Split helper thread debug logging away from steadystate debug logging
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned int val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned int plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned int **output,
139                                    unsigned int *maxv, unsigned int *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned int *ovals = NULL;
145         int is_last;
146
147         *minv = -1U;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int len, j = 0, minv, maxv;
205         unsigned int *ovals;
206         int is_last, per_line, scale_down;
207         char fmt[32];
208
209         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210         if (!len)
211                 goto out;
212
213         /*
214          * We default to usecs, but if the value range is such that we
215          * should scale down to msecs, do that.
216          */
217         if (minv > 2000 && maxv > 99999) {
218                 scale_down = 1;
219                 log_buf(out, "    clat percentiles (msec):\n     |");
220         } else {
221                 scale_down = 0;
222                 log_buf(out, "    clat percentiles (usec):\n     |");
223         }
224
225         snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226         per_line = (80 - 7) / (precision + 14);
227
228         for (j = 0; j < len; j++) {
229                 char fbuf[16], *ptr = fbuf;
230
231                 /* for formatting */
232                 if (j != 0 && (j % per_line) == 0)
233                         log_buf(out, "     |");
234
235                 /* end of the list */
236                 is_last = (j == len - 1);
237
238                 if (plist[j].u.f < 10.0)
239                         ptr += sprintf(fbuf, " ");
240
241                 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243                 if (scale_down)
244                         ovals[j] = (ovals[j] + 999) / 1000;
245
246                 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248                 if (is_last)
249                         break;
250
251                 if ((j % per_line) == per_line - 1)     /* for formatting */
252                         log_buf(out, "\n");
253         }
254
255 out:
256         if (ovals)
257                 free(ovals);
258 }
259
260 int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261              double *mean, double *dev)
262 {
263         double n = (double) is->samples;
264
265         if (n == 0)
266                 return 0;
267
268         *min = is->min_val;
269         *max = is->max_val;
270         *mean = is->mean.u.f;
271
272         if (n > 1.0)
273                 *dev = sqrt(is->S.u.f / (n - 1.0));
274         else
275                 *dev = 0;
276
277         return 1;
278 }
279
280 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281 {
282         char *p1, *p2, *p3, *p4;
283         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
284         int i;
285
286         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289                 const int i2p = is_power_of_2(rs->kb_base);
290
291                 if (!rs->max_run[i])
292                         continue;
293
294                 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295                 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296                 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297                 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299                 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300                          " mint=%llumsec, maxt=%llumsec\n",
301                                 rs->unified_rw_rep ? "  MIXED" : str[i],
302                                 p1, p2, p3, p4,
303                                 (unsigned long long) rs->min_run[i],
304                                 (unsigned long long) rs->max_run[i]);
305
306                 free(p1);
307                 free(p2);
308                 free(p3);
309                 free(p4);
310         }
311 }
312
313 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314 {
315         int i;
316
317         /*
318          * Do depth distribution calculations
319          */
320         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321                 if (total) {
322                         io_u_dist[i] = (double) map[i] / (double) total;
323                         io_u_dist[i] *= 100.0;
324                         if (io_u_dist[i] < 0.1 && map[i])
325                                 io_u_dist[i] = 0.1;
326                 } else
327                         io_u_dist[i] = 0.0;
328         }
329 }
330
331 static void stat_calc_lat(struct thread_stat *ts, double *dst,
332                           unsigned int *src, int nr)
333 {
334         unsigned long total = ddir_rw_sum(ts->total_io_u);
335         int i;
336
337         /*
338          * Do latency distribution calculations
339          */
340         for (i = 0; i < nr; i++) {
341                 if (total) {
342                         dst[i] = (double) src[i] / (double) total;
343                         dst[i] *= 100.0;
344                         if (dst[i] < 0.01 && src[i])
345                                 dst[i] = 0.01;
346                 } else
347                         dst[i] = 0.0;
348         }
349 }
350
351 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352 {
353         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354 }
355
356 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357 {
358         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359 }
360
361 static void display_lat(const char *name, unsigned long min, unsigned long max,
362                         double mean, double dev, struct buf_output *out)
363 {
364         const char *base = "(usec)";
365         char *minp, *maxp;
366
367         if (!usec_to_msec(&min, &max, &mean, &dev))
368                 base = "(msec)";
369
370         minp = num2str(min, 6, 1, 0, 0);
371         maxp = num2str(max, 6, 1, 0, 0);
372
373         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
374                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376         free(minp);
377         free(maxp);
378 }
379
380 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381                              int ddir, struct buf_output *out)
382 {
383         const char *str[] = { "read ", "write", "trim" };
384         unsigned long min, max, runt;
385         unsigned long long bw, iops;
386         double mean, dev;
387         char *io_p, *bw_p, *iops_p;
388         int i2p;
389
390         assert(ddir_rw(ddir));
391
392         if (!ts->runtime[ddir])
393                 return;
394
395         i2p = is_power_of_2(rs->kb_base);
396         runt = ts->runtime[ddir];
397
398         bw = (1000 * ts->io_bytes[ddir]) / runt;
399         io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400         bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403         iops_p = num2str(iops, 6, 1, 0, 0);
404
405         log_buf(out, "  %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406                                 rs->unified_rw_rep ? "mixed" : str[ddir],
407                                 io_p, bw_p, iops_p,
408                                 (unsigned long long) ts->runtime[ddir]);
409
410         free(io_p);
411         free(bw_p);
412         free(iops_p);
413
414         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415                 display_lat("slat", min, max, mean, dev, out);
416         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417                 display_lat("clat", min, max, mean, dev, out);
418         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419                 display_lat(" lat", min, max, mean, dev, out);
420
421         if (ts->clat_percentiles) {
422                 show_clat_percentiles(ts->io_u_plat[ddir],
423                                         ts->clat_stat[ddir].samples,
424                                         ts->percentile_list,
425                                         ts->percentile_precision, out);
426         }
427         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429                 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431                 if (rs->unit_base == 1) {
432                         min *= 8.0;
433                         max *= 8.0;
434                         mean *= 8.0;
435                         dev *= 8.0;
436                 }
437
438                 if (rs->agg[ddir]) {
439                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
440                         if (p_of_agg > 100.0)
441                                 p_of_agg = 100.0;
442                 }
443
444                 if (mean > fkb_base * fkb_base) {
445                         min /= fkb_base;
446                         max /= fkb_base;
447                         mean /= fkb_base;
448                         dev /= fkb_base;
449                         bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450                 }
451
452                 log_buf(out, "    bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453                          " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454                                                         p_of_agg, mean, dev);
455         }
456 }
457
458 static int show_lat(double *io_u_lat, int nr, const char **ranges,
459                     const char *msg, struct buf_output *out)
460 {
461         int new_line = 1, i, line = 0, shown = 0;
462
463         for (i = 0; i < nr; i++) {
464                 if (io_u_lat[i] <= 0.0)
465                         continue;
