steadystate: use uint64_t for storing bw and iops calculations and related values...
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned int val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned int plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned int **output,
139                                    unsigned int *maxv, unsigned int *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned int *ovals = NULL;
145         int is_last;
146
147         *minv = -1U;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int len, j = 0, minv, maxv;
205         unsigned int *ovals;
206         int is_last, per_line, scale_down;
207         char fmt[32];
208
209         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210         if (!len)
211                 goto out;
212
213         /*
214          * We default to usecs, but if the value range is such that we
215          * should scale down to msecs, do that.
216          */
217         if (minv > 2000 && maxv > 99999) {
218                 scale_down = 1;
219                 log_buf(out, "    clat percentiles (msec):\n     |");
220         } else {
221                 scale_down = 0;
222                 log_buf(out, "    clat percentiles (usec):\n     |");
223         }
224
225         snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226         per_line = (80 - 7) / (precision + 14);
227
228         for (j = 0; j < len; j++) {
229                 char fbuf[16], *ptr = fbuf;
230
231                 /* for formatting */
232                 if (j != 0 && (j % per_line) == 0)
233                         log_buf(out, "     |");
234
235                 /* end of the list */
236                 is_last = (j == len - 1);
237
238                 if (plist[j].u.f < 10.0)
239                         ptr += sprintf(fbuf, " ");
240
241                 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243                 if (scale_down)
244                         ovals[j] = (ovals[j] + 999) / 1000;
245
246                 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248                 if (is_last)
249                         break;
250
251                 if ((j % per_line) == per_line - 1)     /* for formatting */
252                         log_buf(out, "\n");
253         }
254
255 out:
256         if (ovals)
257                 free(ovals);
258 }
259
260 int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261              double *mean, double *dev)
262 {
263         double n = (double) is->samples;
264
265         if (n == 0)
266                 return 0;
267
268         *min = is->min_val;
269         *max = is->max_val;
270         *mean = is->mean.u.f;
271
272         if (n > 1.0)
273                 *dev = sqrt(is->S.u.f / (n - 1.0));
274         else
275                 *dev = 0;
276
277         return 1;
278 }
279
280 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281 {
282         char *p1, *p2, *p3, *p4;
283         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
284         int i;
285
286         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289                 const int i2p = is_power_of_2(rs->kb_base);
290
291                 if (!rs->max_run[i])
292                         continue;
293
294                 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295                 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296                 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297                 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299                 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300                          " mint=%llumsec, maxt=%llumsec\n",
301                                 rs->unified_rw_rep ? "  MIXED" : str[i],
302                                 p1, p2, p3, p4,
303                                 (unsigned long long) rs->min_run[i],
304                                 (unsigned long long) rs->max_run[i]);
305
306                 free(p1);
307                 free(p2);
308                 free(p3);
309                 free(p4);
310         }
311 }
312
313 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314 {
315         int i;
316
317         /*
318          * Do depth distribution calculations
319          */
320         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321                 if (total) {
322                         io_u_dist[i] = (double) map[i] / (double) total;
323                         io_u_dist[i] *= 100.0;
324                         if (io_u_dist[i] < 0.1 && map[i])
325                                 io_u_dist[i] = 0.1;
326                 } else
327                         io_u_dist[i] = 0.0;
328         }
329 }
330
331 static void stat_calc_lat(struct thread_stat *ts, double *dst,
332                           unsigned int *src, int nr)
333 {
334         unsigned long total = ddir_rw_sum(ts->total_io_u);
335         int i;
336
337         /*
338          * Do latency distribution calculations
339          */
340         for (i = 0; i < nr; i++) {
341                 if (total) {
342                         dst[i] = (double) src[i] / (double) total;
343                         dst[i] *= 100.0;
344                         if (dst[i] < 0.01 && src[i])
345                                 dst[i] = 0.01;
346                 } else
347                         dst[i] = 0.0;
348         }
349 }
350
351 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352 {
353         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354 }
355
356 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357 {
358         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359 }
360
361 static void display_lat(const char *name, unsigned long min, unsigned long max,
362                         double mean, double dev, struct buf_output *out)
363 {
364         const char *base = "(usec)";
365         char *minp, *maxp;
366
367         if (!usec_to_msec(&min, &max, &mean, &dev))
368                 base = "(msec)";
369
370         minp = num2str(min, 6, 1, 0, 0);
371         maxp = num2str(max, 6, 1, 0, 0);
372
373         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
374                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376         free(minp);
377         free(maxp);
378 }
379
380 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381                              int ddir, struct buf_output *out)
382 {
383         const char *str[] = { "read ", "write", "trim" };
384         unsigned long min, max, runt;
385         unsigned long long bw, iops;
386         double mean, dev;
387         char *io_p, *bw_p, *iops_p;
388         int i2p;
389
390         assert(ddir_rw(ddir));
391
392         if (!ts->runtime[ddir])
393                 return;
394
395         i2p = is_power_of_2(rs->kb_base);
396         runt = ts->runtime[ddir];
397
398         bw = (1000 * ts->io_bytes[ddir]) / runt;
399         io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400         bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403         iops_p = num2str(iops, 6, 1, 0, 0);
404
405         log_buf(out, "  %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406                                 rs->unified_rw_rep ? "mixed" : str[ddir],
407                                 io_p, bw_p, iops_p,
408                                 (unsigned long long) ts->runtime[ddir]);
409
410         free(io_p);
411         free(bw_p);
412         free(iops_p);
413
414         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415                 display_lat("slat", min, max, mean, dev, out);
416         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417                 display_lat("clat", min, max, mean, dev, out);
418         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419                 display_lat(" lat", min, max, mean, dev, out);
420
421         if (ts->clat_percentiles) {
422                 show_clat_percentiles(ts->io_u_plat[ddir],
423                                         ts->clat_stat[ddir].samples,
424                                         ts->percentile_list,
425                                         ts->percentile_precision, out);
426         }
427         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429                 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431                 if (rs->unit_base == 1) {
432                         min *= 8.0;
433                         max *= 8.0;
434                         mean *= 8.0;
435                         dev *= 8.0;
436                 }
437
438                 if (rs->agg[ddir]) {
439                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
440                         if (p_of_agg > 100.0)
441                                 p_of_agg = 100.0;
442                 }
443
444                 if (mean > fkb_base * fkb_base) {
445                         min /= fkb_base;
446                         max /= fkb_base;
447                         mean /= fkb_base;
448                         dev /= fkb_base;
449                         bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450                 }
451
452                 log_buf(out, "    bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453                          " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454                                                         p_of_agg, mean, dev);
455         }
456 }
457
458 static int show_lat(double *io_u_lat, int nr, const char **ranges,
459                     const char *msg, struct buf_output *out)
460 {
461         int new_line = 1, i, line = 0, shown = 0;
462
463         for (i = 0; i < nr; i++) {
464                 if (io_u_lat[i] <= 0.0)
465                         continue;
466                 shown = 1;
467                 if (new_line) {
468                         if (line)
469                                 log_buf(out, "\n");
470                         log_buf(out, "    lat (%s) : ", msg);
471                         new_line = 0;
472                         line = 0;
473                 }
474                 if (line)
475                         log_buf(out, ", ");
476                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477                 line++;
478                 if (line == 5)
479                         new_line = 1;
480         }
481
482         if (shown)
483                 log_buf(out, "\n");
484
485         return shown;
486 }
487
488 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489 {
490         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491                                  "250=", "500=", "750=", "1000=", };
492
493         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494 }
495
496 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497 {
498         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499                                  "250=", "500=", "750=", "1000=", "2000=",
500                                  ">=2000=", };
501
502         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503 }
504
505 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506 {
507         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510         stat_calc_lat_u(ts, io_u_lat_u);
511         stat_calc_lat_m(ts, io_u_lat_m);
512
513         show_lat_u(io_u_lat_u, out);
514         show_lat_m(io_u_lat_m, out);
515 }
516
517 static int block_state_category(int block_state)
518 {
519         switch (block_state) {
520         case BLOCK_STATE_UNINIT:
521                 return 0;
522         case BLOCK_STATE_TRIMMED:
523         case BLOCK_STATE_WRITTEN:
524                 return 1;
525         case BLOCK_STATE_WRITE_FAILURE:
526         case BLOCK_STATE_TRIM_FAILURE:
527                 return 2;
528         default:
529                 /* Silence compile warning on some BSDs and have a return */
530                 assert(0);
531                 return -1;
532         }
533 }
534
535 static int compare_block_infos(const void *bs1, const void *bs2)
536 {
537         uint32_t block1 = *(uint32_t *)bs1;
538         uint32_t block2 = *(uint32_t *)bs2;
539         int state1 = BLOCK_INFO_STATE(block1);
540         int state2 = BLOCK_INFO_STATE(block2);
541         int bscat1 = block_state_category(state1);
542         int bscat2 = block_state_category(state2);
543         int cycles1 = BLOCK_INFO_TRIMS(block1);
544         int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546         if (bscat1 < bscat2)
547                 return -1;
548         if (bscat1 > bscat2)
549                 return 1;
550
551         if (cycles1 < cycles2)
552                 return -1;
553         if (cycles1 > cycles2)
554                 return 1;
555
556         if (state1 < state2)
557                 return -1;
558         if (state1 > state2)
559                 return 1;
560
561         assert(block1 == block2);
562         return 0;
563 }
564
565 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566                                   fio_fp64_t *plist, unsigned int **percentiles,
567                                   unsigned int *types)
568 {
569         int len = 0;
570         int i, nr_uninit;
571
572         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575                 len++;
576
577         if (!len)
578                 return 0;
579
580         /*
581          * Sort the percentile list. Note that it may already be sorted if
582          * we are using the default values, but since it's a short list this
583          * isn't a worry. Also note that this does not work for NaN values.
