arch: tsc_reliable can be a bool
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned long long *ovals = NULL;
145         int is_last;
146
147         *minv = -1ULL;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int divisor, len, i, j = 0;
205         unsigned long long minv, maxv;
206         unsigned long long *ovals;
207         int is_last, per_line, scale_down, time_width;
208         char fmt[32];
209
210         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211         if (!len)
212                 goto out;
213
214         /*
215          * We default to nsecs, but if the value range is such that we
216          * should scale down to usecs or msecs, do that.
217          */
218         if (minv > 2000000 && maxv > 99999999ULL) {
219                 scale_down = 2;
220                 divisor = 1000000;
221                 log_buf(out, "    clat percentiles (msec):\n     |");
222         } else if (minv > 2000 && maxv > 99999) {
223                 scale_down = 1;
224                 divisor = 1000;
225                 log_buf(out, "    clat percentiles (usec):\n     |");
226         } else {
227                 scale_down = 0;
228                 divisor = 1;
229                 log_buf(out, "    clat percentiles (nsec):\n     |");
230         }
231
232
233         time_width = max(5, (int) (log10(maxv / divisor) + 1));
234         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235                         precision, time_width);
236         /* fmt will be something like " %5.2fth=[%4llu]%c" */
237         per_line = (80 - 7) / (precision + 10 + time_width);
238
239         for (j = 0; j < len; j++) {
240                 /* for formatting */
241                 if (j != 0 && (j % per_line) == 0)
242                         log_buf(out, "     |");
243
244                 /* end of the list */
245                 is_last = (j == len - 1);
246
247                 for (i = 0; i < scale_down; i++)
248                         ovals[j] = (ovals[j] + 999) / 1000;
249
250                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252                 if (is_last)
253                         break;
254
255                 if ((j % per_line) == per_line - 1)     /* for formatting */
256                         log_buf(out, "\n");
257         }
258
259 out:
260         if (ovals)
261                 free(ovals);
262 }
263
264 bool calc_lat(struct io_stat *is, unsigned long long *min,
265               unsigned long long *max, double *mean, double *dev)
266 {
267         double n = (double) is->samples;
268
269         if (n == 0)
270                 return false;
271
272         *min = is->min_val;
273         *max = is->max_val;
274         *mean = is->mean.u.f;
275
276         if (n > 1.0)
277                 *dev = sqrt(is->S.u.f / (n - 1.0));
278         else
279                 *dev = 0;
280
281         return true;
282 }
283
284 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285 {
286         char *io, *agg, *min, *max;
287         char *ioalt, *aggalt, *minalt, *maxalt;
288         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
289         int i;
290
291         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294                 const int i2p = is_power_of_2(rs->kb_base);
295
296                 if (!rs->max_run[i])
297                         continue;
298
299                 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
300                 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
301                 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
302                 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
303                 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
304                 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
305                 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
306                 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
307                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308                                 rs->unified_rw_rep ? "  MIXED" : str[i],
309                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310                                 (unsigned long long) rs->min_run[i],
311                                 (unsigned long long) rs->max_run[i]);
312
313                 free(io);
314                 free(agg);
315                 free(min);
316                 free(max);
317                 free(ioalt);
318                 free(aggalt);
319                 free(minalt);
320                 free(maxalt);
321         }
322 }
323
324 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
325 {
326         int i;
327
328         /*
329          * Do depth distribution calculations
330          */
331         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332                 if (total) {
333                         io_u_dist[i] = (double) map[i] / (double) total;
334                         io_u_dist[i] *= 100.0;
335                         if (io_u_dist[i] < 0.1 && map[i])
336                                 io_u_dist[i] = 0.1;
337                 } else
338                         io_u_dist[i] = 0.0;
339         }
340 }
341
342 static void stat_calc_lat(struct thread_stat *ts, double *dst,
343                           unsigned int *src, int nr)
344 {
345         unsigned long total = ddir_rw_sum(ts->total_io_u);
346         int i;
347
348         /*
349          * Do latency distribution calculations
350          */
351         for (i = 0; i < nr; i++) {
352                 if (total) {
353                         dst[i] = (double) src[i] / (double) total;
354                         dst[i] *= 100.0;
355                         if (dst[i] < 0.01 && src[i])
356                                 dst[i] = 0.01;
357                 } else
358                         dst[i] = 0.0;
359         }
360 }
361
362 /*
363  * To keep the terse format unaltered, add all of the ns latency
364  * buckets to the first us latency bucket
365  */
366 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367 {
368         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369         int i;
370
371         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374                 ntotal += ts->io_u_lat_n[i];
375
376         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377 }
378
379 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380 {
381         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382 }
383
384 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385 {
386         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387 }
388
389 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390 {
391         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392 }
393
394 static void display_lat(const char *name, unsigned long long min,
395                         unsigned long long max, double mean, double dev,
396                         struct buf_output *out)
397 {
398         const char *base = "(nsec)";
399         char *minp, *maxp;
400
401         if (nsec_to_msec(&min, &max, &mean, &dev))
402                 base = "(msec)";
403         else if (nsec_to_usec(&min, &max, &mean, &dev))
404                 base = "(usec)";
405
406         minp = num2str(min, 6, 1, 0, N2S_NONE);
407         maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
410                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412         free(minp);
413         free(maxp);
414 }
415
416 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417                              int ddir, struct buf_output *out)
418 {
419         const char *str[] = { " read", "write", " trim" };
420         unsigned long runt;
421         unsigned long long min, max, bw, iops;
422         double mean, dev;
423         char *io_p, *bw_p, *bw_p_alt, *iops_p;
424         int i2p;
425
426         assert(ddir_rw(ddir));
427
428         if (!ts->runtime[ddir])
429                 return;
430
431         i2p = is_power_of_2(rs->kb_base);
432         runt = ts->runtime[ddir];
433
434         bw = (1000 * ts->io_bytes[ddir]) / runt;
435         io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
436         bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
437         bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
438
439         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
440         iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
441
442         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
443                         rs->unified_rw_rep ? "mixed" : str[ddir],
444                         iops_p, bw_p, bw_p_alt, io_p,
445                         (unsigned long long) ts->runtime[ddir]);
446
447         free(io_p);
448         free(bw_p);
449         free(bw_p_alt);
450         free(iops_p);
451
452         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
453                 display_lat("slat", min, max, mean, dev, out);
454         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
455                 display_lat("clat", min, max, mean, dev, out);
456         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
457                 display_lat(" lat", min, max, mean, dev, out);
458
459         if (ts->clat_percentiles) {
460                 show_clat_percentiles(ts->io_u_plat[ddir],
461                                         ts->clat_stat[ddir].samples,
462                                         ts->percentile_list,
463                                         ts->percentile_precision, out);
464         }
465         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
466                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
467                 const char *bw_str;
468
469                 if ((rs->unit_base == 1) && i2p)
470                         bw_str = "Kibit";
471                 else if (rs->unit_base == 1)
472                         bw_str = "kbit";
473                 else if (i2p)
474                         bw_str = "KiB";
475                 else
476                         bw_str = "kB";
477
478                 if (rs->unit_base == 1) {
479                         min *= 8.0;
480                         max *= 8.0;
481                         mean *= 8.0;
482                         dev *= 8.0;
483                 }
484
485                 if (rs->agg[ddir]) {
486                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
487                         if (p_of_agg > 100.0)
488                                 p_of_agg = 100.0;
489                 }
490
491                 if (mean > fkb_base * fkb_base) {
492                         min /= fkb_base;
493                         max /= fkb_base;
494                         mean /= fkb_base;
495                         dev /= fkb_base;
496                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
497                 }
498
499                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
500                         bw_str, min, max, p_of_agg, mean, dev);
501         }
502 }
503
504 static int show_lat(double *io_u_lat, int nr, const char **ranges,
505                     const char *msg, struct buf_output *out)
506 {
507         int new_line = 1, i, line = 0, shown = 0;
508
509         for (i = 0; i < nr; i++) {
510                 if (io_u_lat[i] <= 0.0)
511                         continue;
512                 shown = 1;
513                 if (new_line) {
514                         if (line)
515                                 log_buf(out, "\n");
516                         log_buf(out, "    lat (%s) : ", msg);
517                         new_line = 0;
518                         line = 0;
519                 }
520                 if (line)
521                         log_buf(out, ", ");
522                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
523                 line++;
524                 if (line == 5)
525                         new_line = 1;
526         }
527
528         if (shown)
529                 log_buf(out, "\n");
530
531         return shown;
532 }
533
534 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
535 {
536         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
537                                  "250=", "500=", "750=", "1000=", };
538
539         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
540 }
541
542 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
543 {
544         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
545                                  "250=", "500=", "750=", "1000=", };
546
547         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
548 }
549
550 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
551 {
552         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
553                                  "250=", "500=", "750=", "1000=", "2000=",
554                                  ">=2000=", };
555
556         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
557 }
558
559 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
560 {
561         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
562         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
563         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
564
565         stat_calc_lat_n(ts, io_u_lat_n);
566         stat_calc_lat_u(ts, io_u_lat_u);
567         stat_calc_lat_m(ts, io_u_lat_m);
568
569         show_lat_n(io_u_lat_n, out);
570         show_lat_u(io_u_lat_u, out);
571         show_lat_m(io_u_lat_m, out);
572 }
573
574 static int block_state_category(int block_state)
575 {
576         switch (block_state) {
577         case BLOCK_STATE_UNINIT:
578                 return 0;
579         case BLOCK_STATE_TRIMMED:
580         case BLOCK_STATE_WRITTEN:
581                 return 1;
582         case BLOCK_STATE_WRITE_FAILURE:
583         case BLOCK_STATE_TRIM_FAILURE:
584                 return 2;
585         default:
586                 /* Silence compile warning on some BSDs and have a return */
587                 assert(0);
588                 return -1;
589         }
590 }
591
592 static int compare_block_infos(const void *bs1, const void *bs2)
593 {
594         uint32_t block1 = *(uint32_t *)bs1;
595         uint32_t block2 = *(uint32_t *)bs2;
596         int state1 = BLOCK_INFO_STATE(block1);
597         int state2 = BLOCK_INFO_STATE(block2);
598         int bscat1 = block_state_category(state1);
599         int bscat2 = block_state_category(state2);
600         int cycles1 = BLOCK_INFO_TRIMS(block1);
601         int cycles2 = BLOCK_INFO_TRIMS(block2);
602
603         if (bscat1 < bscat2)
604                 return -1;
605         if (bscat1 > bscat2)
606                 return 1;
607
608         if (cycles1 < cycles2)
609                 return -1;
610         if (cycles1 > cycles2)
611                 return 1;
612
613         if (state1 < state2)
614                 return -1;
615         if (state1 > state2)
616                 return 1;
617
618         assert(block1 == block2);
619         return 0;
620 }
621
622 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
623                                   fio_fp64_t *plist, unsigned int **percentiles,
624                                   unsigned int *types)
625 {
626         int len = 0;
627         int i, nr_uninit;
628
629         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
630
631         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
632                 len++;
633
634         if (!len)
635                 return 0;
636
637         /*
638          * Sort the percentile list. Note that it may already be sorted if
639          * we are using the default values, but since it's a short list this
640          * isn't a worry. Also note that this does not work for NaN values.