466                 shown = 1;
467                 if (new_line) {
468                         if (line)
469                                 log_buf(out, "\n");
470                         log_buf(out, "    lat (%s) : ", msg);
471                         new_line = 0;
472                         line = 0;
473                 }
474                 if (line)
475                         log_buf(out, ", ");
476                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477                 line++;
478                 if (line == 5)
479                         new_line = 1;
480         }
481
482         if (shown)
483                 log_buf(out, "\n");
484
485         return shown;
486 }
487
488 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489 {
490         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491                                  "250=", "500=", "750=", "1000=", };
492
493         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494 }
495
496 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497 {
498         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499                                  "250=", "500=", "750=", "1000=", "2000=",
500                                  ">=2000=", };
501
502         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503 }
504
505 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506 {
507         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510         stat_calc_lat_u(ts, io_u_lat_u);
511         stat_calc_lat_m(ts, io_u_lat_m);
512
513         show_lat_u(io_u_lat_u, out);
514         show_lat_m(io_u_lat_m, out);
515 }
516
517 static int block_state_category(int block_state)
518 {
519         switch (block_state) {
520         case BLOCK_STATE_UNINIT:
521                 return 0;
522         case BLOCK_STATE_TRIMMED:
523         case BLOCK_STATE_WRITTEN:
524                 return 1;
525         case BLOCK_STATE_WRITE_FAILURE:
526         case BLOCK_STATE_TRIM_FAILURE:
527                 return 2;
528         default:
529                 /* Silence compile warning on some BSDs and have a return */
530                 assert(0);
531                 return -1;
532         }
533 }
534
535 static int compare_block_infos(const void *bs1, const void *bs2)
536 {
537         uint32_t block1 = *(uint32_t *)bs1;
538         uint32_t block2 = *(uint32_t *)bs2;
539         int state1 = BLOCK_INFO_STATE(block1);
540         int state2 = BLOCK_INFO_STATE(block2);
541         int bscat1 = block_state_category(state1);
542         int bscat2 = block_state_category(state2);
543         int cycles1 = BLOCK_INFO_TRIMS(block1);
544         int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546         if (bscat1 < bscat2)
547                 return -1;
548         if (bscat1 > bscat2)
549                 return 1;
550
551         if (cycles1 < cycles2)
552                 return -1;
553         if (cycles1 > cycles2)
554                 return 1;
555
556         if (state1 < state2)
557                 return -1;
558         if (state1 > state2)
559                 return 1;
560
561         assert(block1 == block2);
562         return 0;
563 }
564
565 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566                                   fio_fp64_t *plist, unsigned int **percentiles,
567                                   unsigned int *types)
568 {
569         int len = 0;
570         int i, nr_uninit;
571
572         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575                 len++;
576
577         if (!len)
578                 return 0;
579
580         /*
581          * Sort the percentile list. Note that it may already be sorted if
582          * we are using the default values, but since it's a short list this
583          * isn't a worry. Also note that this does not work for NaN values.
584          */
585         if (len > 1)
586                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588         nr_uninit = 0;
589         /* Start only after the uninit entries end */
590         for (nr_uninit = 0;
591              nr_uninit < nr_block_infos
592                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593              nr_uninit ++)
594                 ;
595
596         if (nr_uninit == nr_block_infos)
597                 return 0;
598
599         *percentiles = calloc(len, sizeof(**percentiles));
600
601         for (i = 0; i < len; i++) {
602                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603                                 + nr_uninit;
604                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605         }
606
607         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608         for (i = 0; i < nr_block_infos; i++)
609                 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611         return len;
612 }
613
614 static const char *block_state_names[] = {
615         [BLOCK_STATE_UNINIT] = "unwritten",
616         [BLOCK_STATE_TRIMMED] = "trimmed",
617         [BLOCK_STATE_WRITTEN] = "written",
618         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620 };
621
622 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623                              fio_fp64_t *plist, struct buf_output *out)
624 {
625         int len, pos, i;
626         unsigned int *percentiles = NULL;
627         unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630                                      &percentiles, block_state_counts);
631
632         log_buf(out, "  block lifetime percentiles :\n   |");
633         pos = 0;
634         for (i = 0; i < len; i++) {
635                 uint32_t block_info = percentiles[i];
636 #define LINE_LENGTH     75
637                 char str[LINE_LENGTH];
638                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639                                      plist[i].u.f, block_info,
640                                      i == len - 1 ? '\n' : ',');
641                 assert(strln < LINE_LENGTH);
642                 if (pos + strln > LINE_LENGTH) {
643                         pos = 0;
644                         log_buf(out, "\n   |");
645                 }
646                 log_buf(out, "%s", str);
647                 pos += strln;
648 #undef LINE_LENGTH
649         }
650         if (percentiles)
651                 free(percentiles);
652
653         log_buf(out, "        states               :");
654         for (i = 0; i < BLOCK_STATE_COUNT; i++)
655                 log_buf(out, " %s=%u%c",
656                          block_state_names[i], block_state_counts[i],
657                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658 }
659
660 static void show_thread_status_normal(struct thread_stat *ts,
661                                       struct group_run_stats *rs,
662                                       struct buf_output *out)
663 {
664         double usr_cpu, sys_cpu;
665         unsigned long runtime;
666         double io_u_dist[FIO_IO_U_MAP_NR];
667         time_t time_p;
668         char time_buf[32];
669
670         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
671                 return;
672
673         time(&time_p);
674         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
675
676         if (!ts->error) {
677                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
678                                         ts->name, ts->groupid, ts->members,
679                                         ts->error, (int) ts->pid, time_buf);
680         } else {
681                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
682                                         ts->name, ts->groupid, ts->members,
683                                         ts->error, ts->verror, (int) ts->pid,
684                                         time_buf);
685         }
686
687         if (strlen(ts->description))
688                 log_buf(out, "  Description  : [%s]\n", ts->description);
689
690         if (ts->io_bytes[DDIR_READ])
691                 show_ddir_status(rs, ts, DDIR_READ, out);
692         if (ts->io_bytes[DDIR_WRITE])
693                 show_ddir_status(rs, ts, DDIR_WRITE, out);
694         if (ts->io_bytes[DDIR_TRIM])
695                 show_ddir_status(rs, ts, DDIR_TRIM, out);
696
697         show_latencies(ts, out);
698
699         runtime = ts->total_run_time;
700         if (runtime) {
701                 double runt = (double) runtime;
702
703                 usr_cpu = (double) ts->usr_time * 100 / runt;
704                 sys_cpu = (double) ts->sys_time * 100 / runt;
705         } else {
706                 usr_cpu = 0;
707                 sys_cpu = 0;
708         }
709
710         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
711                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
712                         (unsigned long long) ts->ctx,
713                         (unsigned long long) ts->majf,
714                         (unsigned long long) ts->minf);
715
716         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
717         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
718                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
719                                         io_u_dist[1], io_u_dist[2],
720                                         io_u_dist[3], io_u_dist[4],
721                                         io_u_dist[5], io_u_dist[6]);
722
723         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
724         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
725                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
726                                         io_u_dist[1], io_u_dist[2],
727                                         io_u_dist[3], io_u_dist[4],