584          */
585         if (len > 1)
586                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588         nr_uninit = 0;
589         /* Start only after the uninit entries end */
590         for (nr_uninit = 0;
591              nr_uninit < nr_block_infos
592                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593              nr_uninit ++)
594                 ;
595
596         if (nr_uninit == nr_block_infos)
597                 return 0;
598
599         *percentiles = calloc(len, sizeof(**percentiles));
600
601         for (i = 0; i < len; i++) {
602                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603                                 + nr_uninit;
604                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605         }
606
607         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608         for (i = 0; i < nr_block_infos; i++)
609                 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611         return len;
612 }
613
614 static const char *block_state_names[] = {
615         [BLOCK_STATE_UNINIT] = "unwritten",
616         [BLOCK_STATE_TRIMMED] = "trimmed",
617         [BLOCK_STATE_WRITTEN] = "written",
618         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620 };
621
622 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623                              fio_fp64_t *plist, struct buf_output *out)
624 {
625         int len, pos, i;
626         unsigned int *percentiles = NULL;
627         unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630                                      &percentiles, block_state_counts);
631
632         log_buf(out, "  block lifetime percentiles :\n   |");
633         pos = 0;
634         for (i = 0; i < len; i++) {
635                 uint32_t block_info = percentiles[i];
636 #define LINE_LENGTH     75
637                 char str[LINE_LENGTH];
638                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639                                      plist[i].u.f, block_info,
640                                      i == len - 1 ? '\n' : ',');
641                 assert(strln < LINE_LENGTH);
642                 if (pos + strln > LINE_LENGTH) {
643                         pos = 0;
644                         log_buf(out, "\n   |");
645                 }
646                 log_buf(out, "%s", str);
647                 pos += strln;
648 #undef LINE_LENGTH
649         }
650         if (percentiles)
651                 free(percentiles);
652
653         log_buf(out, "        states               :");
654         for (i = 0; i < BLOCK_STATE_COUNT; i++)
655                 log_buf(out, " %s=%u%c",
656                          block_state_names[i], block_state_counts[i],
657                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658 }
659
660 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
661 {
662         char *p1, *p2;
663         unsigned long long bw_mean, iops_mean;
664         const int i2p = is_power_of_2(ts->kb_base);
665
666         if (!ts->ss_state)
667                 return;
668
669         bw_mean = steadystate_bw_mean(ts);
670         iops_mean = steadystate_iops_mean(ts);
671
672         p1 = num2str(bw_mean / ts->kb_base, 6, ts->kb_base, i2p, ts->unit_base);
673         p2 = num2str(iops_mean, 6, 1, 0, 0);
674
675         log_buf(out, "  steadystate  : attained=%s, bw=%s/s, iops=%s, %s%s=%.3f%s\n",
676                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
677                 p1, p2,
678                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
679                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
680                 ts->ss_criterion.u.f,
681                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
682
683         free(p1);
684         free(p2);
685 }
686
687 static void show_thread_status_normal(struct thread_stat *ts,
688                                       struct group_run_stats *rs,
689                                       struct buf_output *out)
690 {
691         double usr_cpu, sys_cpu;
692         unsigned long runtime;
693         double io_u_dist[FIO_IO_U_MAP_NR];
694         time_t time_p;
695         char time_buf[32];
696
697         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
698                 return;
699
700         time(&time_p);
701         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
702
703         if (!ts->error) {
704                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
705                                         ts->name, ts->groupid, ts->members,
706                                         ts->error, (int) ts->pid, time_buf);
707         } else {
708                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
709                                         ts->name, ts->groupid, ts->members,
710                                         ts->error, ts->verror, (int) ts->pid,
711                                         time_buf);
712         }
713
714         if (strlen(ts->description))
715                 log_buf(out, "  Description  : [%s]\n", ts->description);
716
717         if (ts->io_bytes[DDIR_READ])
718                 show_ddir_status(rs, ts, DDIR_READ, out);
719         if (ts->io_bytes[DDIR_WRITE])
720                 show_ddir_status(rs, ts, DDIR_WRITE, out);
721         if (ts->io_bytes[DDIR_TRIM])
722                 show_ddir_status(rs, ts, DDIR_TRIM, out);
723
724         show_latencies(ts, out);
725
726         runtime = ts->total_run_time;
727         if (runtime) {
728                 double runt = (double) runtime;
729
730                 usr_cpu = (double) ts->usr_time * 100 / runt;
731                 sys_cpu = (double) ts->sys_time * 100 / runt;
732         } else {
733                 usr_cpu = 0;
734                 sys_cpu = 0;
735         }
736
737         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
738                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
739                         (unsigned long long) ts->ctx,
740                         (unsigned long long) ts->majf,
741                         (unsigned long long) ts->minf);
742
743         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
744         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
745                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
746                                         io_u_dist[1], io_u_dist[2],
747                                         io_u_dist[3], io_u_dist[4],
748                                         io_u_dist[5], io_u_dist[6]);
749
750         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
751         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
752                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
753                                         io_u_dist[1], io_u_dist[2],
754                                         io_u_dist[3], io_u_dist[4],
755                                         io_u_dist[5], io_u_dist[6]);
756         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
757         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
758                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
759                                         io_u_dist[1], io_u_dist[2],
760                                         io_u_dist[3], io_u_dist[4],
761                                         io_u_dist[5], io_u_dist[6]);
762         log_buf(out, "     issued    : total=r=%llu/w=%llu/d=%llu,"
763                                  " short=r=%llu/w=%llu/d=%llu,"
764                                  " drop=r=%llu/w=%llu/d=%llu\n",
765                                         (unsigned long long) ts->total_io_u[0],
766                                         (unsigned long long) ts->total_io_u[1],
767                                         (unsigned long long) ts->total_io_u[2],
768                                         (unsigned long long) ts->short_io_u[0],
769                                         (unsigned long long) ts->short_io_u[1],
770                                         (unsigned long long) ts->short_io_u[2],
771                                         (unsigned long long) ts->drop_io_u[0],
772                                         (unsigned long long) ts->drop_io_u[1],
773                                         (unsigned long long) ts->drop_io_u[2]);
774         if (ts->continue_on_error) {
775                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
776                                         (unsigned long long)ts->total_err_count,
777                                         ts->first_error,
778                                         strerror(ts->first_error));
779         }
780         if (ts->latency_depth) {
781                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
782                                         (unsigned long long)ts->latency_target,
783                                         (unsigned long long)ts->latency_window,
784                                         ts->latency_percentile.u.f,
785                                         ts->latency_depth);
786         }
787
788         if (ts->nr_block_infos)
789                 show_block_infos(ts->nr_block_infos, ts->block_infos,
790                                   ts->percentile_list, out);
791
792         if (ts->ss_dur)
793                 show_ss_normal(ts, out);
794 }
795
796 static void show_ddir_status_terse(struct thread_stat *ts,
797                                    struct group_run_stats *rs, int ddir,
798                                    struct buf_output *out)
799 {
800         unsigned long min, max;
801         unsigned long long bw, iops;
802         unsigned int *ovals = NULL;
803         double mean, dev;
804         unsigned int len, minv, maxv;
805         int i;
806
807         assert(ddir_rw(ddir));
808
809         iops = bw = 0;
810         if (ts->runtime[ddir]) {
811                 uint64_t runt = ts->runtime[ddir];
812
813                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
814                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
815         }
816
817         log_buf(out, ";%llu;%llu;%llu;%llu",
818                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
819                                         (unsigned long long) ts->runtime[ddir]);
820
821         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
822                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
823         else
824                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
825
826         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
827                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
828         else
829                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
830
831         if (ts->clat_percentiles) {
832                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
833                                         ts->clat_stat[ddir].samples,
834                                         ts->percentile_list, &ovals, &maxv,
835                                         &minv);
836         } else
837                 len = 0;
838
839         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
840                 if (i >= len) {
841                         log_buf(out, ";0%%=0");
842                         continue;
843                 }
844                 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
845         }
846
847         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
848                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
849         else
850                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
851
852         if (ovals)
853                 free(ovals);
854
855         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
856                 double p_of_agg = 100.0;