641          */
642         if (len > 1)
643                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
644
645         nr_uninit = 0;
646         /* Start only after the uninit entries end */
647         for (nr_uninit = 0;
648              nr_uninit < nr_block_infos
649                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
650              nr_uninit ++)
651                 ;
652
653         if (nr_uninit == nr_block_infos)
654                 return 0;
655
656         *percentiles = calloc(len, sizeof(**percentiles));
657
658         for (i = 0; i < len; i++) {
659                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
660                                 + nr_uninit;
661                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
662         }
663
664         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
665         for (i = 0; i < nr_block_infos; i++)
666                 types[BLOCK_INFO_STATE(block_infos[i])]++;
667
668         return len;
669 }
670
671 static const char *block_state_names[] = {
672         [BLOCK_STATE_UNINIT] = "unwritten",
673         [BLOCK_STATE_TRIMMED] = "trimmed",
674         [BLOCK_STATE_WRITTEN] = "written",
675         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
676         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
677 };
678
679 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
680                              fio_fp64_t *plist, struct buf_output *out)
681 {
682         int len, pos, i;
683         unsigned int *percentiles = NULL;
684         unsigned int block_state_counts[BLOCK_STATE_COUNT];
685
686         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
687                                      &percentiles, block_state_counts);
688
689         log_buf(out, "  block lifetime percentiles :\n   |");
690         pos = 0;
691         for (i = 0; i < len; i++) {
692                 uint32_t block_info = percentiles[i];
693 #define LINE_LENGTH     75
694                 char str[LINE_LENGTH];
695                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
696                                      plist[i].u.f, block_info,
697                                      i == len - 1 ? '\n' : ',');
698                 assert(strln < LINE_LENGTH);
699                 if (pos + strln > LINE_LENGTH) {
700                         pos = 0;
701                         log_buf(out, "\n   |");
702                 }
703                 log_buf(out, "%s", str);
704                 pos += strln;
705 #undef LINE_LENGTH
706         }
707         if (percentiles)
708                 free(percentiles);
709
710         log_buf(out, "        states               :");
711         for (i = 0; i < BLOCK_STATE_COUNT; i++)
712                 log_buf(out, " %s=%u%c",
713                          block_state_names[i], block_state_counts[i],
714                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
715 }
716
717 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
718 {
719         char *p1, *p1alt, *p2;
720         unsigned long long bw_mean, iops_mean;
721         const int i2p = is_power_of_2(ts->kb_base);
722
723         if (!ts->ss_dur)
724                 return;
725
726         bw_mean = steadystate_bw_mean(ts);
727         iops_mean = steadystate_iops_mean(ts);
728
729         p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
730         p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
731         p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
732
733         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
734                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
735                 p1, p1alt, p2,
736                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
737                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
738                 ts->ss_criterion.u.f,
739                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
740
741         free(p1);
742         free(p1alt);
743         free(p2);
744 }
745
746 static void show_thread_status_normal(struct thread_stat *ts,
747                                       struct group_run_stats *rs,
748                                       struct buf_output *out)
749 {
750         double usr_cpu, sys_cpu;
751         unsigned long runtime;
752         double io_u_dist[FIO_IO_U_MAP_NR];
753         time_t time_p;
754         char time_buf[32];
755
756         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
757                 return;
758                 
759         memset(time_buf, 0, sizeof(time_buf));
760
761         time(&time_p);
762         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
763
764         if (!ts->error) {
765                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
766                                         ts->name, ts->groupid, ts->members,
767                                         ts->error, (int) ts->pid, time_buf);
768         } else {
769                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
770                                         ts->name, ts->groupid, ts->members,
771                                         ts->error, ts->verror, (int) ts->pid,
772                                         time_buf);
773         }
774
775         if (strlen(ts->description))
776                 log_buf(out, "  Description  : [%s]\n", ts->description);
777
778         if (ts->io_bytes[DDIR_READ])
779                 show_ddir_status(rs, ts, DDIR_READ, out);
780         if (ts->io_bytes[DDIR_WRITE])
781                 show_ddir_status(rs, ts, DDIR_WRITE, out);
782         if (ts->io_bytes[DDIR_TRIM])
783                 show_ddir_status(rs, ts, DDIR_TRIM, out);
784
785         show_latencies(ts, out);
786
787         runtime = ts->total_run_time;
788         if (runtime) {
789                 double runt = (double) runtime;
790
791                 usr_cpu = (double) ts->usr_time * 100 / runt;
792                 sys_cpu = (double) ts->sys_time * 100 / runt;
793         } else {
794                 usr_cpu = 0;
795                 sys_cpu = 0;
796         }
797
798         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
799                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
800                         (unsigned long long) ts->ctx,
801                         (unsigned long long) ts->majf,
802                         (unsigned long long) ts->minf);
803
804         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
805         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
806                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
807                                         io_u_dist[1], io_u_dist[2],
808                                         io_u_dist[3], io_u_dist[4],
809                                         io_u_dist[5], io_u_dist[6]);
810
811         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
812         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
813                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
814                                         io_u_dist[1], io_u_dist[2],
815                                         io_u_dist[3], io_u_dist[4],
816                                         io_u_dist[5], io_u_dist[6]);
817         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
818         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
819                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
820                                         io_u_dist[1], io_u_dist[2],
821                                         io_u_dist[3], io_u_dist[4],
822                                         io_u_dist[5], io_u_dist[6]);
823         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
824                                  " short=%llu,%llu,%llu,"
825                                  " dropped=%llu,%llu,%llu\n",
826                                         (unsigned long long) ts->total_io_u[0],
827                                         (unsigned long long) ts->total_io_u[1],
828                                         (unsigned long long) ts->total_io_u[2],
829                                         (unsigned long long) ts->short_io_u[0],
830                                         (unsigned long long) ts->short_io_u[1],
831                                         (unsigned long long) ts->short_io_u[2],
832                                         (unsigned long long) ts->drop_io_u[0],
833                                         (unsigned long long) ts->drop_io_u[1],
834                                         (unsigned long long) ts->drop_io_u[2]);
835         if (ts->continue_on_error) {
836                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
837                                         (unsigned long long)ts->total_err_count,
838                                         ts->first_error,
839                                         strerror(ts->first_error));
840         }
841         if (ts->latency_depth) {
842                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
843                                         (unsigned long long)ts->latency_target,
844                                         (unsigned long long)ts->latency_window,
845                                         ts->latency_percentile.u.f,
846                                         ts->latency_depth);
847         }
848
849         if (ts->nr_block_infos)
850                 show_block_infos(ts->nr_block_infos, ts->block_infos,
851                                   ts->percentile_list, out);
852
853         if (ts->ss_dur)
854                 show_ss_normal(ts, out);
855 }
856
857 static void show_ddir_status_terse(struct thread_stat *ts,
858                                    struct group_run_stats *rs, int ddir,
859                                    struct buf_output *out)
860 {
861         unsigned long long min, max, minv, maxv, bw, iops;
862         unsigned long long *ovals = NULL;
863         double mean, dev;
864         unsigned int len;
865         int i;
866
867         assert(ddir_rw(ddir));
868
869         iops = bw = 0;
870         if (ts->runtime[ddir]) {
871                 uint64_t runt = ts->runtime[ddir];
872
873                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
874                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
875         }
876
877         log_buf(out, ";%llu;%llu;%llu;%llu",
878                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
879                                         (unsigned long long) ts->runtime[ddir]);
880
881         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
882                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
883         else
884                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
885
886         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
887                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
888         else
889                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
890
891         if (ts->clat_percentiles) {
892                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
893                                         ts->clat_stat[ddir].samples,
894                                         ts->percentile_list, &ovals, &maxv,