728                                         io_u_dist[5], io_u_dist[6]);
729         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
730         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
731                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
732                                         io_u_dist[1], io_u_dist[2],
733                                         io_u_dist[3], io_u_dist[4],
734                                         io_u_dist[5], io_u_dist[6]);
735         log_buf(out, "     issued    : total=r=%llu/w=%llu/d=%llu,"
736                                  " short=r=%llu/w=%llu/d=%llu,"
737                                  " drop=r=%llu/w=%llu/d=%llu\n",
738                                         (unsigned long long) ts->total_io_u[0],
739                                         (unsigned long long) ts->total_io_u[1],
740                                         (unsigned long long) ts->total_io_u[2],
741                                         (unsigned long long) ts->short_io_u[0],
742                                         (unsigned long long) ts->short_io_u[1],
743                                         (unsigned long long) ts->short_io_u[2],
744                                         (unsigned long long) ts->drop_io_u[0],
745                                         (unsigned long long) ts->drop_io_u[1],
746                                         (unsigned long long) ts->drop_io_u[2]);
747         if (ts->continue_on_error) {
748                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
749                                         (unsigned long long)ts->total_err_count,
750                                         ts->first_error,
751                                         strerror(ts->first_error));
752         }
753         if (ts->latency_depth) {
754                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
755                                         (unsigned long long)ts->latency_target,
756                                         (unsigned long long)ts->latency_window,
757                                         ts->latency_percentile.u.f,
758                                         ts->latency_depth);
759         }
760
761         if (ts->nr_block_infos)
762                 show_block_infos(ts->nr_block_infos, ts->block_infos,
763                                   ts->percentile_list, out);
764 }
765
766 static void show_ddir_status_terse(struct thread_stat *ts,
767                                    struct group_run_stats *rs, int ddir,
768                                    struct buf_output *out)
769 {
770         unsigned long min, max;
771         unsigned long long bw, iops;
772         unsigned int *ovals = NULL;
773         double mean, dev;
774         unsigned int len, minv, maxv;
775         int i;
776
777         assert(ddir_rw(ddir));
778
779         iops = bw = 0;
780         if (ts->runtime[ddir]) {
781                 uint64_t runt = ts->runtime[ddir];
782
783                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
784                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
785         }
786
787         log_buf(out, ";%llu;%llu;%llu;%llu",
788                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
789                                         (unsigned long long) ts->runtime[ddir]);
790
791         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
792                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
793         else
794                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
795
796         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
797                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
798         else
799                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
800
801         if (ts->clat_percentiles) {
802                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
803                                         ts->clat_stat[ddir].samples,
804                                         ts->percentile_list, &ovals, &maxv,
805                                         &minv);
806         } else
807                 len = 0;
808
809         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
810                 if (i >= len) {
811                         log_buf(out, ";0%%=0");
812                         continue;
813                 }
814                 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
815         }
816
817         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
818                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
819         else
820                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
821
822         if (ovals)
823                 free(ovals);
824
825         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
826                 double p_of_agg = 100.0;
827
828                 if (rs->agg[ddir]) {
829                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
830                         if (p_of_agg > 100.0)
831                                 p_of_agg = 100.0;
832                 }
833
834                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
835         } else
836                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
837 }
838
839 static void add_ddir_status_json(struct thread_stat *ts,
840                 struct group_run_stats *rs, int ddir, struct json_object *parent)
841 {
842         unsigned long min, max;
843         unsigned long long bw;
844         unsigned int *ovals = NULL;
845         double mean, dev, iops;
846         unsigned int len, minv, maxv;
847         int i;
848         const char *ddirname[] = {"read", "write", "trim"};
849         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
850         char buf[120];
851         double p_of_agg = 100.0;
852
853         assert(ddir_rw(ddir));
854
855         if (ts->unified_rw_rep && ddir != DDIR_READ)
856                 return;
857
858         dir_object = json_create_object();
859         json_object_add_value_object(parent,
860                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
861
862         bw = 0;
863         iops = 0.0;
864         if (ts->runtime[ddir]) {
865                 uint64_t runt = ts->runtime[ddir];
866
867                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
868                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
869         }
870
871         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
872         json_object_add_value_int(dir_object, "bw", bw);
873         json_object_add_value_float(dir_object, "iops", iops);
874         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
875         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
876         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
877         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
878
879         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
880                 min = max = 0;
881                 mean = dev = 0.0;
882         }
883         tmp_object = json_create_object();
884         json_object_add_value_object(dir_object, "slat", tmp_object);
885         json_object_add_value_int(tmp_object, "min", min);
886         json_object_add_value_int(tmp_object, "max", max);
887         json_object_add_value_float(tmp_object, "mean", mean);
888         json_object_add_value_float(tmp_object, "stddev", dev);
889
890         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
891                 min = max = 0;
892                 mean = dev = 0.0;
893         }
894         tmp_object = json_create_object();
895         json_object_add_value_object(dir_object, "clat", tmp_object);
896         json_object_add_value_int(tmp_object, "min", min);
897         json_object_add_value_int(tmp_object, "max", max);
898         json_object_add_value_float(tmp_object, "mean", mean);
899         json_object_add_value_float(tmp_object, "stddev", dev);
900
901         if (ts->clat_percentiles) {
902                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
903                                         ts->clat_stat[ddir].samples,
904                                         ts->percentile_list, &ovals, &maxv,
905                                         &minv);
906         } else
907                 len = 0;
908
909         percentile_object = json_create_object();
910         json_object_add_value_object(tmp_object, "percentile", percentile_object);
911         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
912                 if (i >= len) {
913                         json_object_add_value_int(percentile_object, "0.00", 0);
914                         continue;
915                 }
916                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
917                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
918         }
919
920         if (output_format & FIO_OUTPUT_JSON_PLUS) {
921                 clat_bins_object = json_create_object();
922                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
923                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
924                         snprintf(buf, sizeof(buf), "%d", i);
925                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
926                 }
927                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
928                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
929                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
930         }
931
932         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
933                 min = max = 0;