857
858                 if (rs->agg[ddir]) {
859                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
860                         if (p_of_agg > 100.0)
861                                 p_of_agg = 100.0;
862                 }
863
864                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
865         } else
866                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
867 }
868
869 static void add_ddir_status_json(struct thread_stat *ts,
870                 struct group_run_stats *rs, int ddir, struct json_object *parent)
871 {
872         unsigned long min, max;
873         unsigned long long bw;
874         unsigned int *ovals = NULL;
875         double mean, dev, iops;
876         unsigned int len, minv, maxv;
877         int i;
878         const char *ddirname[] = {"read", "write", "trim"};
879         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
880         char buf[120];
881         double p_of_agg = 100.0;
882
883         assert(ddir_rw(ddir));
884
885         if (ts->unified_rw_rep && ddir != DDIR_READ)
886                 return;
887
888         dir_object = json_create_object();
889         json_object_add_value_object(parent,
890                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
891
892         bw = 0;
893         iops = 0.0;
894         if (ts->runtime[ddir]) {
895                 uint64_t runt = ts->runtime[ddir];
896
897                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
898                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
899         }
900
901         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
902         json_object_add_value_int(dir_object, "bw", bw);
903         json_object_add_value_float(dir_object, "iops", iops);
904         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
905         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
906         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
907         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
908
909         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
910                 min = max = 0;
911                 mean = dev = 0.0;
912         }
913         tmp_object = json_create_object();
914         json_object_add_value_object(dir_object, "slat", tmp_object);
915         json_object_add_value_int(tmp_object, "min", min);
916         json_object_add_value_int(tmp_object, "max", max);
917         json_object_add_value_float(tmp_object, "mean", mean);
918         json_object_add_value_float(tmp_object, "stddev", dev);
919
920         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
921                 min = max = 0;
922                 mean = dev = 0.0;
923         }
924         tmp_object = json_create_object();
925         json_object_add_value_object(dir_object, "clat", tmp_object);
926         json_object_add_value_int(tmp_object, "min", min);
927         json_object_add_value_int(tmp_object, "max", max);
928         json_object_add_value_float(tmp_object, "mean", mean);
929         json_object_add_value_float(tmp_object, "stddev", dev);
930
931         if (ts->clat_percentiles) {
932                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
933                                         ts->clat_stat[ddir].samples,
934                                         ts->percentile_list, &ovals, &maxv,
935                                         &minv);
936         } else
937                 len = 0;
938
939         percentile_object = json_create_object();
940         json_object_add_value_object(tmp_object, "percentile", percentile_object);
941         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
942                 if (i >= len) {
943                         json_object_add_value_int(percentile_object, "0.00", 0);
944                         continue;
945                 }
946                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
947                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
948         }
949
950         if (output_format & FIO_OUTPUT_JSON_PLUS) {
951                 clat_bins_object = json_create_object();
952                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
953                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
954                         snprintf(buf, sizeof(buf), "%d", i);
955                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
956                 }
957                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
958                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
959                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
960         }
961
962         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
963                 min = max = 0;
964                 mean = dev = 0.0;
965         }
966         tmp_object = json_create_object();
967         json_object_add_value_object(dir_object, "lat", tmp_object);
968         json_object_add_value_int(tmp_object, "min", min);
969         json_object_add_value_int(tmp_object, "max", max);
970         json_object_add_value_float(tmp_object, "mean", mean);
971         json_object_add_value_float(tmp_object, "stddev", dev);
972         if (ovals)
973                 free(ovals);
974
975         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
976                 if (rs->agg[ddir]) {
977                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
978                         if (p_of_agg > 100.0)
979                                 p_of_agg = 100.0;
980                 }
981         } else {
982                 min = max = 0;
983                 p_of_agg = mean = dev = 0.0;
984         }
985         json_object_add_value_int(dir_object, "bw_min", min);
986         json_object_add_value_int(dir_object, "bw_max", max);
987         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
988         json_object_add_value_float(dir_object, "bw_mean", mean);
989         json_object_add_value_float(dir_object, "bw_dev", dev);
990 }
991
992 static void show_thread_status_terse_v2(struct thread_stat *ts,
993                                         struct group_run_stats *rs,
994                                         struct buf_output *out)
995 {
996         double io_u_dist[FIO_IO_U_MAP_NR];
997         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
998         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
999         double usr_cpu, sys_cpu;
1000         int i;
1001
1002         /* General Info */
1003         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1004         /* Log Read Status */
1005         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1006         /* Log Write Status */
1007         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1008         /* Log Trim Status */
1009         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1010
1011         /* CPU Usage */
1012         if (ts->total_run_time) {
1013                 double runt = (double) ts->total_run_time;
1014
1015                 usr_cpu = (double) ts->usr_time * 100 / runt;
1016                 sys_cpu = (double) ts->sys_time * 100 / runt;
1017         } else {
1018                 usr_cpu = 0;
1019                 sys_cpu = 0;
1020         }
1021
1022         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1023                                                 (unsigned long long) ts->ctx,
1024                                                 (unsigned long long) ts->majf,
1025                                                 (unsigned long long) ts->minf);
1026
1027         /* Calc % distribution of IO depths, usecond, msecond latency */
1028         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1029         stat_calc_lat_u(ts, io_u_lat_u);
1030         stat_calc_lat_m(ts, io_u_lat_m);
1031
1032         /* Only show fixed 7 I/O depth levels*/
1033         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1034                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1035                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1036
1037         /* Microsecond latency */
1038         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1039                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1040         /* Millisecond latency */
1041         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1042                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1043         /* Additional output if continue_on_error set - default off*/
1044         if (ts->continue_on_error)
1045                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1046         log_buf(out, "\n");
1047
1048         /* Additional output if description is set */
1049         if (strlen(ts->description))
1050                 log_buf(out, ";%s", ts->description);
1051
1052         log_buf(out, "\n");
1053 }
1054
1055 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1056                                            struct group_run_stats *rs, int ver,
1057                                            struct buf_output *out)
1058 {
1059         double io_u_dist[FIO_IO_U_MAP_NR];
1060         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1061         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1062         double usr_cpu, sys_cpu;
1063         int i;
1064
1065         /* General Info */
1066         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1067                                         ts->name, ts->groupid, ts->error);
1068         /* Log Read Status */
1069         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1070         /* Log Write Status */
1071         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1072         /* Log Trim Status */
1073         if (ver == 4)
1074                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1075
1076         /* CPU Usage */
1077         if (ts->total_run_time) {
1078                 double runt = (double) ts->total_run_time;
1079
1080                 usr_cpu = (double) ts->usr_time * 100 / runt;
1081                 sys_cpu = (double) ts->sys_time * 100 / runt;
1082         } else {
1083                 usr_cpu = 0;
1084                 sys_cpu = 0;
1085         }
1086
1087         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1088                                                 (unsigned long long) ts->ctx,
1089                                                 (unsigned long long) ts->majf,
1090                                                 (unsigned long long) ts->minf);
1091
1092         /* Calc % distribution of IO depths, usecond, msecond latency */
1093         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1094         stat_calc_lat_u(ts, io_u_lat_u);
1095         stat_calc_lat_m(ts, io_u_lat_m);
1096
1097         /* Only show fixed 7 I/O depth levels*/
1098         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1099                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1100                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1101
1102         /* Microsecond latency */
1103         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1104                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1105         /* Millisecond latency */
1106         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1107                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1108
1109         /* disk util stats, if any */
1110         show_disk_util(1, NULL, out);
1111
1112         /* Additional output if continue_on_error set - default off*/
1113         if (ts->continue_on_error)
1114                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1115
1116         /* Additional output if description is set */
1117         if (strlen(ts->description))
1118                 log_buf(out, ";%s", ts->description);