895                                         &minv);
896         } else
897                 len = 0;
898
899         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
900                 if (i >= len) {
901                         log_buf(out, ";0%%=0");
902                         continue;
903                 }
904                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
905         }
906
907         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
908                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
909         else
910                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
911
912         if (ovals)
913                 free(ovals);
914
915         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
916                 double p_of_agg = 100.0;
917
918                 if (rs->agg[ddir]) {
919                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
920                         if (p_of_agg > 100.0)
921                                 p_of_agg = 100.0;
922                 }
923
924                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
925         } else
926                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
927 }
928
929 static void add_ddir_status_json(struct thread_stat *ts,
930                 struct group_run_stats *rs, int ddir, struct json_object *parent)
931 {
932         unsigned long long min, max, minv, maxv;
933         unsigned long long bw;
934         unsigned long long *ovals = NULL;
935         double mean, dev, iops;
936         unsigned int len;
937         int i;
938         const char *ddirname[] = {"read", "write", "trim"};
939         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
940         char buf[120];
941         double p_of_agg = 100.0;
942
943         assert(ddir_rw(ddir));
944
945         if (ts->unified_rw_rep && ddir != DDIR_READ)
946                 return;
947
948         dir_object = json_create_object();
949         json_object_add_value_object(parent,
950                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
951
952         bw = 0;
953         iops = 0.0;
954         if (ts->runtime[ddir]) {
955                 uint64_t runt = ts->runtime[ddir];
956
957                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
958                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
959         }
960
961         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
962         json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
963         json_object_add_value_int(dir_object, "bw", bw);
964         json_object_add_value_float(dir_object, "iops", iops);
965         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
966         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
967         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
968         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
969
970         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
971                 min = max = 0;
972                 mean = dev = 0.0;
973         }
974         tmp_object = json_create_object();
975         json_object_add_value_object(dir_object, "slat_ns", tmp_object);
976         json_object_add_value_int(tmp_object, "min", min);
977         json_object_add_value_int(tmp_object, "max", max);
978         json_object_add_value_float(tmp_object, "mean", mean);
979         json_object_add_value_float(tmp_object, "stddev", dev);
980
981         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
982                 min = max = 0;
983                 mean = dev = 0.0;
984         }
985         tmp_object = json_create_object();
986         json_object_add_value_object(dir_object, "clat_ns", tmp_object);
987         json_object_add_value_int(tmp_object, "min", min);
988         json_object_add_value_int(tmp_object, "max", max);
989         json_object_add_value_float(tmp_object, "mean", mean);
990         json_object_add_value_float(tmp_object, "stddev", dev);
991
992         if (ts->clat_percentiles) {
993                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
994                                         ts->clat_stat[ddir].samples,
995                                         ts->percentile_list, &ovals, &maxv,
996                                         &minv);
997         } else
998                 len = 0;
999
1000         percentile_object = json_create_object();
1001         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1002         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1003                 if (i >= len) {
1004                         json_object_add_value_int(percentile_object, "0.00", 0);
1005                         continue;
1006                 }
1007                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1008                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1009         }
1010
1011         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1012                 clat_bins_object = json_create_object();
1013                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1014                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1015                         if (ts->io_u_plat[ddir][i]) {
1016                                 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1017                                 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1018                         }
1019                 }
1020         }
1021
1022         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1023                 min = max = 0;
1024                 mean = dev = 0.0;
1025         }
1026         tmp_object = json_create_object();
1027         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1028         json_object_add_value_int(tmp_object, "min", min);
1029         json_object_add_value_int(tmp_object, "max", max);
1030         json_object_add_value_float(tmp_object, "mean", mean);
1031         json_object_add_value_float(tmp_object, "stddev", dev);
1032         if (ovals)
1033                 free(ovals);
1034
1035         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1036                 if (rs->agg[ddir]) {
1037                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
1038                         if (p_of_agg > 100.0)
1039                                 p_of_agg = 100.0;
1040                 }
1041         } else {
1042                 min = max = 0;
1043                 p_of_agg = mean = dev = 0.0;
1044         }
1045         json_object_add_value_int(dir_object, "bw_min", min);
1046         json_object_add_value_int(dir_object, "bw_max", max);
1047         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1048         json_object_add_value_float(dir_object, "bw_mean", mean);
1049         json_object_add_value_float(dir_object, "bw_dev", dev);
1050 }
1051
1052 static void show_thread_status_terse_v2(struct thread_stat *ts,
1053                                         struct group_run_stats *rs,
1054                                         struct buf_output *out)
1055 {
1056         double io_u_dist[FIO_IO_U_MAP_NR];
1057         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1058         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1059         double usr_cpu, sys_cpu;
1060         int i;
1061
1062         /* General Info */
1063         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1064         /* Log Read Status */
1065         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1066         /* Log Write Status */
1067         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1068         /* Log Trim Status */
1069         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1070
1071         /* CPU Usage */
1072         if (ts->total_run_time) {
1073                 double runt = (double) ts->total_run_time;
1074
1075                 usr_cpu = (double) ts->usr_time * 100 / runt;
1076                 sys_cpu = (double) ts->sys_time * 100 / runt;
1077         } else {
1078                 usr_cpu = 0;
1079                 sys_cpu = 0;
1080         }
1081
1082         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1083                                                 (unsigned long long) ts->ctx,
1084                                                 (unsigned long long) ts->majf,
1085                                                 (unsigned long long) ts->minf);
1086
1087         /* Calc % distribution of IO depths, usecond, msecond latency */
1088         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1089         stat_calc_lat_nu(ts, io_u_lat_u);
1090         stat_calc_lat_m(ts, io_u_lat_m);
1091
1092         /* Only show fixed 7 I/O depth levels*/
1093         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1094                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1095                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1096
1097         /* Microsecond latency */
1098         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1099                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1100         /* Millisecond latency */
1101         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1102                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1103         /* Additional output if continue_on_error set - default off*/
1104         if (ts->continue_on_error)
1105                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1106         log_buf(out, "\n");
1107
1108         /* Additional output if description is set */
1109         if (strlen(ts->description))
1110                 log_buf(out, ";%s", ts->description);
1111
1112         log_buf(out, "\n");
1113 }
1114
1115 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1116                                            struct group_run_stats *rs, int ver,
1117                                            struct buf_output *out)
1118 {
1119         double io_u_dist[FIO_IO_U_MAP_NR];
1120         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1121         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1122         double usr_cpu, sys_cpu;
1123         int i;
1124
1125         /* General Info */
1126         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1127                                         ts->name, ts->groupid, ts->error);
1128         /* Log Read Status */
1129         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1130         /* Log Write Status */
1131         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1132         /* Log Trim Status */
1133         if (ver == 4)
1134                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1135
1136         /* CPU Usage */
1137         if (ts->total_run_time) {
1138                 double runt = (double) ts->total_run_time;
1139
1140                 usr_cpu = (double) ts->usr_time * 100 / runt;
1141                 sys_cpu = (double) ts->sys_time * 100 / runt;
1142         } else {
1143                 usr_cpu = 0;
1144                 sys_cpu = 0;
1145         }
1146
1147         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1148                                                 (unsigned long long) ts->ctx,
1149                                                 (unsigned long long) ts->majf,