934                 mean = dev = 0.0;
935         }
936         tmp_object = json_create_object();
937         json_object_add_value_object(dir_object, "lat", tmp_object);
938         json_object_add_value_int(tmp_object, "min", min);
939         json_object_add_value_int(tmp_object, "max", max);
940         json_object_add_value_float(tmp_object, "mean", mean);
941         json_object_add_value_float(tmp_object, "stddev", dev);
942         if (ovals)
943                 free(ovals);
944
945         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
946                 if (rs->agg[ddir]) {
947                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
948                         if (p_of_agg > 100.0)
949                                 p_of_agg = 100.0;
950                 }
951         } else {
952                 min = max = 0;
953                 p_of_agg = mean = dev = 0.0;
954         }
955         json_object_add_value_int(dir_object, "bw_min", min);
956         json_object_add_value_int(dir_object, "bw_max", max);
957         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
958         json_object_add_value_float(dir_object, "bw_mean", mean);
959         json_object_add_value_float(dir_object, "bw_dev", dev);
960 }
961
962 static void show_thread_status_terse_v2(struct thread_stat *ts,
963                                         struct group_run_stats *rs,
964                                         struct buf_output *out)
965 {
966         double io_u_dist[FIO_IO_U_MAP_NR];
967         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
968         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
969         double usr_cpu, sys_cpu;
970         int i;
971
972         /* General Info */
973         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
974         /* Log Read Status */
975         show_ddir_status_terse(ts, rs, DDIR_READ, out);
976         /* Log Write Status */
977         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
978         /* Log Trim Status */
979         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
980
981         /* CPU Usage */
982         if (ts->total_run_time) {
983                 double runt = (double) ts->total_run_time;
984
985                 usr_cpu = (double) ts->usr_time * 100 / runt;
986                 sys_cpu = (double) ts->sys_time * 100 / runt;
987         } else {
988                 usr_cpu = 0;
989                 sys_cpu = 0;
990         }
991
992         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
993                                                 (unsigned long long) ts->ctx,
994                                                 (unsigned long long) ts->majf,
995                                                 (unsigned long long) ts->minf);
996
997         /* Calc % distribution of IO depths, usecond, msecond latency */
998         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
999         stat_calc_lat_u(ts, io_u_lat_u);
1000         stat_calc_lat_m(ts, io_u_lat_m);
1001
1002         /* Only show fixed 7 I/O depth levels*/
1003         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1004                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1005                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1006
1007         /* Microsecond latency */
1008         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1009                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1010         /* Millisecond latency */
1011         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1012                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1013         /* Additional output if continue_on_error set - default off*/
1014         if (ts->continue_on_error)
1015                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1016         log_buf(out, "\n");
1017
1018         /* Additional output if description is set */
1019         if (strlen(ts->description))
1020                 log_buf(out, ";%s", ts->description);
1021
1022         log_buf(out, "\n");
1023 }
1024
1025 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1026                                            struct group_run_stats *rs, int ver,
1027                                            struct buf_output *out)
1028 {
1029         double io_u_dist[FIO_IO_U_MAP_NR];
1030         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1031         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1032         double usr_cpu, sys_cpu;
1033         int i;
1034
1035         /* General Info */
1036         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1037                                         ts->name, ts->groupid, ts->error);
1038         /* Log Read Status */
1039         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1040         /* Log Write Status */
1041         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1042         /* Log Trim Status */
1043         if (ver == 4)
1044                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1045
1046         /* CPU Usage */
1047         if (ts->total_run_time) {
1048                 double runt = (double) ts->total_run_time;
1049
1050                 usr_cpu = (double) ts->usr_time * 100 / runt;
1051                 sys_cpu = (double) ts->sys_time * 100 / runt;
1052         } else {
1053                 usr_cpu = 0;
1054                 sys_cpu = 0;
1055         }
1056
1057         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1058                                                 (unsigned long long) ts->ctx,
1059                                                 (unsigned long long) ts->majf,
1060                                                 (unsigned long long) ts->minf);
1061
1062         /* Calc % distribution of IO depths, usecond, msecond latency */
1063         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1064         stat_calc_lat_u(ts, io_u_lat_u);
1065         stat_calc_lat_m(ts, io_u_lat_m);
1066
1067         /* Only show fixed 7 I/O depth levels*/
1068         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1069                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1070                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1071
1072         /* Microsecond latency */
1073         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1074                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1075         /* Millisecond latency */
1076         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1077                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1078
1079         /* disk util stats, if any */
1080         show_disk_util(1, NULL, out);
1081
1082         /* Additional output if continue_on_error set - default off*/
1083         if (ts->continue_on_error)
1084                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1085
1086         /* Additional output if description is set */
1087         if (strlen(ts->description))
1088                 log_buf(out, ";%s", ts->description);
1089
1090         log_buf(out, "\n");
1091 }
1092
1093 void json_add_job_opts(struct json_object *root, const char *name,
1094                        struct flist_head *opt_list, bool num_jobs)
1095 {
1096         struct json_object *dir_object;
1097         struct flist_head *entry;
1098         struct print_option *p;
1099
1100         if (flist_empty(opt_list))
1101                 return;
1102
1103         dir_object = json_create_object();
1104         json_object_add_value_object(root, name, dir_object);
1105
1106         flist_for_each(entry, opt_list) {
1107                 const char *pos = "";
1108
1109                 p = flist_entry(entry, struct print_option, list);
1110                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1111                         continue;
1112                 if (p->value)
1113                         pos = p->value;
1114                 json_object_add_value_string(dir_object, p->name, pos);
1115         }
1116 }
1117
1118 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1119                                                    struct group_run_stats *rs,
1120                                                    struct flist_head *opt_list)
1121 {
1122         struct json_object *root, *tmp;
1123         struct jobs_eta *je;
1124         double io_u_dist[FIO_IO_U_MAP_NR];
1125         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1126         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1127         double usr_cpu, sys_cpu;
1128         int i;
1129         size_t size;
1130
1131         root = json_create_object();
1132         json_object_add_value_string(root, "jobname", ts->name);
1133         json_object_add_value_int(root, "groupid", ts->groupid);
1134         json_object_add_value_int(root, "error", ts->error);
1135
1136         /* ETA Info */
1137         je = get_jobs_eta(true, &size);
1138         if (je) {
1139                 json_object_add_value_int(root, "eta", je->eta_sec);
1140                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1141         }
1142
1143         if (opt_list)
1144                 json_add_job_opts(root, "job options", opt_list, true);
1145
1146         add_ddir_status_json(ts, rs, DDIR_READ, root);
1147         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1148         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1149
1150         /* CPU Usage */
1151         if (ts->total_run_time) {
1152                 double runt = (double) ts->total_run_time;
1153
1154                 usr_cpu = (double) ts->usr_time * 100 / runt;
1155                 sys_cpu = (double) ts->sys_time * 100 / runt;