1119
1120         log_buf(out, "\n");
1121 }
1122
1123 void json_add_job_opts(struct json_object *root, const char *name,
1124                        struct flist_head *opt_list, bool num_jobs)
1125 {
1126         struct json_object *dir_object;
1127         struct flist_head *entry;
1128         struct print_option *p;
1129
1130         if (flist_empty(opt_list))
1131                 return;
1132
1133         dir_object = json_create_object();
1134         json_object_add_value_object(root, name, dir_object);
1135
1136         flist_for_each(entry, opt_list) {
1137                 const char *pos = "";
1138
1139                 p = flist_entry(entry, struct print_option, list);
1140                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1141                         continue;
1142                 if (p->value)
1143                         pos = p->value;
1144                 json_object_add_value_string(dir_object, p->name, pos);
1145         }
1146 }
1147
1148 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1149                                                    struct group_run_stats *rs,
1150                                                    struct flist_head *opt_list)
1151 {
1152         struct json_object *root, *tmp;
1153         struct jobs_eta *je;
1154         double io_u_dist[FIO_IO_U_MAP_NR];
1155         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1156         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1157         double usr_cpu, sys_cpu;
1158         int i;
1159         size_t size;
1160
1161         root = json_create_object();
1162         json_object_add_value_string(root, "jobname", ts->name);
1163         json_object_add_value_int(root, "groupid", ts->groupid);
1164         json_object_add_value_int(root, "error", ts->error);
1165
1166         /* ETA Info */
1167         je = get_jobs_eta(true, &size);
1168         if (je) {
1169                 json_object_add_value_int(root, "eta", je->eta_sec);
1170                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1171         }
1172
1173         if (opt_list)
1174                 json_add_job_opts(root, "job options", opt_list, true);
1175
1176         add_ddir_status_json(ts, rs, DDIR_READ, root);
1177         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1178         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1179
1180         /* CPU Usage */
1181         if (ts->total_run_time) {
1182                 double runt = (double) ts->total_run_time;
1183
1184                 usr_cpu = (double) ts->usr_time * 100 / runt;
1185                 sys_cpu = (double) ts->sys_time * 100 / runt;
1186         } else {
1187                 usr_cpu = 0;
1188                 sys_cpu = 0;
1189         }
1190         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1191         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1192         json_object_add_value_int(root, "ctx", ts->ctx);
1193         json_object_add_value_int(root, "majf", ts->majf);
1194         json_object_add_value_int(root, "minf", ts->minf);
1195
1196
1197         /* Calc % distribution of IO depths, usecond, msecond latency */
1198         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1199         stat_calc_lat_u(ts, io_u_lat_u);
1200         stat_calc_lat_m(ts, io_u_lat_m);
1201
1202         tmp = json_create_object();
1203         json_object_add_value_object(root, "iodepth_level", tmp);
1204         /* Only show fixed 7 I/O depth levels*/
1205         for (i = 0; i < 7; i++) {
1206                 char name[20];
1207                 if (i < 6)
1208                         snprintf(name, 20, "%d", 1 << i);
1209                 else
1210                         snprintf(name, 20, ">=%d", 1 << i);
1211                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1212         }
1213
1214         tmp = json_create_object();
1215         json_object_add_value_object(root, "latency_us", tmp);
1216         /* Microsecond latency */
1217         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1218                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1219                                  "250", "500", "750", "1000", };
1220                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1221         }
1222         /* Millisecond latency */
1223         tmp = json_create_object();
1224         json_object_add_value_object(root, "latency_ms", tmp);
1225         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1226                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1227                                  "250", "500", "750", "1000", "2000",
1228                                  ">=2000", };
1229                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1230         }
1231
1232         /* Additional output if continue_on_error set - default off*/
1233         if (ts->continue_on_error) {
1234                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1235                 json_object_add_value_int(root, "first_error", ts->first_error);
1236         }
1237
1238         if (ts->latency_depth) {
1239                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1240                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1241                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1242                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1243         }
1244
1245         /* Additional output if description is set */
1246         if (strlen(ts->description))
1247                 json_object_add_value_string(root, "desc", ts->description);
1248
1249         if (ts->nr_block_infos) {
1250                 /* Block error histogram and types */
1251                 int len;
1252                 unsigned int *percentiles = NULL;
1253                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1254
1255                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1256                                              ts->percentile_list,
1257                                              &percentiles, block_state_counts);
1258
1259                 if (len) {
1260                         struct json_object *block, *percentile_object, *states;
1261                         int state;
1262                         block = json_create_object();
1263                         json_object_add_value_object(root, "block", block);
1264
1265                         percentile_object = json_create_object();
1266                         json_object_add_value_object(block, "percentiles",
1267                                                      percentile_object);
1268                         for (i = 0; i < len; i++) {
1269                                 char buf[20];
1270                                 snprintf(buf, sizeof(buf), "%f",
1271                                          ts->percentile_list[i].u.f);
1272                                 json_object_add_value_int(percentile_object,
1273                                                           (const char *)buf,
1274                                                           percentiles[i]);
1275                         }
1276
1277                         states = json_create_object();
1278                         json_object_add_value_object(block, "states", states);
1279                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1280                                 json_object_add_value_int(states,
1281                                         block_state_names[state],
1282                                         block_state_counts[state]);
1283                         }
1284                         free(percentiles);
1285                 }
1286         }
1287
1288         if (ts->ss_dur) {
1289                 struct json_object *data;
1290                 struct json_array *iops, *bw;
1291                 int i, j, k;
1292                 char ss_buf[64];
1293
1294                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1295                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1296                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1297                         (float) ts->ss_limit.u.f,
1298                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1299
1300                 tmp = json_create_object();
1301                 json_object_add_value_object(root, "steadystate", tmp);
1302                 json_object_add_value_string(tmp, "ss", ss_buf);
1303                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1304                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1305
1306                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1307                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1308                 json_object_add_value_string(tmp, "criterion", ss_buf);
1309                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1310                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1311
1312                 data = json_create_object();
1313                 json_object_add_value_object(tmp, "data", data);
1314                 bw = json_create_array();
1315                 iops = json_create_array();
1316
1317                 /*
1318                 ** if ss was attained or the buffer is not full,
1319                 ** ss->head points to the first element in the list.
1320                 ** otherwise it actually points to the second element
1321                 ** in the list
1322                 */
1323                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1324                         j = ts->ss_head;
1325                 else
1326                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1327                 for (i = 0; i < ts->ss_dur; i++) {
1328                         k = (j + i) % ts->ss_dur;
1329                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1330                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1331                 }
1332                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1333                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1334                 json_object_add_value_array(data, "iops", iops);
1335                 json_object_add_value_array(data, "bw", bw);
1336         }
1337
1338         return root;
1339 }
1340
1341 static void show_thread_status_terse(struct thread_stat *ts,
1342                                      struct group_run_stats *rs,
1343                                      struct buf_output *out)
1344 {
1345         if (terse_version == 2)
1346                 show_thread_status_terse_v2(ts, rs, out);
1347         else if (terse_version == 3 || terse_version == 4)
1348                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1349         else
1350                 log_err("fio: bad terse version!? %d\n", terse_version);
1351 }
1352
1353 struct json_object *show_thread_status(struct thread_stat *ts,
1354                                        struct group_run_stats *rs,
1355                                        struct flist_head *opt_list,
1356                                        struct buf_output *out)
1357 {
1358         struct json_object *ret = NULL;
1359
1360         if (output_format & FIO_OUTPUT_TERSE)
1361                 show_thread_status_terse(ts, rs,  out);
1362         if (output_format & FIO_OUTPUT_JSON)
1363                 ret = show_thread_status_json(ts, rs, opt_list);
1364         if (output_format & FIO_OUTPUT_NORMAL)
1365                 show_thread_status_normal(ts, rs,  out);
1366
1367         return ret;
1368 }
1369
1370 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1371 {
1372         double mean, S;
1373
1374         if (src->samples == 0)
1375                 return;
1376
1377         dst->min_val = min(dst->min_val, src->min_val);
1378         dst->max_val = max(dst->max_val, src->max_val);