1150                                                 (unsigned long long) ts->minf);
1151
1152         /* Calc % distribution of IO depths, usecond, msecond latency */
1153         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1154         stat_calc_lat_nu(ts, io_u_lat_u);
1155         stat_calc_lat_m(ts, io_u_lat_m);
1156
1157         /* Only show fixed 7 I/O depth levels*/
1158         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1159                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1160                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1161
1162         /* Microsecond latency */
1163         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1164                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1165         /* Millisecond latency */
1166         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1167                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1168
1169         /* disk util stats, if any */
1170         show_disk_util(1, NULL, out);
1171
1172         /* Additional output if continue_on_error set - default off*/
1173         if (ts->continue_on_error)
1174                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1175
1176         /* Additional output if description is set */
1177         if (strlen(ts->description))
1178                 log_buf(out, ";%s", ts->description);
1179
1180         log_buf(out, "\n");
1181 }
1182
1183 static void json_add_job_opts(struct json_object *root, const char *name,
1184                               struct flist_head *opt_list, bool num_jobs)
1185 {
1186         struct json_object *dir_object;
1187         struct flist_head *entry;
1188         struct print_option *p;
1189
1190         if (flist_empty(opt_list))
1191                 return;
1192
1193         dir_object = json_create_object();
1194         json_object_add_value_object(root, name, dir_object);
1195
1196         flist_for_each(entry, opt_list) {
1197                 const char *pos = "";
1198
1199                 p = flist_entry(entry, struct print_option, list);
1200                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1201                         continue;
1202                 if (p->value)
1203                         pos = p->value;
1204                 json_object_add_value_string(dir_object, p->name, pos);
1205         }
1206 }
1207
1208 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1209                                                    struct group_run_stats *rs,
1210                                                    struct flist_head *opt_list)
1211 {
1212         struct json_object *root, *tmp;
1213         struct jobs_eta *je;
1214         double io_u_dist[FIO_IO_U_MAP_NR];
1215         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1216         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1217         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1218         double usr_cpu, sys_cpu;
1219         int i;
1220         size_t size;
1221
1222         root = json_create_object();
1223         json_object_add_value_string(root, "jobname", ts->name);
1224         json_object_add_value_int(root, "groupid", ts->groupid);
1225         json_object_add_value_int(root, "error", ts->error);
1226
1227         /* ETA Info */
1228         je = get_jobs_eta(true, &size);
1229         if (je) {
1230                 json_object_add_value_int(root, "eta", je->eta_sec);
1231                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1232         }
1233
1234         if (opt_list)
1235                 json_add_job_opts(root, "job options", opt_list, true);
1236
1237         add_ddir_status_json(ts, rs, DDIR_READ, root);
1238         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1239         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1240
1241         /* CPU Usage */
1242         if (ts->total_run_time) {
1243                 double runt = (double) ts->total_run_time;
1244
1245                 usr_cpu = (double) ts->usr_time * 100 / runt;
1246                 sys_cpu = (double) ts->sys_time * 100 / runt;
1247         } else {
1248                 usr_cpu = 0;
1249                 sys_cpu = 0;
1250         }
1251         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1252         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1253         json_object_add_value_int(root, "ctx", ts->ctx);
1254         json_object_add_value_int(root, "majf", ts->majf);
1255         json_object_add_value_int(root, "minf", ts->minf);
1256
1257
1258         /* Calc % distribution of IO depths, usecond, msecond latency */
1259         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1260         stat_calc_lat_n(ts, io_u_lat_n);
1261         stat_calc_lat_u(ts, io_u_lat_u);
1262         stat_calc_lat_m(ts, io_u_lat_m);
1263
1264         tmp = json_create_object();
1265         json_object_add_value_object(root, "iodepth_level", tmp);
1266         /* Only show fixed 7 I/O depth levels*/
1267         for (i = 0; i < 7; i++) {
1268                 char name[20];
1269                 if (i < 6)
1270                         snprintf(name, 20, "%d", 1 << i);
1271                 else
1272                         snprintf(name, 20, ">=%d", 1 << i);
1273                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1274         }
1275
1276         /* Nanosecond latency */
1277         tmp = json_create_object();
1278         json_object_add_value_object(root, "latency_ns", tmp);
1279         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1280                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1281                                  "250", "500", "750", "1000", };
1282                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1283         }
1284         /* Microsecond latency */
1285         tmp = json_create_object();
1286         json_object_add_value_object(root, "latency_us", tmp);
1287         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1288                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1289                                  "250", "500", "750", "1000", };
1290                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1291         }
1292         /* Millisecond latency */
1293         tmp = json_create_object();
1294         json_object_add_value_object(root, "latency_ms", tmp);
1295         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1296                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1297                                  "250", "500", "750", "1000", "2000",
1298                                  ">=2000", };
1299                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1300         }
1301
1302         /* Additional output if continue_on_error set - default off*/
1303         if (ts->continue_on_error) {
1304                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1305                 json_object_add_value_int(root, "first_error", ts->first_error);
1306         }
1307
1308         if (ts->latency_depth) {
1309                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1310                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1311                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1312                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1313         }
1314
1315         /* Additional output if description is set */
1316         if (strlen(ts->description))
1317                 json_object_add_value_string(root, "desc", ts->description);
1318
1319         if (ts->nr_block_infos) {
1320                 /* Block error histogram and types */
1321                 int len;
1322                 unsigned int *percentiles = NULL;
1323                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1324
1325                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1326                                              ts->percentile_list,
1327                                              &percentiles, block_state_counts);
1328
1329                 if (len) {
1330                         struct json_object *block, *percentile_object, *states;
1331                         int state;
1332                         block = json_create_object();
1333                         json_object_add_value_object(root, "block", block);
1334
1335                         percentile_object = json_create_object();
1336                         json_object_add_value_object(block, "percentiles",
1337                                                      percentile_object);
1338                         for (i = 0; i < len; i++) {
1339                                 char buf[20];
1340                                 snprintf(buf, sizeof(buf), "%f",
1341                                          ts->percentile_list[i].u.f);
1342                                 json_object_add_value_int(percentile_object,
1343                                                           (const char *)buf,
1344                                                           percentiles[i]);
1345                         }
1346
1347                         states = json_create_object();
1348                         json_object_add_value_object(block, "states", states);
1349                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1350                                 json_object_add_value_int(states,
1351                                         block_state_names[state],
1352                                         block_state_counts[state]);
1353                         }
1354                         free(percentiles);
1355                 }
1356         }
1357
1358         if (ts->ss_dur) {
1359                 struct json_object *data;
1360                 struct json_array *iops, *bw;
1361                 int i, j, k;
1362                 char ss_buf[64];
1363
1364                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1365                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1366                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1367                         (float) ts->ss_limit.u.f,
1368                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1369
1370                 tmp = json_create_object();
1371                 json_object_add_value_object(root, "steadystate", tmp);
1372                 json_object_add_value_string(tmp, "ss", ss_buf);
1373                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1374                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1375
1376                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1377                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1378                 json_object_add_value_string(tmp, "criterion", ss_buf);
1379                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1380                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1381
1382                 data = json_create_object();
1383                 json_object_add_value_object(tmp, "data", data);
1384                 bw = json_create_array();
1385                 iops = json_create_array();
1386
1387                 /*
1388                 ** if ss was attained or the buffer is not full,
1389                 ** ss->head points to the first element in the list.
