         spent = mtime_since(parent_tv, t);
2569         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2570                 return avg_time - spent;
2571
2572         td_io_u_lock(td);
2573
2574         /*
2575          * Compute both read and write rates for the interval.
2576          */
2577         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2578                 uint64_t delta;
2579
2580                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2581                 if (!delta)
2582                         continue; /* No entries for interval */
2583
2584                 if (spent) {
2585                         if (is_kb)
2586                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2587                         else
2588                                 rate = (delta * 1000) / spent;
2589                 } else
2590                         rate = 0;
2591
2592                 add_stat_sample(&stat[ddir], rate);
2593
2594                 if (log) {
2595                         unsigned long long bs = 0;
2596
2597                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2598                                 bs = td->o.min_bs[ddir];
2599
2600                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2601                         next_log = min(next_log, next);
2602                 }
2603
2604                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2605         }
2606
2607         timespec_add_msec(parent_tv, avg_time);
2608
2609         td_io_u_unlock(td);
2610
2611         if (spent <= avg_time)
2612                 next = avg_time;
2613         else
2614                 next = avg_time - (1 + spent - avg_time);
2615
2616         return min(next, next_log);
2617 }
2618
2619 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2620 {
2621         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2622                                 td->this_io_bytes, td->stat_io_bytes,
2623                                 td->ts.bw_stat, td->bw_log, true);
2624 }
2625
2626 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2627                      unsigned int bytes)
2628 {
2629         struct thread_stat *ts = &td->ts;
2630
2631         td_io_u_lock(td);
2632
2633         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2634
2635         if (td->iops_log)
2636                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2637                                bytes, io_u->offset);
2638
2639         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2640         td_io_u_unlock(td);
2641 }
2642
2643 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2644 {
2645         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2646                                 td->this_io_blocks, td->stat_io_blocks,
2647                                 td->ts.iops_stat, td->iops_log, false);
2648 }
2649
2650 /*
2651  * Returns msecs to next event
2652  */
2653 int calc_log_samples(void)
2654 {
2655         struct thread_data *td;
2656         unsigned int next = ~0U, tmp;
2657         struct timespec now;
2658         int i;
2659
2660         fio_gettime(&now, NULL);
2661
2662         for_each_td(td, i) {
2663                 if (!td->o.stats)
2664                         continue;
2665                 if (in_ramp_time(td) ||
2666                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2667                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2668                         continue;
2669                 }
2670                 if (!td->bw_log ||
2671                         (td->bw_log && !per_unit_log(td->bw_log))) {
2672                         tmp = add_bw_samples(td, &now);
2673                         if (tmp < next)
2674                                 next = tmp;
2675                 }
2676                 if (!td->iops_log ||
2677                         (td->iops_log && !per_unit_log(td->iops_log))) {
2678                         tmp = add_iops_samples(td, &now);
2679                         if (tmp < next)
2680                                 next = tmp;
2681                 }
2682         }
2683
2684         return next == ~0U ? 0 : next;
2685 }
2686
2687 void stat_init(void)
2688 {
2689         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2690 }
2691
2692 void stat_exit(void)
2693 {
2694         /*
2695          * When we have the mutex, we know out-of-band access to it
2696          * have ended.
2697          */
2698         fio_sem_down(stat_sem);
2699         fio_sem_remove(stat_sem);
2700 }
2701
2702 /*
2703  * Called from signal handler. Wake up status thread.
2704  */
2705 void show_running_run_stats(void)
2706 {
2707         helper_do_stat();
2708 }
2709
2710 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2711 {
2712         /* Ignore io_u's which span multiple blocks--they will just get
2713          * inaccurate counts. */
2714         int idx = (io_u->offset - io_u->file->file_offset)
2715                         / td->o.bs[DDIR_TRIM];
2716         uint32_t *info = &td->ts.block_infos[idx];
2717         assert(idx < td->ts.nr_block_infos);
2718         return info;
2719 }