1379
1380         /*
1381          * Compute new mean and S after the merge
1382          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1383          *  #Parallel_algorithm>
1384          */
1385         if (first) {
1386                 mean = src->mean.u.f;
1387                 S = src->S.u.f;
1388         } else {
1389                 double delta = src->mean.u.f - dst->mean.u.f;
1390
1391                 mean = ((src->mean.u.f * src->samples) +
1392                         (dst->mean.u.f * dst->samples)) /
1393                         (dst->samples + src->samples);
1394
1395                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1396                         (dst->samples * src->samples) /
1397                         (dst->samples + src->samples);
1398         }
1399
1400         dst->samples += src->samples;
1401         dst->mean.u.f = mean;
1402         dst->S.u.f = S;
1403 }
1404
1405 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1406 {
1407         int i;
1408
1409         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1410                 if (dst->max_run[i] < src->max_run[i])
1411                         dst->max_run[i] = src->max_run[i];
1412                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1413                         dst->min_run[i] = src->min_run[i];
1414                 if (dst->max_bw[i] < src->max_bw[i])
1415                         dst->max_bw[i] = src->max_bw[i];
1416                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1417                         dst->min_bw[i] = src->min_bw[i];
1418
1419                 dst->io_kb[i] += src->io_kb[i];
1420                 dst->agg[i] += src->agg[i];
1421         }
1422
1423         if (!dst->kb_base)
1424                 dst->kb_base = src->kb_base;
1425         if (!dst->unit_base)
1426                 dst->unit_base = src->unit_base;
1427 }
1428
1429 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1430                       bool first)
1431 {
1432         int l, k;
1433
1434         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1435                 if (!dst->unified_rw_rep) {
1436                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1437                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1438                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1439                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1440
1441                         dst->io_bytes[l] += src->io_bytes[l];
1442
1443                         if (dst->runtime[l] < src->runtime[l])
1444                                 dst->runtime[l] = src->runtime[l];
1445                 } else {
1446                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1447                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1448                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1449                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1450
1451                         dst->io_bytes[0] += src->io_bytes[l];
1452
1453                         if (dst->runtime[0] < src->runtime[l])
1454                                 dst->runtime[0] = src->runtime[l];
1455
1456                         /*
1457                          * We're summing to the same destination, so override
1458                          * 'first' after the first iteration of the loop
1459                          */
1460                         first = false;
1461                 }
1462         }
1463
1464         dst->usr_time += src->usr_time;
1465         dst->sys_time += src->sys_time;
1466         dst->ctx += src->ctx;
1467         dst->majf += src->majf;
1468         dst->minf += src->minf;
1469
1470         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1471                 dst->io_u_map[k] += src->io_u_map[k];
1472         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1473                 dst->io_u_submit[k] += src->io_u_submit[k];
1474         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1475                 dst->io_u_complete[k] += src->io_u_complete[k];
1476         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1477                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1478         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1479                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1480
1481         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1482                 if (!dst->unified_rw_rep) {
1483                         dst->total_io_u[k] += src->total_io_u[k];
1484                         dst->short_io_u[k] += src->short_io_u[k];
1485                         dst->drop_io_u[k] += src->drop_io_u[k];
1486                 } else {
1487                         dst->total_io_u[0] += src->total_io_u[k];
1488                         dst->short_io_u[0] += src->short_io_u[k];
1489                         dst->drop_io_u[0] += src->drop_io_u[k];
1490                 }
1491         }
1492
1493         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1494                 int m;
1495
1496                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1497                         if (!dst->unified_rw_rep)
1498                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1499                         else
1500                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1501                 }
1502         }
1503
1504         dst->total_run_time += src->total_run_time;
1505         dst->total_submit += src->total_submit;
1506         dst->total_complete += src->total_complete;
1507 }
1508
1509 void init_group_run_stat(struct group_run_stats *gs)
1510 {
1511         int i;
1512         memset(gs, 0, sizeof(*gs));
1513
1514         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1515                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1516 }
1517
1518 void init_thread_stat(struct thread_stat *ts)
1519 {
1520         int j;
1521
1522         memset(ts, 0, sizeof(*ts));
1523
1524         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1525                 ts->lat_stat[j].min_val = -1UL;
1526                 ts->clat_stat[j].min_val = -1UL;
1527                 ts->slat_stat[j].min_val = -1UL;
1528                 ts->bw_stat[j].min_val = -1UL;
1529         }
1530         ts->groupid = -1;
1531 }
1532
1533 void __show_run_stats(void)
1534 {
1535         struct group_run_stats *runstats, *rs;
1536         struct thread_data *td;
1537         struct thread_stat *threadstats, *ts;
1538         int i, j, k, nr_ts, last_ts, idx;
1539         int kb_base_warned = 0;
1540         int unit_base_warned = 0;
1541         struct json_object *root = NULL;
1542         struct json_array *array = NULL;
1543         struct buf_output output[FIO_OUTPUT_NR];
1544         struct flist_head **opt_lists;
1545
1546         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1547
1548         for (i = 0; i < groupid + 1; i++)
1549                 init_group_run_stat(&runstats[i]);
1550
1551         /*
1552          * find out how many threads stats we need. if group reporting isn't
1553          * enabled, it's one-per-td.
1554          */
1555         nr_ts = 0;
1556         last_ts = -1;
1557         for_each_td(td, i) {
1558                 if (!td->o.group_reporting) {
1559                         nr_ts++;
1560                         continue;
1561                 }
1562                 if (last_ts == td->groupid)
1563                         continue;
1564
1565                 last_ts = td->groupid;
1566                 nr_ts++;
1567         }
1568
1569         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1570         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1571
1572         for (i = 0; i < nr_ts; i++) {
1573                 init_thread_stat(&threadstats[i]);
1574                 opt_lists[i] = NULL;
1575         }
1576
1577         j = 0;
1578         last_ts = -1;
1579         idx = 0;
1580         for_each_td(td, i) {
1581                 if (idx && (!td->o.group_reporting ||
1582                     (td->o.group_reporting && last_ts != td->groupid))) {
1583                         idx = 0;
1584                         j++;
1585                 }
1586
1587                 last_ts = td->groupid;
1588
1589                 ts = &threadstats[j];
1590
1591                 ts->clat_percentiles = td->o.clat_percentiles;
1592                 ts->percentile_precision = td->o.percentile_precision;
1593                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1594                 opt_lists[j] = &td->opt_list;
1595
1596                 idx++;
1597                 ts->members++;
1598
1599                 if (ts->groupid == -1) {
1600                         /*
1601                          * These are per-group shared already
1602                          */
1603                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1604                         if (td->o.description)
1605                                 strncpy(ts->description, td->o.description,
1606                                                 FIO_JOBDESC_SIZE - 1);
1607                         else
1608                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1609
1610                         /*
1611                          * If multiple entries in this group, this is
1612                          * the first member.
1613                          */
1614                         ts->thread_number = td->thread_number;
1615                         ts->groupid = td->groupid;
1616
1617                         /*
1618                          * first pid in group, not very useful...
1619                          */
1620                         ts->pid = td->pid;
1621
1622                         ts->kb_base = td->o.kb_base;
1623                         ts->unit_base = td->o.unit_base;
1624                         ts->unified_rw_rep = td->o.unified_rw_rep;
1625                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1626                         log_info("fio: kb_base differs for jobs in group, using"
1627                                  " %u as the base\n", ts->kb_base);
1628                         kb_base_warned = 1;
1629                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1630                         log_info("fio: unit_base differs for jobs in group, using"
1631                                  " %u as the base\n", ts->unit_base);
1632                         unit_base_warned = 1;
1633                 }
1634
1635                 ts->continue_on_error = td->o.continue_on_error;
1636                 ts->total_err_count += td->total_err_count;
1637                 ts->first_error = td->first_error;
1638                 if (!ts->error) {
1639                         if (!td->error && td->o.continue_on_error &&
1640                             td->first_error) {
1641                                 ts->error = td->first_error;
1642                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1643                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1644                         } else  if (td->error) {
1645                                 ts->error = td->error;
1646                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1647                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1648                         }
1649                 }
1650
1651                 ts->latency_depth = td->latency_qd;
1652                 ts->latency_target = td->o.latency_target;
1653                 ts->latency_percentile = td->o.latency_percentile;
1654                 ts->latency_window = td->o.latency_window;
1655
1656                 ts->nr_block_infos = td->ts.nr_block_infos;
1657                 for (k = 0; k < ts->nr_block_infos; k++)
1658                         ts->block_infos[k] = td->ts.block_infos[k];