1390                 ** otherwise it actually points to the second element
1391                 ** in the list
1392                 */
1393                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1394                         j = ts->ss_head;
1395                 else
1396                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1397                 for (i = 0; i < ts->ss_dur; i++) {
1398                         k = (j + i) % ts->ss_dur;
1399                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1400                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1401                 }
1402                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1403                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1404                 json_object_add_value_array(data, "iops", iops);
1405                 json_object_add_value_array(data, "bw", bw);
1406         }
1407
1408         return root;
1409 }
1410
1411 static void show_thread_status_terse(struct thread_stat *ts,
1412                                      struct group_run_stats *rs,
1413                                      struct buf_output *out)
1414 {
1415         if (terse_version == 2)
1416                 show_thread_status_terse_v2(ts, rs, out);
1417         else if (terse_version == 3 || terse_version == 4)
1418                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1419         else
1420                 log_err("fio: bad terse version!? %d\n", terse_version);
1421 }
1422
1423 struct json_object *show_thread_status(struct thread_stat *ts,
1424                                        struct group_run_stats *rs,
1425                                        struct flist_head *opt_list,
1426                                        struct buf_output *out)
1427 {
1428         struct json_object *ret = NULL;
1429
1430         if (output_format & FIO_OUTPUT_TERSE)
1431                 show_thread_status_terse(ts, rs,  out);
1432         if (output_format & FIO_OUTPUT_JSON)
1433                 ret = show_thread_status_json(ts, rs, opt_list);
1434         if (output_format & FIO_OUTPUT_NORMAL)
1435                 show_thread_status_normal(ts, rs,  out);
1436
1437         return ret;
1438 }
1439
1440 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1441 {
1442         double mean, S;
1443
1444         if (src->samples == 0)
1445                 return;
1446
1447         dst->min_val = min(dst->min_val, src->min_val);
1448         dst->max_val = max(dst->max_val, src->max_val);
1449
1450         /*
1451          * Compute new mean and S after the merge
1452          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1453          *  #Parallel_algorithm>
1454          */
1455         if (first) {
1456                 mean = src->mean.u.f;
1457                 S = src->S.u.f;
1458         } else {
1459                 double delta = src->mean.u.f - dst->mean.u.f;
1460
1461                 mean = ((src->mean.u.f * src->samples) +
1462                         (dst->mean.u.f * dst->samples)) /
1463                         (dst->samples + src->samples);
1464
1465                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1466                         (dst->samples * src->samples) /
1467                         (dst->samples + src->samples);
1468         }
1469
1470         dst->samples += src->samples;
1471         dst->mean.u.f = mean;
1472         dst->S.u.f = S;
1473 }
1474
1475 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1476 {
1477         int i;
1478
1479         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1480                 if (dst->max_run[i] < src->max_run[i])
1481                         dst->max_run[i] = src->max_run[i];
1482                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1483                         dst->min_run[i] = src->min_run[i];
1484                 if (dst->max_bw[i] < src->max_bw[i])
1485                         dst->max_bw[i] = src->max_bw[i];
1486                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1487                         dst->min_bw[i] = src->min_bw[i];
1488
1489                 dst->iobytes[i] += src->iobytes[i];
1490                 dst->agg[i] += src->agg[i];
1491         }
1492
1493         if (!dst->kb_base)
1494                 dst->kb_base = src->kb_base;
1495         if (!dst->unit_base)
1496                 dst->unit_base = src->unit_base;
1497 }
1498
1499 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1500                       bool first)
1501 {
1502         int l, k;
1503
1504         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1505                 if (!dst->unified_rw_rep) {
1506                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1507                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1508                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1509                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1510
1511                         dst->io_bytes[l] += src->io_bytes[l];
1512
1513                         if (dst->runtime[l] < src->runtime[l])
1514                                 dst->runtime[l] = src->runtime[l];
1515                 } else {
1516                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1517                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1518                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1519                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1520
1521                         dst->io_bytes[0] += src->io_bytes[l];
1522
1523                         if (dst->runtime[0] < src->runtime[l])
1524                                 dst->runtime[0] = src->runtime[l];
1525
1526                         /*
1527                          * We're summing to the same destination, so override
1528                          * 'first' after the first iteration of the loop
1529                          */
1530                         first = false;
1531                 }
1532         }
1533
1534         dst->usr_time += src->usr_time;
1535         dst->sys_time += src->sys_time;
1536         dst->ctx += src->ctx;
1537         dst->majf += src->majf;
1538         dst->minf += src->minf;
1539
1540         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1541                 dst->io_u_map[k] += src->io_u_map[k];
1542         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1543                 dst->io_u_submit[k] += src->io_u_submit[k];
1544         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1545                 dst->io_u_complete[k] += src->io_u_complete[k];
1546         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1547                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1548         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1549                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1550         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1551                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1552
1553         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1554                 if (!dst->unified_rw_rep) {
1555                         dst->total_io_u[k] += src->total_io_u[k];
1556                         dst->short_io_u[k] += src->short_io_u[k];
1557                         dst->drop_io_u[k] += src->drop_io_u[k];
1558                 } else {
1559                         dst->total_io_u[0] += src->total_io_u[k];
1560                         dst->short_io_u[0] += src->short_io_u[k];
1561                         dst->drop_io_u[0] += src->drop_io_u[k];
1562                 }
1563         }
1564
1565         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1566                 int m;
1567
1568                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1569                         if (!dst->unified_rw_rep)
1570                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1571                         else
1572                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1573                 }
1574         }
1575
1576         dst->total_run_time += src->total_run_time;
1577         dst->total_submit += src->total_submit;
1578         dst->total_complete += src->total_complete;
1579 }
1580
1581 void init_group_run_stat(struct group_run_stats *gs)
1582 {
1583         int i;
1584         memset(gs, 0, sizeof(*gs));
1585
1586         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1587                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1588 }
1589
1590 void init_thread_stat(struct thread_stat *ts)
1591 {
1592         int j;
1593
1594         memset(ts, 0, sizeof(*ts));
1595
1596         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1597                 ts->lat_stat[j].min_val = -1UL;
1598                 ts->clat_stat[j].min_val = -1UL;
1599                 ts->slat_stat[j].min_val = -1UL;
1600                 ts->bw_stat[j].min_val = -1UL;
1601         }
1602         ts->groupid = -1;
1603 }
1604
1605 void __show_run_stats(void)
1606 {
1607         struct group_run_stats *runstats, *rs;
1608         struct thread_data *td;
1609         struct thread_stat *threadstats, *ts;
1610         int i, j, k, nr_ts, last_ts, idx;
1611         int kb_base_warned = 0;
1612         int unit_base_warned = 0;
1613         struct json_object *root = NULL;
1614         struct json_array *array = NULL;
1615         struct buf_output output[FIO_OUTPUT_NR];
1616         struct flist_head **opt_lists;
1617
1618         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1619
1620         for (i = 0; i < groupid + 1; i++)
1621                 init_group_run_stat(&runstats[i]);
1622
1623         /*
1624          * find out how many threads stats we need. if group reporting isn't
1625          * enabled, it's one-per-td.
1626          */
1627         nr_ts = 0;
1628         last_ts = -1;
1629         for_each_td(td, i) {
1630                 if (!td->o.group_reporting) {
1631                         nr_ts++;
1632                         continue;
1633                 }
1634                 if (last_ts == td->groupid)
1635                         continue;
1636                 if (!td->o.stats)
1637                         continue;
1638
1639                 last_ts = td->groupid;
1640                 nr_ts++;
1641         }
1642
1643         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1644         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1645
1646         for (i = 0; i < nr_ts; i++) {
1647                 init_thread_stat(&threadstats[i]);
1648                 opt_lists[i] = NULL;
1649         }
1650
1651         j = 0;
1652         last_ts = -1;
1653         idx = 0;
1654         for_each_td(td, i) {
1655                 if (!td->o.stats)
1656                         continue;
1657                 if (idx && (!td->o.group_reporting ||
1658                     (td->o.group_reporting && last_ts != td->groupid))) {
1659                         idx = 0;
1660                         j++;
1661                 }
1662
1663                 last_ts = td->groupid;
1664
1665                 ts = &threadstats[j];
1666
1667                 ts->clat_percentiles = td->o.clat_percentiles;
1668                 ts->percentile_precision = td->o.percentile_precision;
1669                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1670                 opt_lists[j] = &td->opt_list;
1671
1672                 idx++;
1673                 ts->members++;
1674
1675                 if (ts->groupid == -1) {
1676                         /*
1677                          * These are per-group shared already
1678                          */
1679                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1680                         if (td->o.description)
1681                                 strncpy(ts->description, td->o.description,
1682                                                 FIO_JOBDESC_SIZE - 1);
1683                         else
1684                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1685
1686                         /*
1687                          * If multiple entries in this group, this is
1688                          * the first member.
1689                          */
1690                         ts->thread_number = td->thread_number;
1691                         ts->groupid = td->groupid;
1692
1693                         /*
1694                          * first pid in group, not very useful...