1156         } else {
1157                 usr_cpu = 0;
1158                 sys_cpu = 0;
1159         }
1160         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1161         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1162         json_object_add_value_int(root, "ctx", ts->ctx);
1163         json_object_add_value_int(root, "majf", ts->majf);
1164         json_object_add_value_int(root, "minf", ts->minf);
1165
1166
1167         /* Calc % distribution of IO depths, usecond, msecond latency */
1168         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1169         stat_calc_lat_u(ts, io_u_lat_u);
1170         stat_calc_lat_m(ts, io_u_lat_m);
1171
1172         tmp = json_create_object();
1173         json_object_add_value_object(root, "iodepth_level", tmp);
1174         /* Only show fixed 7 I/O depth levels*/
1175         for (i = 0; i < 7; i++) {
1176                 char name[20];
1177                 if (i < 6)
1178                         snprintf(name, 20, "%d", 1 << i);
1179                 else
1180                         snprintf(name, 20, ">=%d", 1 << i);
1181                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1182         }
1183
1184         tmp = json_create_object();
1185         json_object_add_value_object(root, "latency_us", tmp);
1186         /* Microsecond latency */
1187         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1188                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1189                                  "250", "500", "750", "1000", };
1190                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1191         }
1192         /* Millisecond latency */
1193         tmp = json_create_object();
1194         json_object_add_value_object(root, "latency_ms", tmp);
1195         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1196                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1197                                  "250", "500", "750", "1000", "2000",
1198                                  ">=2000", };
1199                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1200         }
1201
1202         /* Additional output if continue_on_error set - default off*/
1203         if (ts->continue_on_error) {
1204                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1205                 json_object_add_value_int(root, "first_error", ts->first_error);
1206         }
1207
1208         if (ts->latency_depth) {
1209                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1210                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1211                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1212                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1213         }
1214
1215         /* Additional output if description is set */
1216         if (strlen(ts->description))
1217                 json_object_add_value_string(root, "desc", ts->description);
1218
1219         if (ts->nr_block_infos) {
1220                 /* Block error histogram and types */
1221                 int len;
1222                 unsigned int *percentiles = NULL;
1223                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1224
1225                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1226                                              ts->percentile_list,
1227                                              &percentiles, block_state_counts);
1228
1229                 if (len) {
1230                         struct json_object *block, *percentile_object, *states;
1231                         int state;
1232                         block = json_create_object();
1233                         json_object_add_value_object(root, "block", block);
1234
1235                         percentile_object = json_create_object();
1236                         json_object_add_value_object(block, "percentiles",
1237                                                      percentile_object);
1238                         for (i = 0; i < len; i++) {
1239                                 char buf[20];
1240                                 snprintf(buf, sizeof(buf), "%f",
1241                                          ts->percentile_list[i].u.f);
1242                                 json_object_add_value_int(percentile_object,
1243                                                           (const char *)buf,
1244                                                           percentiles[i]);
1245                         }
1246
1247                         states = json_create_object();
1248                         json_object_add_value_object(block, "states", states);
1249                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1250                                 json_object_add_value_int(states,
1251                                         block_state_names[state],
1252                                         block_state_counts[state]);
1253                         }
1254                         free(percentiles);
1255                 }
1256         }
1257
1258         /* steady state detection; move this behind json+? */
1259         if (ts->ss) {
1260                 struct json_object *data;
1261                 struct json_array *iops, *bw;
1262                 struct steadystate_data *ss = ts->ss;
1263                 unsigned long long sum_iops, sum_bw;
1264                 double mean_iops, mean_bw;
1265                 int i, j, k;
1266                 char ss_buf[64];
1267
1268                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1269                         ss->check_iops ? "iops" : "bw",
1270                         ss->check_slope ? "_slope" : "",
1271                         (float) ss->limit,
1272                         ss->pct ? "%" : "");
1273
1274                 tmp = json_create_object();
1275                 json_object_add_value_object(root, "steadystate", tmp);
1276                 json_object_add_value_string(tmp, "ss", ss_buf);
1277                 json_object_add_value_int(tmp, "duration", (int)ss->dur);
1278                 json_object_add_value_int(tmp, "steadystate_ramptime", ss->ramp_time / 1000000L);
1279                 json_object_add_value_int(tmp, "attained", ss->attained);
1280
1281                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ss->criterion, ss->pct ? "%" : "");
1282                 json_object_add_value_string(tmp, "criterion", ss_buf);
1283                 json_object_add_value_float(tmp, "max_deviation", ss->deviation);
1284                 json_object_add_value_float(tmp, "slope", ss->slope);
1285
1286                 data = json_create_object();
1287                 json_object_add_value_object(tmp, "data", data);
1288                 bw = json_create_array();
1289                 iops = json_create_array();
1290
1291                 /*
1292                 ** if ss was attained or the buffer is not full,
1293                 ** ss->head points to the first element in the list.
1294                 ** otherwise it actually points to the second element
1295                 ** in the list
1296                 */
1297                 if (ss->attained || ss->sum_y == 0)
1298                         j = ss->head;
1299                 else
1300                         j = ss->head == 0 ? ss->dur - 1 : ss->head - 1;
1301                 for (i = 0, sum_iops = 0, sum_bw = 0; i < ss->dur; i++) {
1302                         k = (j + i) % ss->dur;
1303                         sum_bw += ss->bw_data[k];
1304                         sum_iops += ss->iops_data[k];
1305                         json_array_add_value_int(bw, ss->bw_data[k]);
1306                         json_array_add_value_int(iops, ss->iops_data[k]);
1307                 }
1308                 mean_bw = (double) sum_bw / ss->dur;
1309                 mean_iops = (double) sum_iops / ss->dur;
1310                 json_object_add_value_float(data, "bw_mean", mean_bw);
1311                 json_object_add_value_float(data, "iops_mean", mean_iops);
1312                 json_object_add_value_array(data, "iops", iops);
1313                 json_object_add_value_array(data, "bw", bw);
1314         }
1315
1316         return root;
1317 }
1318
1319 static void show_thread_status_terse(struct thread_stat *ts,
1320                                      struct group_run_stats *rs,
1321                                      struct buf_output *out)
1322 {
1323         if (terse_version == 2)
1324                 show_thread_status_terse_v2(ts, rs, out);
1325         else if (terse_version == 3 || terse_version == 4)
1326                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1327         else
1328                 log_err("fio: bad terse version!? %d\n", terse_version);
1329 }
1330
1331 struct json_object *show_thread_status(struct thread_stat *ts,
1332                                        struct group_run_stats *rs,
1333                                        struct flist_head *opt_list,
1334                                        struct buf_output *out)
1335 {
1336         struct json_object *ret = NULL;
1337
1338         if (output_format & FIO_OUTPUT_TERSE)
1339                 show_thread_status_terse(ts, rs,  out);
1340         if (output_format & FIO_OUTPUT_JSON)
1341                 ret = show_thread_status_json(ts, rs, opt_list);
1342         if (output_format & FIO_OUTPUT_NORMAL)
1343                 show_thread_status_normal(ts, rs,  out);
1344
1345         return ret;
1346 }
1347
1348 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1349 {
1350         double mean, S;
1351
1352         if (src->samples == 0)
1353                 return;
1354
1355         dst->min_val = min(dst->min_val, src->min_val);