1659
1660                 sum_thread_stats(ts, &td->ts, idx == 1);
1661
1662                 if (td->o.ss_dur) {
1663                         ts->ss_state = td->ss.state;
1664                         ts->ss_dur = td->ss.dur;
1665                         ts->ss_head = td->ss.head;
1666                         ts->ss_bw_data = td->ss.bw_data;
1667                         ts->ss_iops_data = td->ss.iops_data;
1668                         ts->ss_limit.u.f = td->ss.limit;
1669                         ts->ss_slope.u.f = td->ss.slope;
1670                         ts->ss_deviation.u.f = td->ss.deviation;
1671                         ts->ss_criterion.u.f = td->ss.criterion;
1672                 }
1673                 else
1674                         ts->ss_dur = ts->ss_state = 0;
1675         }
1676
1677         for (i = 0; i < nr_ts; i++) {
1678                 unsigned long long bw;
1679
1680                 ts = &threadstats[i];
1681                 if (ts->groupid == -1)
1682                         continue;
1683                 rs = &runstats[ts->groupid];
1684                 rs->kb_base = ts->kb_base;
1685                 rs->unit_base = ts->unit_base;
1686                 rs->unified_rw_rep += ts->unified_rw_rep;
1687
1688                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1689                         if (!ts->runtime[j])
1690                                 continue;
1691                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1692                                 rs->min_run[j] = ts->runtime[j];
1693                         if (ts->runtime[j] > rs->max_run[j])
1694                                 rs->max_run[j] = ts->runtime[j];
1695
1696                         bw = 0;
1697                         if (ts->runtime[j]) {
1698                                 unsigned long runt = ts->runtime[j];
1699                                 unsigned long long kb;
1700
1701                                 kb = ts->io_bytes[j] / rs->kb_base;
1702                                 bw = kb * 1000 / runt;
1703                         }
1704                         if (bw < rs->min_bw[j])
1705                                 rs->min_bw[j] = bw;
1706                         if (bw > rs->max_bw[j])
1707                                 rs->max_bw[j] = bw;
1708
1709                         rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1710                 }
1711         }
1712
1713         for (i = 0; i < groupid + 1; i++) {
1714                 int ddir;
1715
1716                 rs = &runstats[i];
1717
1718                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1719                         if (rs->max_run[ddir])
1720                                 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1721                                                 rs->max_run[ddir];
1722                 }
1723         }
1724
1725         for (i = 0; i < FIO_OUTPUT_NR; i++)
1726                 buf_output_init(&output[i]);
1727
1728         /*
1729          * don't overwrite last signal output
1730          */
1731         if (output_format & FIO_OUTPUT_NORMAL)
1732                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1733         if (output_format & FIO_OUTPUT_JSON) {
1734                 struct thread_data *global;
1735                 char time_buf[32];
1736                 struct timeval now;
1737                 unsigned long long ms_since_epoch;
1738
1739                 gettimeofday(&now, NULL);
1740                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1741                                  (unsigned long long)(now.tv_usec) / 1000;
1742
1743                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1744                                 sizeof(time_buf));
1745                 time_buf[strlen(time_buf) - 1] = '\0';
1746
1747                 root = json_create_object();
1748                 json_object_add_value_string(root, "fio version", fio_version_string);
1749                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1750                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1751                 json_object_add_value_string(root, "time", time_buf);
1752                 global = get_global_options();
1753                 json_add_job_opts(root, "global options", &global->opt_list, false);
1754                 array = json_create_array();
1755                 json_object_add_value_array(root, "jobs", array);
1756         }
1757
1758         if (is_backend)
1759                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1760
1761         for (i = 0; i < nr_ts; i++) {
1762                 ts = &threadstats[i];
1763                 rs = &runstats[ts->groupid];
1764
1765                 if (is_backend) {
1766                         fio_server_send_job_options(opt_lists[i], i);
1767                         fio_server_send_ts(ts, rs);
1768                 } else {
1769                         if (output_format & FIO_OUTPUT_TERSE)
1770                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1771                         if (output_format & FIO_OUTPUT_JSON) {
1772                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1773                                 json_array_add_value_object(array, tmp);
1774                         }
1775                         if (output_format & FIO_OUTPUT_NORMAL)
1776                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1777                 }
1778         }
1779         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1780                 /* disk util stats, if any */
1781                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1782
1783                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1784
1785                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1786                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1787                 json_free_object(root);
1788         }
1789
1790         for (i = 0; i < groupid + 1; i++) {
1791                 rs = &runstats[i];
1792
1793                 rs->groupid = i;
1794                 if (is_backend)
1795                         fio_server_send_gs(rs);
1796                 else if (output_format & FIO_OUTPUT_NORMAL)
1797                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1798         }
1799
1800         if (is_backend)
1801                 fio_server_send_du();
1802         else if (output_format & FIO_OUTPUT_NORMAL) {
1803                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1804                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1805         }
1806
1807         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1808                 buf_output_flush(&output[i]);
1809                 buf_output_free(&output[i]);
1810         }
1811
1812         log_info_flush();
1813         free(runstats);
1814         free(threadstats);
1815         free(opt_lists);
1816 }
1817
1818 void show_run_stats(void)
1819 {
1820         fio_mutex_down(stat_mutex);
1821         __show_run_stats();
1822         fio_mutex_up(stat_mutex);
1823 }
1824
1825 void __show_running_run_stats(void)
1826 {
1827         struct thread_data *td;
1828         unsigned long long *rt;
1829         struct timeval tv;
1830         int i;
1831
1832         fio_mutex_down(stat_mutex);
1833
1834         rt = malloc(thread_number * sizeof(unsigned long long));
1835         fio_gettime(&tv, NULL);
1836
1837         for_each_td(td, i) {
1838                 td->update_rusage = 1;
1839                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1840                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1841                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1842                 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1843
1844                 rt[i] = mtime_since(&td->start, &tv);
1845                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1846                         td->ts.runtime[DDIR_READ] += rt[i];
1847                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1848                         td->ts.runtime[DDIR_WRITE] += rt[i];
1849                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1850                         td->ts.runtime[DDIR_TRIM] += rt[i];
1851         }
1852
1853         for_each_td(td, i) {
1854                 if (td->runstate >= TD_EXITED)
1855                         continue;
1856                 if (td->rusage_sem) {
1857                         td->update_rusage = 1;
1858                         fio_mutex_down(td->rusage_sem);
1859                 }
1860                 td->update_rusage = 0;
1861         }
1862
1863         __show_run_stats();
1864
1865         for_each_td(td, i) {
1866                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1867                         td->ts.runtime[DDIR_READ] -= rt[i];
1868                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1869                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1870                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1871                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1872         }
1873
1874         free(rt);
1875         fio_mutex_up(stat_mutex);
1876 }
1877
1878 static int status_interval_init;
1879 static struct timeval status_time;
1880 static int status_file_disabled;
1881
1882 #define FIO_STATUS_FILE         "fio-dump-status"
1883
1884 static int check_status_file(void)
1885 {
1886         struct stat sb;
1887         const char *temp_dir;
1888         char fio_status_file_path[PATH_MAX];
1889
1890         if (status_file_disabled)
1891                 return 0;
1892
1893         temp_dir = getenv("TMPDIR");
1894         if (temp_dir == NULL) {
1895                 temp_dir = getenv("TEMP");
1896                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1897                         temp_dir = NULL;
1898         }
1899         if (temp_dir == NULL)
1900                 temp_dir = "/tmp";
1901
1902         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1903
1904         if (stat(fio_status_file_path, &sb))
1905                 return 0;
1906
1907         if (unlink(fio_status_file_path) < 0) {
1908                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1909                                                         strerror(errno));
1910                 log_err("fio: disabling status file updates\n");
1911                 status_file_disabled = 1;
1912         }
1913
1914         return 1;
1915 }
1916
1917 void check_for_running_stats(void)
1918 {
1919         if (status_interval) {
1920                 if (!status_interval_init) {
1921                         fio_gettime(&status_time, NULL);
1922                         status_interval_init = 1;
1923                 } else if (mtime_since_now(&status_time) >= status_interval) {
1924                         show_running_run_stats();
1925                         fio_gettime(&status_time, NULL);
1926                         return;
1927                 }
1928         }
1929         if (check_status_file()) {
1930                 show_running_run_stats();
1931                 return;
1932         }
1933 }
1934
1935 static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1936 {
1937         double val = data;
1938         double delta;
1939
1940         if (data > is->max_val)
1941                 is->max_val = data;
1942         if (data < is->min_val)
1943                 is->min_val = data;
1944
1945         delta = val - is->mean.u.f;
1946         if (delta) {
1947                 is->mean.u.f += delta / (is->samples + 1.0);
1948                 is->S.u.f += delta * (val - is->mean.u.f);
1949         }
1950
1951         is->samples++;
1952 }
1953
1954 /*
1955  * Return a struct io_logs, which is added to the tail of the log
1956  * list for 'iolog'.