1695                          */
1696                         ts->pid = td->pid;
1697
1698                         ts->kb_base = td->o.kb_base;
1699                         ts->unit_base = td->o.unit_base;
1700                         ts->unified_rw_rep = td->o.unified_rw_rep;
1701                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1702                         log_info("fio: kb_base differs for jobs in group, using"
1703                                  " %u as the base\n", ts->kb_base);
1704                         kb_base_warned = 1;
1705                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1706                         log_info("fio: unit_base differs for jobs in group, using"
1707                                  " %u as the base\n", ts->unit_base);
1708                         unit_base_warned = 1;
1709                 }
1710
1711                 ts->continue_on_error = td->o.continue_on_error;
1712                 ts->total_err_count += td->total_err_count;
1713                 ts->first_error = td->first_error;
1714                 if (!ts->error) {
1715                         if (!td->error && td->o.continue_on_error &&
1716                             td->first_error) {
1717                                 ts->error = td->first_error;
1718                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1719                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1720                         } else  if (td->error) {
1721                                 ts->error = td->error;
1722                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1723                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1724                         }
1725                 }
1726
1727                 ts->latency_depth = td->latency_qd;
1728                 ts->latency_target = td->o.latency_target;
1729                 ts->latency_percentile = td->o.latency_percentile;
1730                 ts->latency_window = td->o.latency_window;
1731
1732                 ts->nr_block_infos = td->ts.nr_block_infos;
1733                 for (k = 0; k < ts->nr_block_infos; k++)
1734                         ts->block_infos[k] = td->ts.block_infos[k];
1735
1736                 sum_thread_stats(ts, &td->ts, idx == 1);
1737
1738                 if (td->o.ss_dur) {
1739                         ts->ss_state = td->ss.state;
1740                         ts->ss_dur = td->ss.dur;
1741                         ts->ss_head = td->ss.head;
1742                         ts->ss_bw_data = td->ss.bw_data;
1743                         ts->ss_iops_data = td->ss.iops_data;
1744                         ts->ss_limit.u.f = td->ss.limit;
1745                         ts->ss_slope.u.f = td->ss.slope;
1746                         ts->ss_deviation.u.f = td->ss.deviation;
1747                         ts->ss_criterion.u.f = td->ss.criterion;
1748                 }
1749                 else
1750                         ts->ss_dur = ts->ss_state = 0;
1751         }
1752
1753         for (i = 0; i < nr_ts; i++) {
1754                 unsigned long long bw;
1755
1756                 ts = &threadstats[i];
1757                 if (ts->groupid == -1)
1758                         continue;
1759                 rs = &runstats[ts->groupid];
1760                 rs->kb_base = ts->kb_base;
1761                 rs->unit_base = ts->unit_base;
1762                 rs->unified_rw_rep += ts->unified_rw_rep;
1763
1764                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1765                         if (!ts->runtime[j])
1766                                 continue;
1767                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1768                                 rs->min_run[j] = ts->runtime[j];
1769                         if (ts->runtime[j] > rs->max_run[j])
1770                                 rs->max_run[j] = ts->runtime[j];
1771
1772                         bw = 0;
1773                         if (ts->runtime[j])
1774                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1775                         if (bw < rs->min_bw[j])
1776                                 rs->min_bw[j] = bw;
1777                         if (bw > rs->max_bw[j])
1778                                 rs->max_bw[j] = bw;
1779
1780                         rs->iobytes[j] += ts->io_bytes[j];
1781                 }
1782         }
1783
1784         for (i = 0; i < groupid + 1; i++) {
1785                 int ddir;
1786
1787                 rs = &runstats[i];
1788
1789                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1790                         if (rs->max_run[ddir])
1791                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1792                                                 rs->max_run[ddir];
1793                 }
1794         }
1795
1796         for (i = 0; i < FIO_OUTPUT_NR; i++)
1797                 buf_output_init(&output[i]);
1798
1799         /*
1800          * don't overwrite last signal output
1801          */
1802         if (output_format & FIO_OUTPUT_NORMAL)
1803                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1804         if (output_format & FIO_OUTPUT_JSON) {
1805                 struct thread_data *global;
1806                 char time_buf[32];
1807                 struct timeval now;
1808                 unsigned long long ms_since_epoch;
1809
1810                 gettimeofday(&now, NULL);
1811                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1812                                  (unsigned long long)(now.tv_usec) / 1000;
1813
1814                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1815                                 sizeof(time_buf));
1816                 if (time_buf[strlen(time_buf) - 1] == '\n')
1817                         time_buf[strlen(time_buf) - 1] = '\0';
1818
1819                 root = json_create_object();
1820                 json_object_add_value_string(root, "fio version", fio_version_string);
1821                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1822                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1823                 json_object_add_value_string(root, "time", time_buf);
1824                 global = get_global_options();
1825                 json_add_job_opts(root, "global options", &global->opt_list, false);
1826                 array = json_create_array();
1827                 json_object_add_value_array(root, "jobs", array);
1828         }
1829
1830         if (is_backend)
1831                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1832
1833         for (i = 0; i < nr_ts; i++) {
1834                 ts = &threadstats[i];
1835                 rs = &runstats[ts->groupid];
1836
1837                 if (is_backend) {
1838                         fio_server_send_job_options(opt_lists[i], i);
1839                         fio_server_send_ts(ts, rs);
1840                 } else {
1841                         if (output_format & FIO_OUTPUT_TERSE)
1842                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1843                         if (output_format & FIO_OUTPUT_JSON) {
1844                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1845                                 json_array_add_value_object(array, tmp);
1846                         }
1847                         if (output_format & FIO_OUTPUT_NORMAL)
1848                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1849                 }
1850         }
1851         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1852                 /* disk util stats, if any */
1853                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1854
1855                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1856
1857                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1858                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1859                 json_free_object(root);
1860         }
1861
1862         for (i = 0; i < groupid + 1; i++) {
1863                 rs = &runstats[i];
1864
1865                 rs->groupid = i;
1866                 if (is_backend)
1867                         fio_server_send_gs(rs);
1868                 else if (output_format & FIO_OUTPUT_NORMAL)
1869                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1870         }
1871
1872         if (is_backend)
1873                 fio_server_send_du();
1874         else if (output_format & FIO_OUTPUT_NORMAL) {
1875                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1876                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1877         }
1878
1879         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1880                 struct buf_output *out = &output[i];
1881
1882                 log_info_buf(out->buf, out->buflen);
1883                 buf_output_free(out);
1884         }
1885
1886         log_info_flush();
1887         free(runstats);
1888         free(threadstats);
1889         free(opt_lists);
1890 }
1891
1892 void show_run_stats(void)
1893 {
1894         fio_mutex_down(stat_mutex);
1895         __show_run_stats();
1896         fio_mutex_up(stat_mutex);
1897 }
1898
1899 void __show_running_run_stats(void)
1900 {
1901         struct thread_data *td;
1902         unsigned long long *rt;
1903         struct timespec ts;
1904         int i;
1905
1906         fio_mutex_down(stat_mutex);
1907
1908         rt = malloc(thread_number * sizeof(unsigned long long));
1909         fio_gettime(&ts, NULL);
1910
1911         for_each_td(td, i) {
1912                 td->update_rusage = 1;
1913                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1914                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1915                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1916                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1917
1918                 rt[i] = mtime_since(&td->start, &ts);
1919                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1920                         td->ts.runtime[DDIR_READ] += rt[i];
1921                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1922                         td->ts.runtime[DDIR_WRITE] += rt[i];
1923                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1924                         td->ts.runtime[DDIR_TRIM] += rt[i];
1925         }
1926
1927         for_each_td(td, i) {
1928                 if (td->runstate >= TD_EXITED)
1929                         continue;
1930                 if (td->rusage_sem) {
1931                         td->update_rusage = 1;
1932                         fio_mutex_down(td->rusage_sem);
1933                 }
1934                 td->update_rusage = 0;
1935         }
1936
1937         __show_run_stats();
1938
1939         for_each_td(td, i) {
1940                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1941                         td->ts.runtime[DDIR_READ] -= rt[i];
1942                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1943                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1944                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1945                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1946         }
1947
1948         free(rt);
1949         fio_mutex_up(stat_mutex);
1950 }
1951
1952 static int status_interval_init;
1953 static struct timespec status_time;
1954 static int status_file_disabled;
1955
1956 #define FIO_STATUS_FILE         "fio-dump-status"
1957
1958 static int check_status_file(void)
1959 {
1960         struct stat sb;
1961         const char *temp_dir;
1962         char fio_status_file_path[PATH_MAX];
1963
1964         if (status_file_disabled)
1965                 return 0;
1966
1967         temp_dir = getenv("TMPDIR");
1968         if (temp_dir == NULL) {
1969                 temp_dir = getenv("TEMP");
1970                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1971                         temp_dir = NULL;
1972         }
1973         if (temp_dir == NULL)
1974                 temp_dir = "/tmp";
1975
1976         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1977
1978         if (stat(fio_status_file_path, &sb))
1979                 return 0;
1980
1981         if (unlink(fio_status_file_path) < 0) {
1982                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1983                                                         strerror(errno));
1984                 log_err("fio: disabling status file updates\n");
1985                 status_file_disabled = 1;
1986         }
1987
1988         return 1;
1989 }
1990
1991 void check_for_running_stats(void)
1992 {
1993         if (status_interval) {
1994                 if (!status_interval_init) {
1995                         fio_gettime(&status_time, NULL);
1996                         status_interval_init = 1;
1997                 } else if (mtime_since_now(&status_time) >= status_interval) {
1998                         show_running_run_stats();
1999                         fio_gettime(&status_time, NULL);
2000                         return;
2001                 }
2002         }
2003         if (check_status_file()) {
2004                 show_running_run_stats();
2005                 return;
2006         }
2007 }
2008
2009 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2010 {
2011         double val = data;
2012         double delta;
2013
2014         if (data > is->max_val)
2015                 is->max_val = data;
2016         if (data < is->min_val)
2017                 is->min_val = data;
2018
2019         delta = val - is->mean.u.f;
2020         if (delta) {
2021                 is->mean.u.f += delta / (is->samples + 1.0);
2022                 is->S.u.f += delta * (val - is->mean.u.f);
2023         }
2024
2025         is->samples++;
2026 }
2027
2028 /*
2029  * Return a struct io_logs, which is added to the tail of the log
2030  * list for 'iolog'.