1356         dst->max_val = max(dst->max_val, src->max_val);
1357
1358         /*
1359          * Compute new mean and S after the merge
1360          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1361          *  #Parallel_algorithm>
1362          */
1363         if (first) {
1364                 mean = src->mean.u.f;
1365                 S = src->S.u.f;
1366         } else {
1367                 double delta = src->mean.u.f - dst->mean.u.f;
1368
1369                 mean = ((src->mean.u.f * src->samples) +
1370                         (dst->mean.u.f * dst->samples)) /
1371                         (dst->samples + src->samples);
1372
1373                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1374                         (dst->samples * src->samples) /
1375                         (dst->samples + src->samples);
1376         }
1377
1378         dst->samples += src->samples;
1379         dst->mean.u.f = mean;
1380         dst->S.u.f = S;
1381 }
1382
1383 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1384 {
1385         int i;
1386
1387         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1388                 if (dst->max_run[i] < src->max_run[i])
1389                         dst->max_run[i] = src->max_run[i];
1390                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1391                         dst->min_run[i] = src->min_run[i];
1392                 if (dst->max_bw[i] < src->max_bw[i])
1393                         dst->max_bw[i] = src->max_bw[i];
1394                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1395                         dst->min_bw[i] = src->min_bw[i];
1396
1397                 dst->io_kb[i] += src->io_kb[i];
1398                 dst->agg[i] += src->agg[i];
1399         }
1400
1401         if (!dst->kb_base)
1402                 dst->kb_base = src->kb_base;
1403         if (!dst->unit_base)
1404                 dst->unit_base = src->unit_base;
1405 }
1406
1407 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1408                       bool first)
1409 {
1410         int l, k;
1411
1412         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1413                 if (!dst->unified_rw_rep) {
1414                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1415                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1416                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1417                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1418
1419                         dst->io_bytes[l] += src->io_bytes[l];
1420
1421                         if (dst->runtime[l] < src->runtime[l])
1422                                 dst->runtime[l] = src->runtime[l];
1423                 } else {
1424                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1425                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1426                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1427                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1428
1429                         dst->io_bytes[0] += src->io_bytes[l];
1430
1431                         if (dst->runtime[0] < src->runtime[l])
1432                                 dst->runtime[0] = src->runtime[l];
1433
1434                         /*
1435                          * We're summing to the same destination, so override
1436                          * 'first' after the first iteration of the loop
1437                          */
1438                         first = false;
1439                 }
1440         }
1441
1442         dst->usr_time += src->usr_time;
1443         dst->sys_time += src->sys_time;
1444         dst->ctx += src->ctx;
1445         dst->majf += src->majf;
1446         dst->minf += src->minf;
1447
1448         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1449                 dst->io_u_map[k] += src->io_u_map[k];
1450         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1451                 dst->io_u_submit[k] += src->io_u_submit[k];
1452         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1453                 dst->io_u_complete[k] += src->io_u_complete[k];
1454         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1455                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1456         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1457                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1458
1459         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1460                 if (!dst->unified_rw_rep) {
1461                         dst->total_io_u[k] += src->total_io_u[k];
1462                         dst->short_io_u[k] += src->short_io_u[k];
1463                         dst->drop_io_u[k] += src->drop_io_u[k];
1464                 } else {
1465                         dst->total_io_u[0] += src->total_io_u[k];
1466                         dst->short_io_u[0] += src->short_io_u[k];
1467                         dst->drop_io_u[0] += src->drop_io_u[k];
1468                 }
1469         }
1470
1471         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1472                 int m;
1473
1474                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1475                         if (!dst->unified_rw_rep)
1476                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1477                         else
1478                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1479                 }
1480         }
1481
1482         dst->total_run_time += src->total_run_time;
1483         dst->total_submit += src->total_submit;
1484         dst->total_complete += src->total_complete;
1485 }
1486
1487 void init_group_run_stat(struct group_run_stats *gs)
1488 {
1489         int i;
1490         memset(gs, 0, sizeof(*gs));
1491
1492         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1493                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1494 }
1495
1496 void init_thread_stat(struct thread_stat *ts)
1497 {
1498         int j;
1499
1500         memset(ts, 0, sizeof(*ts));
1501
1502         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1503                 ts->lat_stat[j].min_val = -1UL;
1504                 ts->clat_stat[j].min_val = -1UL;
1505                 ts->slat_stat[j].min_val = -1UL;
1506                 ts->bw_stat[j].min_val = -1UL;
1507         }
1508         ts->groupid = -1;
1509 }
1510
1511 void __show_run_stats(void)
1512 {
1513         struct group_run_stats *runstats, *rs;
1514         struct thread_data *td;
1515         struct thread_stat *threadstats, *ts;
1516         int i, j, k, nr_ts, last_ts, idx;
1517         int kb_base_warned = 0;
1518         int unit_base_warned = 0;
1519         struct json_object *root = NULL;
1520         struct json_array *array = NULL;
1521         struct buf_output output[FIO_OUTPUT_NR];
1522         struct flist_head **opt_lists;
1523
1524         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1525
1526         for (i = 0; i < groupid + 1; i++)
1527                 init_group_run_stat(&runstats[i]);
1528
1529         /*
1530          * find out how many threads stats we need. if group reporting isn't
1531          * enabled, it's one-per-td.
1532          */
1533         nr_ts = 0;
1534         last_ts = -1;
1535         for_each_td(td, i) {
1536                 if (!td->o.group_reporting) {
1537                         nr_ts++;
1538                         continue;
1539                 }
1540                 if (last_ts == td->groupid)
1541                         continue;
1542
1543                 last_ts = td->groupid;
1544                 nr_ts++;
1545         }
1546
1547         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1548         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1549
1550         for (i = 0; i < nr_ts; i++) {
1551                 init_thread_stat(&threadstats[i]);
1552                 opt_lists[i] = NULL;
1553         }
1554
1555         j = 0;
1556         last_ts = -1;
1557         idx = 0;
1558         for_each_td(td, i) {
1559                 if (idx && (!td->o.group_reporting ||
1560                     (td->o.group_reporting && last_ts != td->groupid))) {
1561                         idx = 0;
1562                         j++;
1563                 }
1564
1565                 last_ts = td->groupid;
1566
1567                 ts = &threadstats[j];
1568
1569                 ts->clat_percentiles = td->o.clat_percentiles;
1570                 ts->percentile_precision = td->o.percentile_precision;
1571                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1572                 opt_lists[j] = &td->opt_list;
1573
1574                 idx++;
1575                 ts->members++;
1576
1577                 if (ts->groupid == -1) {
1578                         /*
1579                          * These are per-group shared already
1580                          */
1581                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1582                         if (td->o.description)
1583                                 strncpy(ts->description, td->o.description,
1584                                                 FIO_JOBDESC_SIZE - 1);
1585                         else
1586                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1587
1588                         /*
1589                          * If multiple entries in this group, this is
1590                          * the first member.
1591                          */
1592                         ts->thread_number = td->thread_number;
1593                         ts->groupid = td->groupid;
1594
1595                         /*
1596                          * first pid in group, not very useful...