1957  */
1958 static struct io_logs *get_new_log(struct io_log *iolog)
1959 {
1960         size_t new_size, new_samples;
1961         struct io_logs *cur_log;
1962
1963         /*
1964          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1965          * forever
1966          */
1967         if (!iolog->cur_log_max)
1968                 new_samples = DEF_LOG_ENTRIES;
1969         else {
1970                 new_samples = iolog->cur_log_max * 2;
1971                 if (new_samples > MAX_LOG_ENTRIES)
1972                         new_samples = MAX_LOG_ENTRIES;
1973         }
1974
1975         new_size = new_samples * log_entry_sz(iolog);
1976
1977         cur_log = smalloc(sizeof(*cur_log));
1978         if (cur_log) {
1979                 INIT_FLIST_HEAD(&cur_log->list);
1980                 cur_log->log = malloc(new_size);
1981                 if (cur_log->log) {
1982                         cur_log->nr_samples = 0;
1983                         cur_log->max_samples = new_samples;
1984                         flist_add_tail(&cur_log->list, &iolog->io_logs);
1985                         iolog->cur_log_max = new_samples;
1986                         return cur_log;
1987                 }
1988                 sfree(cur_log);
1989         }
1990
1991         return NULL;
1992 }
1993
1994 /*
1995  * Add and return a new log chunk, or return current log if big enough
1996  */
1997 static struct io_logs *regrow_log(struct io_log *iolog)
1998 {
1999         struct io_logs *cur_log;
2000         int i;
2001
2002         if (!iolog || iolog->disabled)
2003                 goto disable;
2004
2005         cur_log = iolog_cur_log(iolog);
2006         if (!cur_log) {
2007                 cur_log = get_new_log(iolog);
2008                 if (!cur_log)
2009                         return NULL;
2010         }
2011
2012         if (cur_log->nr_samples < cur_log->max_samples)
2013                 return cur_log;
2014
2015         /*
2016          * No room for a new sample. If we're compressing on the fly, flush
2017          * out the current chunk
2018          */
2019         if (iolog->log_gz) {
2020                 if (iolog_cur_flush(iolog, cur_log)) {
2021                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2022                         return NULL;
2023                 }
2024         }
2025
2026         /*
2027          * Get a new log array, and add to our list
2028          */
2029         cur_log = get_new_log(iolog);
2030         if (!cur_log) {
2031                 log_err("fio: failed extending iolog! Will stop logging.\n");
2032                 return NULL;
2033         }
2034
2035         if (!iolog->pending || !iolog->pending->nr_samples)
2036                 return cur_log;
2037
2038         /*
2039          * Flush pending items to new log
2040          */
2041         for (i = 0; i < iolog->pending->nr_samples; i++) {
2042                 struct io_sample *src, *dst;
2043
2044                 src = get_sample(iolog, iolog->pending, i);
2045                 dst = get_sample(iolog, cur_log, i);
2046                 memcpy(dst, src, log_entry_sz(iolog));
2047         }
2048         cur_log->nr_samples = iolog->pending->nr_samples;
2049
2050         iolog->pending->nr_samples = 0;
2051         return cur_log;
2052 disable:
2053         if (iolog)
2054                 iolog->disabled = true;
2055         return NULL;
2056 }
2057
2058 void regrow_logs(struct thread_data *td)
2059 {
2060         regrow_log(td->slat_log);
2061         regrow_log(td->clat_log);
2062         regrow_log(td->clat_hist_log);
2063         regrow_log(td->lat_log);
2064         regrow_log(td->bw_log);
2065         regrow_log(td->iops_log);
2066         td->flags &= ~TD_F_REGROW_LOGS;
2067 }
2068
2069 static struct io_logs *get_cur_log(struct io_log *iolog)
2070 {
2071         struct io_logs *cur_log;
2072
2073         cur_log = iolog_cur_log(iolog);
2074         if (!cur_log) {
2075                 cur_log = get_new_log(iolog);
2076                 if (!cur_log)
2077                         return NULL;
2078         }
2079
2080         if (cur_log->nr_samples < cur_log->max_samples)
2081                 return cur_log;
2082
2083         /*
2084          * Out of space. If we're in IO offload mode, or we're not doing
2085          * per unit logging (hence logging happens outside of the IO thread
2086          * as well), add a new log chunk inline. If we're doing inline
2087          * submissions, flag 'td' as needing a log regrow and we'll take
2088          * care of it on the submission side.
2089          */
2090         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2091             !per_unit_log(iolog))
2092                 return regrow_log(iolog);
2093
2094         iolog->td->flags |= TD_F_REGROW_LOGS;
2095         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2096         return iolog->pending;
2097 }
2098
2099 static void __add_log_sample(struct io_log *iolog, unsigned long val,
2100                              enum fio_ddir ddir, unsigned int bs,
2101                              unsigned long t, uint64_t offset)
2102 {
2103         struct io_logs *cur_log;
2104
2105         if (iolog->disabled)
2106                 return;
2107         if (flist_empty(&iolog->io_logs))
2108                 iolog->avg_last = t;
2109
2110         cur_log = get_cur_log(iolog);
2111         if (cur_log) {
2112                 struct io_sample *s;
2113
2114                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2115
2116                 s->val = val;
2117                 s->time = t;
2118                 io_sample_set_ddir(iolog, s, ddir);
2119                 s->bs = bs;
2120
2121                 if (iolog->log_offset) {
2122                         struct io_sample_offset *so = (void *) s;
2123
2124                         so->offset = offset;
2125                 }
2126
2127                 cur_log->nr_samples++;
2128                 return;
2129         }
2130
2131         iolog->disabled = true;
2132 }
2133
2134 static inline void reset_io_stat(struct io_stat *ios)
2135 {
2136         ios->max_val = ios->min_val = ios->samples = 0;
2137         ios->mean.u.f = ios->S.u.f = 0;
2138 }
2139
2140 void reset_io_stats(struct thread_data *td)
2141 {
2142         struct thread_stat *ts = &td->ts;
2143         int i, j;
2144
2145         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2146                 reset_io_stat(&ts->clat_stat[i]);
2147                 reset_io_stat(&ts->slat_stat[i]);
2148                 reset_io_stat(&ts->lat_stat[i]);
2149                 reset_io_stat(&ts->bw_stat[i]);
2150                 reset_io_stat(&ts->iops_stat[i]);
2151
2152                 ts->io_bytes[i] = 0;
2153                 ts->runtime[i] = 0;
2154
2155                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2156                         ts->io_u_plat[i][j] = 0;
2157         }
2158
2159         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2160                 ts->io_u_map[i] = 0;
2161                 ts->io_u_submit[i] = 0;
2162                 ts->io_u_complete[i] = 0;
2163                 ts->io_u_lat_u[i] = 0;
2164                 ts->io_u_lat_m[i] = 0;
2165                 ts->total_submit = 0;
2166                 ts->total_complete = 0;
2167         }
2168
2169         for (i = 0; i < 3; i++) {
2170                 ts->total_io_u[i] = 0;
2171                 ts->short_io_u[i] = 0;
2172                 ts->drop_io_u[i] = 0;
2173         }
2174 }
2175
2176 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2177                               unsigned long elapsed, bool log_max)
2178 {
2179         /*
2180          * Note an entry in the log. Use the mean from the logged samples,
2181          * making sure to properly round up. Only write a log entry if we
2182          * had actual samples done.
2183          */
2184         if (iolog->avg_window[ddir].samples) {
2185                 unsigned long val;
2186
2187                 if (log_max)
2188                         val = iolog->avg_window[ddir].max_val;
2189                 else
2190                         val = iolog->avg_window[ddir].mean.u.f + 0.50;
2191
2192                 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2193         }
2194
2195         reset_io_stat(&iolog->avg_window[ddir]);
2196 }
2197
2198 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2199                              bool log_max)
2200 {
2201         int ddir;
2202
2203         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2204                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2205 }
2206
2207 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2208                            unsigned long val, enum fio_ddir ddir,
2209                            unsigned int bs, uint64_t offset)
2210 {
2211         unsigned long elapsed, this_window;
2212
2213         if (!ddir_rw(ddir))
2214                 return 0;
2215
2216         elapsed = mtime_since_now(&td->epoch);
2217
2218         /*
2219          * If no time averaging, just add the log sample.
2220          */
2221         if (!iolog->avg_msec) {
2222                 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2223                 return 0;
2224         }
2225
2226         /*
2227          * Add the sample. If the time period has passed, then
2228          * add that entry to the log and clear.
2229          */
2230         add_stat_sample(&iolog->avg_window[ddir], val);
2231
2232         /*
2233          * If period hasn't passed, adding the above sample is all we
2234          * need to do.