2031  */
2032 static struct io_logs *get_new_log(struct io_log *iolog)
2033 {
2034         size_t new_size, new_samples;
2035         struct io_logs *cur_log;
2036
2037         /*
2038          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2039          * forever
2040          */
2041         if (!iolog->cur_log_max)
2042                 new_samples = DEF_LOG_ENTRIES;
2043         else {
2044                 new_samples = iolog->cur_log_max * 2;
2045                 if (new_samples > MAX_LOG_ENTRIES)
2046                         new_samples = MAX_LOG_ENTRIES;
2047         }
2048
2049         new_size = new_samples * log_entry_sz(iolog);
2050
2051         cur_log = smalloc(sizeof(*cur_log));
2052         if (cur_log) {
2053                 INIT_FLIST_HEAD(&cur_log->list);
2054                 cur_log->log = malloc(new_size);
2055                 if (cur_log->log) {
2056                         cur_log->nr_samples = 0;
2057                         cur_log->max_samples = new_samples;
2058                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2059                         iolog->cur_log_max = new_samples;
2060                         return cur_log;
2061                 }
2062                 sfree(cur_log);
2063         }
2064
2065         return NULL;
2066 }
2067
2068 /*
2069  * Add and return a new log chunk, or return current log if big enough
2070  */
2071 static struct io_logs *regrow_log(struct io_log *iolog)
2072 {
2073         struct io_logs *cur_log;
2074         int i;
2075
2076         if (!iolog || iolog->disabled)
2077                 goto disable;
2078
2079         cur_log = iolog_cur_log(iolog);
2080         if (!cur_log) {
2081                 cur_log = get_new_log(iolog);
2082                 if (!cur_log)
2083                         return NULL;
2084         }
2085
2086         if (cur_log->nr_samples < cur_log->max_samples)
2087                 return cur_log;
2088
2089         /*
2090          * No room for a new sample. If we're compressing on the fly, flush
2091          * out the current chunk
2092          */
2093         if (iolog->log_gz) {
2094                 if (iolog_cur_flush(iolog, cur_log)) {
2095                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2096                         return NULL;
2097                 }
2098         }
2099
2100         /*
2101          * Get a new log array, and add to our list
2102          */
2103         cur_log = get_new_log(iolog);
2104         if (!cur_log) {
2105                 log_err("fio: failed extending iolog! Will stop logging.\n");
2106                 return NULL;
2107         }
2108
2109         if (!iolog->pending || !iolog->pending->nr_samples)
2110                 return cur_log;
2111
2112         /*
2113          * Flush pending items to new log
2114          */
2115         for (i = 0; i < iolog->pending->nr_samples; i++) {
2116                 struct io_sample *src, *dst;
2117
2118                 src = get_sample(iolog, iolog->pending, i);
2119                 dst = get_sample(iolog, cur_log, i);
2120                 memcpy(dst, src, log_entry_sz(iolog));
2121         }
2122         cur_log->nr_samples = iolog->pending->nr_samples;
2123
2124         iolog->pending->nr_samples = 0;
2125         return cur_log;
2126 disable:
2127         if (iolog)
2128                 iolog->disabled = true;
2129         return NULL;
2130 }
2131
2132 void regrow_logs(struct thread_data *td)
2133 {
2134         regrow_log(td->slat_log);
2135         regrow_log(td->clat_log);
2136         regrow_log(td->clat_hist_log);
2137         regrow_log(td->lat_log);
2138         regrow_log(td->bw_log);
2139         regrow_log(td->iops_log);
2140         td->flags &= ~TD_F_REGROW_LOGS;
2141 }
2142
2143 static struct io_logs *get_cur_log(struct io_log *iolog)
2144 {
2145         struct io_logs *cur_log;
2146
2147         cur_log = iolog_cur_log(iolog);
2148         if (!cur_log) {
2149                 cur_log = get_new_log(iolog);
2150                 if (!cur_log)
2151                         return NULL;
2152         }
2153
2154         if (cur_log->nr_samples < cur_log->max_samples)
2155                 return cur_log;
2156
2157         /*
2158          * Out of space. If we're in IO offload mode, or we're not doing
2159          * per unit logging (hence logging happens outside of the IO thread
2160          * as well), add a new log chunk inline. If we're doing inline
2161          * submissions, flag 'td' as needing a log regrow and we'll take
2162          * care of it on the submission side.
2163          */
2164         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2165             !per_unit_log(iolog))
2166                 return regrow_log(iolog);
2167
2168         iolog->td->flags |= TD_F_REGROW_LOGS;
2169         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2170         return iolog->pending;
2171 }
2172
2173 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2174                              enum fio_ddir ddir, unsigned int bs,
2175                              unsigned long t, uint64_t offset)
2176 {
2177         struct io_logs *cur_log;
2178
2179         if (iolog->disabled)
2180                 return;
2181         if (flist_empty(&iolog->io_logs))
2182                 iolog->avg_last = t;
2183
2184         cur_log = get_cur_log(iolog);
2185         if (cur_log) {
2186                 struct io_sample *s;
2187
2188                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2189
2190                 s->data = data;
2191                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2192                 io_sample_set_ddir(iolog, s, ddir);
2193                 s->bs = bs;
2194
2195                 if (iolog->log_offset) {
2196                         struct io_sample_offset *so = (void *) s;
2197
2198                         so->offset = offset;
2199                 }
2200
2201                 cur_log->nr_samples++;
2202                 return;
2203         }
2204
2205         iolog->disabled = true;
2206 }
2207
2208 static inline void reset_io_stat(struct io_stat *ios)
2209 {
2210         ios->max_val = ios->min_val = ios->samples = 0;
2211         ios->mean.u.f = ios->S.u.f = 0;
2212 }
2213
2214 void reset_io_stats(struct thread_data *td)
2215 {
2216         struct thread_stat *ts = &td->ts;
2217         int i, j;
2218
2219         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2220                 reset_io_stat(&ts->clat_stat[i]);
2221                 reset_io_stat(&ts->slat_stat[i]);
2222                 reset_io_stat(&ts->lat_stat[i]);
2223                 reset_io_stat(&ts->bw_stat[i]);
2224                 reset_io_stat(&ts->iops_stat[i]);
2225
2226                 ts->io_bytes[i] = 0;
2227                 ts->runtime[i] = 0;
2228                 ts->total_io_u[i] = 0;
2229                 ts->short_io_u[i] = 0;
2230                 ts->drop_io_u[i] = 0;
2231
2232                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2233                         ts->io_u_plat[i][j] = 0;
2234         }
2235
2236         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2237                 ts->io_u_map[i] = 0;
2238                 ts->io_u_submit[i] = 0;
2239                 ts->io_u_complete[i] = 0;
2240         }
2241
2242         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2243                 ts->io_u_lat_n[i] = 0;
2244         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2245                 ts->io_u_lat_u[i] = 0;
2246         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2247                 ts->io_u_lat_m[i] = 0;
2248
2249         ts->total_submit = 0;
2250         ts->total_complete = 0;
2251 }
2252
2253 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2254                               unsigned long elapsed, bool log_max)
2255 {
2256         /*
2257          * Note an entry in the log. Use the mean from the logged samples,
2258          * making sure to properly round up. Only write a log entry if we
2259          * had actual samples done.
2260          */
2261         if (iolog->avg_window[ddir].samples) {
2262                 union io_sample_data data;
2263
2264                 if (log_max)
2265                         data.val = iolog->avg_window[ddir].max_val;
2266                 else
2267                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2268
2269                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2270         }
2271
2272         reset_io_stat(&iolog->avg_window[ddir]);
2273 }
2274
2275 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2276                              bool log_max)
2277 {
2278         int ddir;
2279
2280         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2281                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2282 }
2283
2284 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2285                            union io_sample_data data, enum fio_ddir ddir,
2286                            unsigned int bs, uint64_t offset)
2287 {
2288         unsigned long elapsed, this_window;
2289
2290         if (!ddir_rw(ddir))
2291                 return 0;
2292
2293         elapsed = mtime_since_now(&td->epoch);
2294
2295         /*
2296          * If no time averaging, just add the log sample.
2297          */
2298         if (!iolog->avg_msec) {
2299                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2300                 return 0;
2301         }
2302
2303         /*
2304          * Add the sample. If the time period has passed, then
2305          * add that entry to the log and clear.
2306          */
2307         add_stat_sample(&iolog->avg_window[ddir], data.val);
2308
2309         /*
2310          * If period hasn't passed, adding the above sample is all we
2311          * need to do.