1597                          */
1598                         ts->pid = td->pid;
1599
1600                         ts->kb_base = td->o.kb_base;
1601                         ts->unit_base = td->o.unit_base;
1602                         ts->unified_rw_rep = td->o.unified_rw_rep;
1603                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1604                         log_info("fio: kb_base differs for jobs in group, using"
1605                                  " %u as the base\n", ts->kb_base);
1606                         kb_base_warned = 1;
1607                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1608                         log_info("fio: unit_base differs for jobs in group, using"
1609                                  " %u as the base\n", ts->unit_base);
1610                         unit_base_warned = 1;
1611                 }
1612
1613                 ts->continue_on_error = td->o.continue_on_error;
1614                 ts->total_err_count += td->total_err_count;
1615                 ts->first_error = td->first_error;
1616                 if (!ts->error) {
1617                         if (!td->error && td->o.continue_on_error &&
1618                             td->first_error) {
1619                                 ts->error = td->first_error;
1620                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1621                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1622                         } else  if (td->error) {
1623                                 ts->error = td->error;
1624                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1625                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1626                         }
1627                 }
1628
1629                 ts->latency_depth = td->latency_qd;
1630                 ts->latency_target = td->o.latency_target;
1631                 ts->latency_percentile = td->o.latency_percentile;
1632                 ts->latency_window = td->o.latency_window;
1633
1634                 ts->nr_block_infos = td->ts.nr_block_infos;
1635                 for (k = 0; k < ts->nr_block_infos; k++)
1636                         ts->block_infos[k] = td->ts.block_infos[k];
1637
1638                 sum_thread_stats(ts, &td->ts, idx == 1);
1639
1640                 if (td->o.ss_dur)
1641                         ts->ss = &td->ss;
1642                 else
1643                         ts->ss = NULL;
1644         }
1645
1646         for (i = 0; i < nr_ts; i++) {
1647                 unsigned long long bw;
1648
1649                 ts = &threadstats[i];
1650                 if (ts->groupid == -1)
1651                         continue;
1652                 rs = &runstats[ts->groupid];
1653                 rs->kb_base = ts->kb_base;
1654                 rs->unit_base = ts->unit_base;
1655                 rs->unified_rw_rep += ts->unified_rw_rep;
1656
1657                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1658                         if (!ts->runtime[j])
1659                                 continue;
1660                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1661                                 rs->min_run[j] = ts->runtime[j];
1662                         if (ts->runtime[j] > rs->max_run[j])
1663                                 rs->max_run[j] = ts->runtime[j];
1664
1665                         bw = 0;
1666                         if (ts->runtime[j]) {
1667                                 unsigned long runt = ts->runtime[j];
1668                                 unsigned long long kb;
1669
1670                                 kb = ts->io_bytes[j] / rs->kb_base;
1671                                 bw = kb * 1000 / runt;
1672                         }
1673                         if (bw < rs->min_bw[j])
1674                                 rs->min_bw[j] = bw;
1675                         if (bw > rs->max_bw[j])
1676                                 rs->max_bw[j] = bw;
1677
1678                         rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1679                 }
1680         }
1681
1682         for (i = 0; i < groupid + 1; i++) {
1683                 int ddir;
1684
1685                 rs = &runstats[i];
1686
1687                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1688                         if (rs->max_run[ddir])
1689                                 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1690                                                 rs->max_run[ddir];
1691                 }
1692         }
1693
1694         for (i = 0; i < FIO_OUTPUT_NR; i++)
1695                 buf_output_init(&output[i]);
1696
1697         /*
1698          * don't overwrite last signal output
1699          */
1700         if (output_format & FIO_OUTPUT_NORMAL)
1701                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1702         if (output_format & FIO_OUTPUT_JSON) {
1703                 struct thread_data *global;
1704                 char time_buf[32];
1705                 struct timeval now;
1706                 unsigned long long ms_since_epoch;
1707
1708                 gettimeofday(&now, NULL);
1709                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1710                                  (unsigned long long)(now.tv_usec) / 1000;
1711
1712                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1713                                 sizeof(time_buf));
1714                 time_buf[strlen(time_buf) - 1] = '\0';
1715
1716                 root = json_create_object();
1717                 json_object_add_value_string(root, "fio version", fio_version_string);
1718                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1719                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1720                 json_object_add_value_string(root, "time", time_buf);
1721                 global = get_global_options();
1722                 json_add_job_opts(root, "global options", &global->opt_list, false);
1723                 array = json_create_array();
1724                 json_object_add_value_array(root, "jobs", array);
1725         }
1726
1727         if (is_backend)
1728                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1729
1730         for (i = 0; i < nr_ts; i++) {
1731                 ts = &threadstats[i];
1732                 rs = &runstats[ts->groupid];
1733
1734                 if (is_backend) {
1735                         fio_server_send_job_options(opt_lists[i], i);
1736                         fio_server_send_ts(ts, rs);
1737                 } else {
1738                         if (output_format & FIO_OUTPUT_TERSE)
1739                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1740                         if (output_format & FIO_OUTPUT_JSON) {
1741                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1742                                 json_array_add_value_object(array, tmp);
1743                         }
1744                         if (output_format & FIO_OUTPUT_NORMAL)
1745                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1746                 }
1747         }
1748         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1749                 /* disk util stats, if any */
1750                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1751
1752                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1753
1754                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1755                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1756                 json_free_object(root);
1757         }
1758
1759         for (i = 0; i < groupid + 1; i++) {
1760                 rs = &runstats[i];
1761
1762                 rs->groupid = i;
1763                 if (is_backend)
1764                         fio_server_send_gs(rs);
1765                 else if (output_format & FIO_OUTPUT_NORMAL)
1766                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1767         }
1768
1769         if (is_backend)
1770                 fio_server_send_du();
1771         else if (output_format & FIO_OUTPUT_NORMAL) {
1772                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1773                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1774         }
1775
1776         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1777                 buf_output_flush(&output[i]);
1778                 buf_output_free(&output[i]);
1779         }
1780
1781         log_info_flush();
1782         free(runstats);
1783         free(threadstats);
1784         free(opt_lists);
1785 }
1786
1787 void show_run_stats(void)
1788 {
1789         fio_mutex_down(stat_mutex);
1790         __show_run_stats();
1791         fio_mutex_up(stat_mutex);
1792 }
1793
1794 void __show_running_run_stats(void)
1795 {
1796         struct thread_data *td;
1797         unsigned long long *rt;
1798         struct timeval tv;
1799         int i;
1800
1801         fio_mutex_down(stat_mutex);
1802
1803         rt = malloc(thread_number * sizeof(unsigned long long));
1804         fio_gettime(&tv, NULL);
1805
1806         for_each_td(td, i) {
1807                 td->update_rusage = 1;
1808                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1809                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1810                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1811                 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1812
1813                 rt[i] = mtime_since(&td->start, &tv);
1814                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1815                         td->ts.runtime[DDIR_READ] += rt[i];
1816                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1817                         td->ts.runtime[DDIR_WRITE] += rt[i];
1818                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1819                         td->ts.runtime[DDIR_TRIM] += rt[i];
1820         }
1821
1822         for_each_td(td, i) {
1823                 if (td->runstate >= TD_EXITED)
1824                         continue;
1825                 if (td->rusage_sem) {
1826                         td->update_rusage = 1;
1827                         fio_mutex_down(td->rusage_sem);
1828                 }
1829                 td->update_rusage = 0;
1830         }
1831
1832         __show_run_stats();
1833
1834         for_each_td(td, i) {
1835                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1836                         td->ts.runtime[DDIR_READ] -= rt[i];
1837                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1838                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1839                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1840                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1841         }
1842
1843         free(rt);
1844         fio_mutex_up(stat_mutex);
1845 }
1846
1847 static int status_interval_init;
1848 static struct timeval status_time;
1849 static int status_file_disabled;
1850
1851 #define FIO_STATUS_FILE         "fio-dump-status"
1852
1853 static int check_status_file(void)
1854 {
1855         struct stat sb;
1856         const char *temp_dir;
1857         char fio_status_file_path[PATH_MAX];
1858
1859         if (status_file_disabled)
1860                 return 0;
1861
1862         temp_dir = getenv("TMPDIR");
1863         if (temp_dir == NULL) {
1864                 temp_dir = getenv("TEMP");
1865                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1866                         temp_dir = NULL;
1867         }
1868         if (temp_dir == NULL)
1869                 temp_dir = "/tmp";
1870
1871         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1872
1873         if (stat(fio_status_file_path, &sb))
1874                 return 0;
1875
1876         if (unlink(fio_status_file_path) < 0) {
1877                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1878                                                         strerror(errno));
1879                 log_err("fio: disabling status file updates\n");
1880                 status_file_disabled = 1;
1881         }
1882
1883         return 1;
1884 }
1885
1886 void check_for_running_stats(void)
1887 {
1888         if (status_interval) {
1889                 if (!status_interval_init) {
1890                         fio_gettime(&status_time, NULL);
1891                         status_interval_init = 1;
1892                 } else if (mtime_since_now(&status_time) >= status_interval) {
1893                         show_running_run_stats();
1894                         fio_gettime(&status_time, NULL);
1895                         return;
1896                 }
1897         }
1898         if (check_status_file()) {
1899                 show_running_run_stats();
1900                 return;
1901         }
1902 }
1903
1904 static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1905 {
1906         double val = data;
1907         double delta;
1908
1909         if (data > is->max_val)
1910                 is->max_val = data;
1911         if (data < is->min_val)
1912                 is->min_val = data;
1913
1914         delta = val - is->mean.u.f;
1915         if (delta) {
1916                 is->mean.u.f += delta / (is->samples + 1.0);
1917                 is->S.u.f += delta * (val - is->mean.u.f);
1918         }
1919
1920         is->samples++;
1921 }
1922
1923 /*
1924  * Return a struct io_logs, which is added to the tail of the log
1925  * list for 'iolog'.