2235          */
2236         this_window = elapsed - iolog->avg_last;
2237         if (elapsed < iolog->avg_last)
2238                 return iolog->avg_last - elapsed;
2239         else if (this_window < iolog->avg_msec) {
2240                 int diff = iolog->avg_msec - this_window;
2241
2242                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2243                         return diff;
2244         }
2245
2246         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2247
2248         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2249         return iolog->avg_msec;
2250 }
2251
2252 void finalize_logs(struct thread_data *td, bool unit_logs)
2253 {
2254         unsigned long elapsed;
2255
2256         elapsed = mtime_since_now(&td->epoch);
2257
2258         if (td->clat_log && unit_logs)
2259                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2260         if (td->slat_log && unit_logs)
2261                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2262         if (td->lat_log && unit_logs)
2263                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2264         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2265                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2266         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2267                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2268 }
2269
2270 void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2271 {
2272         struct io_log *iolog;
2273
2274         if (!ddir_rw(ddir))
2275                 return;
2276
2277         iolog = agg_io_log[ddir];
2278         __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2279 }
2280
2281 static void add_clat_percentile_sample(struct thread_stat *ts,
2282                                 unsigned long usec, enum fio_ddir ddir)
2283 {
2284         unsigned int idx = plat_val_to_idx(usec);
2285         assert(idx < FIO_IO_U_PLAT_NR);
2286
2287         ts->io_u_plat[ddir][idx]++;
2288 }
2289
2290 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2291                      unsigned long usec, unsigned int bs, uint64_t offset)
2292 {
2293         unsigned long elapsed, this_window;
2294         struct thread_stat *ts = &td->ts;
2295         struct io_log *iolog = td->clat_hist_log;
2296
2297         td_io_u_lock(td);
2298
2299         add_stat_sample(&ts->clat_stat[ddir], usec);
2300
2301         if (td->clat_log)
2302                 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2303
2304         if (ts->clat_percentiles)
2305                 add_clat_percentile_sample(ts, usec, ddir);
2306
2307         if (iolog && iolog->hist_msec) {
2308                 struct io_hist *hw = &iolog->hist_window[ddir];
2309
2310                 hw->samples++;
2311                 elapsed = mtime_since_now(&td->epoch);
2312                 if (!hw->hist_last)
2313                         hw->hist_last = elapsed;
2314                 this_window = elapsed - hw->hist_last;
2315                 
2316                 if (this_window >= iolog->hist_msec) {
2317                         unsigned int *io_u_plat;
2318                         unsigned int *dst;
2319
2320                         /*
2321                          * Make a byte-for-byte copy of the latency histogram
2322                          * stored in td->ts.io_u_plat[ddir], recording it in a
2323                          * log sample. Note that the matching call to free() is
2324                          * located in iolog.c after printing this sample to the
2325                          * log file.
2326                          */
2327                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2328                         dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2329                         memcpy(dst, io_u_plat,
2330                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2331                         __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2332                                                 elapsed, offset);
2333
2334                         /*
2335                          * Update the last time we recorded as being now, minus
2336                          * any drift in time we encountered before actually
2337                          * making the record.
2338                          */
2339                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2340                         hw->samples = 0;
2341                 }
2342         }
2343
2344         td_io_u_unlock(td);
2345 }
2346
2347 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2348                      unsigned long usec, unsigned int bs, uint64_t offset)
2349 {
2350         struct thread_stat *ts = &td->ts;
2351
2352         if (!ddir_rw(ddir))
2353                 return;
2354
2355         td_io_u_lock(td);
2356
2357         add_stat_sample(&ts->slat_stat[ddir], usec);
2358
2359         if (td->slat_log)
2360                 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2361
2362         td_io_u_unlock(td);
2363 }
2364
2365 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2366                     unsigned long usec, unsigned int bs, uint64_t offset)
2367 {
2368         struct thread_stat *ts = &td->ts;
2369
2370         if (!ddir_rw(ddir))
2371                 return;
2372
2373         td_io_u_lock(td);
2374
2375         add_stat_sample(&ts->lat_stat[ddir], usec);
2376
2377         if (td->lat_log)
2378                 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2379
2380         td_io_u_unlock(td);
2381 }
2382
2383 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2384                    unsigned int bytes, unsigned long spent)
2385 {
2386         struct thread_stat *ts = &td->ts;
2387         unsigned long rate;
2388
2389         if (spent)
2390                 rate = bytes * 1000 / spent;
2391         else
2392                 rate = 0;
2393
2394         td_io_u_lock(td);
2395
2396         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2397
2398         if (td->bw_log)
2399                 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2400
2401         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2402         td_io_u_unlock(td);
2403 }
2404
2405 static int add_bw_samples(struct thread_data *td, struct timeval *t)
2406 {
2407         struct thread_stat *ts = &td->ts;
2408         unsigned long spent, rate;
2409         enum fio_ddir ddir;
2410         unsigned int next, next_log;
2411
2412         next_log = td->o.bw_avg_time;
2413
2414         spent = mtime_since(&td->bw_sample_time, t);
2415         if (spent < td->o.bw_avg_time &&
2416             td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2417                 return td->o.bw_avg_time - spent;
2418
2419         td_io_u_lock(td);
2420
2421         /*
2422          * Compute both read and write rates for the interval.
2423          */
2424         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2425                 uint64_t delta;
2426
2427                 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2428                 if (!delta)
2429                         continue; /* No entries for interval */
2430
2431                 if (spent)
2432                         rate = delta * 1000 / spent / 1024;
2433                 else
2434                         rate = 0;
2435
2436                 add_stat_sample(&ts->bw_stat[ddir], rate);
2437
2438                 if (td->bw_log) {
2439                         unsigned int bs = 0;
2440
2441                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2442                                 bs = td->o.min_bs[ddir];
2443
2444                         next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2445                         next_log = min(next_log, next);
2446                 }
2447
2448                 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2449         }
2450
2451         timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2452
2453         td_io_u_unlock(td);
2454
2455         if (spent <= td->o.bw_avg_time)
2456                 return min(next_log, td->o.bw_avg_time);
2457
2458         next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2459         return min(next, next_log);
2460 }
2461
2462 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2463                      unsigned int bytes)
2464 {
2465         struct thread_stat *ts = &td->ts;
2466
2467         td_io_u_lock(td);
2468
2469         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2470
2471         if (td->iops_log)
2472                 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2473
2474         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2475         td_io_u_unlock(td);
2476 }
2477
2478 static int add_iops_samples(struct thread_data *td, struct timeval *t)
2479 {
2480         struct thread_stat *ts = &td->ts;
2481         unsigned long spent, iops;
2482         enum fio_ddir ddir;
2483         unsigned int next, next_log;
2484
2485         next_log = td->o.iops_avg_time;
2486
2487         spent = mtime_since(&td->iops_sample_time, t);
2488         if (spent < td->o.iops_avg_time &&
2489             td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2490                 return td->o.iops_avg_time - spent;
2491
2492         td_io_u_lock(td);
2493
2494         /*
2495          * Compute both read and write rates for the interval.
2496          */
2497         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2498                 uint64_t delta;
2499
2500                 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2501                 if (!delta)
2502                         continue; /* No entries for interval */
2503
2504                 if (spent)
2505                         iops = (delta * 1000) / spent;
2506                 else
2507                         iops = 0;
2508
2509                 add_stat_sample(&ts->iops_stat[ddir], iops);
2510
2511                 if (td->iops_log) {
2512                         unsigned int bs = 0;
2513
2514                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2515                                 bs = td->o.min_bs[ddir];
2516
2517                         next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2518                         next_log = min(next_log, next);
2519                 }
2520
2521                 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2522         }
2523
2524         timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2525
2526         td_io_u_unlock(td);
2527
2528         if (spent <= td->o.iops_avg_time)
2529                 return min(next_log, td->o.iops_avg_time);
2530
2531         next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2532         return min(next, next_log);
2533 }
2534
2535 /*
2536  * Returns msecs to next event
2537  */
2538 int calc_log_samples(void)
2539 {
2540         struct thread_data *td;
2541         unsigned int next = ~0U, tmp;
2542         struct timeval now;
2543         int i;
2544
2545         fio_gettime(&now, NULL);
2546
2547         for_each_td(td, i) {
2548                 if (in_ramp_time(td) ||
2549                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2550                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2551                         continue;
2552                 }
2553                 if (!per_unit_log(td->bw_log)) {
2554                         tmp = add_bw_samples(td, &now);
2555                         if (tmp < next)
2556                                 next = tmp;
2557                 }
2558                 if (!per_unit_log(td->iops_log)) {
2559                         tmp = add_iops_samples(td, &now);
2560                         if (tmp < next)
2561                                 next = tmp;
2562                 }
2563         }
2564
2565         return next == ~0U ? 0 : next;
2566 }
2567
2568 void stat_init(void)
2569 {
2570         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2571 }
2572
2573 void stat_exit(void)
2574 {
2575         /*
2576          * When we have the mutex, we know out-of-band access to it
2577          * have ended.
2578          */
2579         fio_mutex_down(stat_mutex);
2580         fio_mutex_remove(stat_mutex);
2581 }
2582
2583 /*
2584  * Called from signal handler. Wake up status thread.
2585  */
2586 void show_running_run_stats(void)
2587 {
2588         helper_do_stat();
2589 }
2590
2591 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2592 {
2593         /* Ignore io_u's which span multiple blocks--they will just get
2594          * inaccurate counts. */
2595         int idx = (io_u->offset - io_u->file->file_offset)
2596                         / td->o.bs[DDIR_TRIM];
2597         uint32_t *info = &td->ts.block_infos[idx];
2598         assert(idx < td->ts.nr_block_infos);
2599         return info;
2600 }