2312          */
2313         this_window = elapsed - iolog->avg_last;
2314         if (elapsed < iolog->avg_last)
2315                 return iolog->avg_last - elapsed;
2316         else if (this_window < iolog->avg_msec) {
2317                 int diff = iolog->avg_msec - this_window;
2318
2319                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2320                         return diff;
2321         }
2322
2323         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2324
2325         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2326         return iolog->avg_msec;
2327 }
2328
2329 void finalize_logs(struct thread_data *td, bool unit_logs)
2330 {
2331         unsigned long elapsed;
2332
2333         elapsed = mtime_since_now(&td->epoch);
2334
2335         if (td->clat_log && unit_logs)
2336                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2337         if (td->slat_log && unit_logs)
2338                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2339         if (td->lat_log && unit_logs)
2340                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2341         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2342                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2343         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2344                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2345 }
2346
2347 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2348 {
2349         struct io_log *iolog;
2350
2351         if (!ddir_rw(ddir))
2352                 return;
2353
2354         iolog = agg_io_log[ddir];
2355         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2356 }
2357
2358 static void add_clat_percentile_sample(struct thread_stat *ts,
2359                                 unsigned long long nsec, enum fio_ddir ddir)
2360 {
2361         unsigned int idx = plat_val_to_idx(nsec);
2362         assert(idx < FIO_IO_U_PLAT_NR);
2363
2364         ts->io_u_plat[ddir][idx]++;
2365 }
2366
2367 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2368                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2369 {
2370         unsigned long elapsed, this_window;
2371         struct thread_stat *ts = &td->ts;
2372         struct io_log *iolog = td->clat_hist_log;
2373
2374         td_io_u_lock(td);
2375
2376         add_stat_sample(&ts->clat_stat[ddir], nsec);
2377
2378         if (td->clat_log)
2379                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2380                                offset);
2381
2382         if (ts->clat_percentiles)
2383                 add_clat_percentile_sample(ts, nsec, ddir);
2384
2385         if (iolog && iolog->hist_msec) {
2386                 struct io_hist *hw = &iolog->hist_window[ddir];
2387
2388                 hw->samples++;
2389                 elapsed = mtime_since_now(&td->epoch);
2390                 if (!hw->hist_last)
2391                         hw->hist_last = elapsed;
2392                 this_window = elapsed - hw->hist_last;
2393                 
2394                 if (this_window >= iolog->hist_msec) {
2395                         unsigned int *io_u_plat;
2396                         struct io_u_plat_entry *dst;
2397
2398                         /*
2399                          * Make a byte-for-byte copy of the latency histogram
2400                          * stored in td->ts.io_u_plat[ddir], recording it in a
2401                          * log sample. Note that the matching call to free() is
2402                          * located in iolog.c after printing this sample to the
2403                          * log file.
2404                          */
2405                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2406                         dst = malloc(sizeof(struct io_u_plat_entry));
2407                         memcpy(&(dst->io_u_plat), io_u_plat,
2408                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2409                         flist_add(&dst->list, &hw->list);
2410                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2411                                                 elapsed, offset);
2412
2413                         /*
2414                          * Update the last time we recorded as being now, minus
2415                          * any drift in time we encountered before actually
2416                          * making the record.
2417                          */
2418                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2419                         hw->samples = 0;
2420                 }
2421         }
2422
2423         td_io_u_unlock(td);
2424 }
2425
2426 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2427                      unsigned long usec, unsigned int bs, uint64_t offset)
2428 {
2429         struct thread_stat *ts = &td->ts;
2430
2431         if (!ddir_rw(ddir))
2432                 return;
2433
2434         td_io_u_lock(td);
2435
2436         add_stat_sample(&ts->slat_stat[ddir], usec);
2437
2438         if (td->slat_log)
2439                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2440
2441         td_io_u_unlock(td);
2442 }
2443
2444 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2445                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2446 {
2447         struct thread_stat *ts = &td->ts;
2448
2449         if (!ddir_rw(ddir))
2450                 return;
2451
2452         td_io_u_lock(td);
2453
2454         add_stat_sample(&ts->lat_stat[ddir], nsec);
2455
2456         if (td->lat_log)
2457                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2458                                offset);
2459
2460         td_io_u_unlock(td);
2461 }
2462
2463 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2464                    unsigned int bytes, unsigned long long spent)
2465 {
2466         struct thread_stat *ts = &td->ts;
2467         unsigned long rate;
2468
2469         if (spent)
2470                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2471         else
2472                 rate = 0;
2473
2474         td_io_u_lock(td);
2475
2476         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2477
2478         if (td->bw_log)
2479                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2480                                bytes, io_u->offset);
2481
2482         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2483         td_io_u_unlock(td);
2484 }
2485
2486 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2487                          struct timespec *t, unsigned int avg_time,
2488                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2489                          struct io_stat *stat, struct io_log *log,
2490                          bool is_kb)
2491 {
2492         unsigned long spent, rate;
2493         enum fio_ddir ddir;
2494         unsigned int next, next_log;
2495
2496         next_log = avg_time;
2497
2498         spent = mtime_since(parent_tv, t);
2499         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2500                 return avg_time - spent;
2501
2502         td_io_u_lock(td);
2503
2504         /*
2505          * Compute both read and write rates for the interval.
2506          */
2507         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2508                 uint64_t delta;
2509
2510                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2511                 if (!delta)
2512                         continue; /* No entries for interval */
2513
2514                 if (spent) {
2515                         if (is_kb)
2516                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2517                         else
2518                                 rate = (delta * 1000) / spent;
2519                 } else
2520                         rate = 0;
2521
2522                 add_stat_sample(&stat[ddir], rate);
2523
2524                 if (log) {
2525                         unsigned int bs = 0;
2526
2527                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2528                                 bs = td->o.min_bs[ddir];
2529
2530                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2531                         next_log = min(next_log, next);
2532                 }
2533
2534                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2535         }
2536
2537         timespec_add_msec(parent_tv, avg_time);
2538
2539         td_io_u_unlock(td);
2540
2541         if (spent <= avg_time)
2542                 next = avg_time;
2543         else
2544                 next = avg_time - (1 + spent - avg_time);
2545
2546         return min(next, next_log);
2547 }
2548
2549 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2550 {
2551         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2552                                 td->this_io_bytes, td->stat_io_bytes,
2553                                 td->ts.bw_stat, td->bw_log, true);
2554 }
2555
2556 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2557                      unsigned int bytes)
2558 {
2559         struct thread_stat *ts = &td->ts;
2560
2561         td_io_u_lock(td);
2562
2563         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2564
2565         if (td->iops_log)
2566                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2567                                bytes, io_u->offset);
2568
2569         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2570         td_io_u_unlock(td);
2571 }
2572
2573 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2574 {
2575         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2576                                 td->this_io_blocks, td->stat_io_blocks,
2577                                 td->ts.iops_stat, td->iops_log, false);
2578 }
2579
2580 /*
2581  * Returns msecs to next event
2582  */
2583 int calc_log_samples(void)
2584 {
2585         struct thread_data *td;
2586         unsigned int next = ~0U, tmp;
2587         struct timespec now;
2588         int i;
2589
2590         fio_gettime(&now, NULL);
2591
2592         for_each_td(td, i) {
2593                 if (!td->o.stats)
2594                         continue;
2595                 if (in_ramp_time(td) ||
2596                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2597                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2598                         continue;
2599                 }
2600                 if (!td->bw_log ||
2601                         (td->bw_log && !per_unit_log(td->bw_log))) {
2602                         tmp = add_bw_samples(td, &now);
2603                         if (tmp < next)
2604                                 next = tmp;
2605                 }
2606                 if (!td->iops_log ||
2607                         (td->iops_log && !per_unit_log(td->iops_log))) {
2608                         tmp = add_iops_samples(td, &now);
2609                         if (tmp < next)
2610                                 next = tmp;
2611                 }
2612         }
2613
2614         return next == ~0U ? 0 : next;
2615 }
2616
2617 void stat_init(void)
2618 {
2619         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2620 }
2621
2622 void stat_exit(void)
2623 {
2624         /*
2625          * When we have the mutex, we know out-of-band access to it
2626          * have ended.
2627          */
2628         fio_mutex_down(stat_mutex);
2629         fio_mutex_remove(stat_mutex);
2630 }
2631
2632 /*
2633  * Called from signal handler. Wake up status thread.
2634  */
2635 void show_running_run_stats(void)
2636 {
2637         helper_do_stat();
2638 }
2639
2640 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2641 {
2642         /* Ignore io_u's which span multiple blocks--they will just get
2643          * inaccurate counts. */
2644         int idx = (io_u->offset - io_u->file->file_offset)
2645                         / td->o.bs[DDIR_TRIM];
2646         uint32_t *info = &td->ts.block_infos[idx];
2647         assert(idx < td->ts.nr_block_infos);
2648         return info;
2649 }