1926  */
1927 static struct io_logs *get_new_log(struct io_log *iolog)
1928 {
1929         size_t new_size, new_samples;
1930         struct io_logs *cur_log;
1931
1932         /*
1933          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1934          * forever
1935          */
1936         if (!iolog->cur_log_max)
1937                 new_samples = DEF_LOG_ENTRIES;
1938         else {
1939                 new_samples = iolog->cur_log_max * 2;
1940                 if (new_samples > MAX_LOG_ENTRIES)
1941                         new_samples = MAX_LOG_ENTRIES;
1942         }
1943
1944         new_size = new_samples * log_entry_sz(iolog);
1945
1946         cur_log = smalloc(sizeof(*cur_log));
1947         if (cur_log) {
1948                 INIT_FLIST_HEAD(&cur_log->list);
1949                 cur_log->log = malloc(new_size);
1950                 if (cur_log->log) {
1951                         cur_log->nr_samples = 0;
1952                         cur_log->max_samples = new_samples;
1953                         flist_add_tail(&cur_log->list, &iolog->io_logs);
1954                         iolog->cur_log_max = new_samples;
1955                         return cur_log;
1956                 }
1957                 sfree(cur_log);
1958         }
1959
1960         return NULL;
1961 }
1962
1963 /*
1964  * Add and return a new log chunk, or return current log if big enough
1965  */
1966 static struct io_logs *regrow_log(struct io_log *iolog)
1967 {
1968         struct io_logs *cur_log;
1969         int i;
1970
1971         if (!iolog || iolog->disabled)
1972                 goto disable;
1973
1974         cur_log = iolog_cur_log(iolog);
1975         if (!cur_log) {
1976                 cur_log = get_new_log(iolog);
1977                 if (!cur_log)
1978                         return NULL;
1979         }
1980
1981         if (cur_log->nr_samples < cur_log->max_samples)
1982                 return cur_log;
1983
1984         /*
1985          * No room for a new sample. If we're compressing on the fly, flush
1986          * out the current chunk
1987          */
1988         if (iolog->log_gz) {
1989                 if (iolog_cur_flush(iolog, cur_log)) {
1990                         log_err("fio: failed flushing iolog! Will stop logging.\n");
1991                         return NULL;
1992                 }
1993         }
1994
1995         /*
1996          * Get a new log array, and add to our list
1997          */
1998         cur_log = get_new_log(iolog);
1999         if (!cur_log) {
2000                 log_err("fio: failed extending iolog! Will stop logging.\n");
2001                 return NULL;
2002         }
2003
2004         if (!iolog->pending || !iolog->pending->nr_samples)
2005                 return cur_log;
2006
2007         /*
2008          * Flush pending items to new log
2009          */
2010         for (i = 0; i < iolog->pending->nr_samples; i++) {
2011                 struct io_sample *src, *dst;
2012
2013                 src = get_sample(iolog, iolog->pending, i);
2014                 dst = get_sample(iolog, cur_log, i);
2015                 memcpy(dst, src, log_entry_sz(iolog));
2016         }
2017         cur_log->nr_samples = iolog->pending->nr_samples;
2018
2019         iolog->pending->nr_samples = 0;
2020         return cur_log;
2021 disable:
2022         if (iolog)
2023                 iolog->disabled = true;
2024         return NULL;
2025 }
2026
2027 void regrow_logs(struct thread_data *td)
2028 {
2029         regrow_log(td->slat_log);
2030         regrow_log(td->clat_log);
2031         regrow_log(td->clat_hist_log);
2032         regrow_log(td->lat_log);
2033         regrow_log(td->bw_log);
2034         regrow_log(td->iops_log);
2035         td->flags &= ~TD_F_REGROW_LOGS;
2036 }
2037
2038 static struct io_logs *get_cur_log(struct io_log *iolog)
2039 {
2040         struct io_logs *cur_log;
2041
2042         cur_log = iolog_cur_log(iolog);
2043         if (!cur_log) {
2044                 cur_log = get_new_log(iolog);
2045                 if (!cur_log)
2046                         return NULL;
2047         }
2048
2049         if (cur_log->nr_samples < cur_log->max_samples)
2050                 return cur_log;
2051
2052         /*
2053          * Out of space. If we're in IO offload mode, or we're not doing
2054          * per unit logging (hence logging happens outside of the IO thread
2055          * as well), add a new log chunk inline. If we're doing inline
2056          * submissions, flag 'td' as needing a log regrow and we'll take
2057          * care of it on the submission side.
2058          */
2059         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2060             !per_unit_log(iolog))
2061                 return regrow_log(iolog);
2062
2063         iolog->td->flags |= TD_F_REGROW_LOGS;
2064         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2065         return iolog->pending;
2066 }
2067
2068 static void __add_log_sample(struct io_log *iolog, unsigned long val,
2069                              enum fio_ddir ddir, unsigned int bs,
2070                              unsigned long t, uint64_t offset)
2071 {
2072         struct io_logs *cur_log;
2073
2074         if (iolog->disabled)
2075                 return;
2076         if (flist_empty(&iolog->io_logs))
2077                 iolog->avg_last = t;
2078
2079         cur_log = get_cur_log(iolog);
2080         if (cur_log) {
2081                 struct io_sample *s;
2082
2083                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2084
2085                 s->val = val;
2086                 s->time = t;
2087                 io_sample_set_ddir(iolog, s, ddir);
2088                 s->bs = bs;
2089
2090                 if (iolog->log_offset) {
2091                         struct io_sample_offset *so = (void *) s;
2092
2093                         so->offset = offset;
2094                 }
2095
2096                 cur_log->nr_samples++;
2097                 return;
2098         }
2099
2100         iolog->disabled = true;
2101 }
2102
2103 static inline void reset_io_stat(struct io_stat *ios)
2104 {
2105         ios->max_val = ios->min_val = ios->samples = 0;
2106         ios->mean.u.f = ios->S.u.f = 0;
2107 }
2108
2109 void reset_io_stats(struct thread_data *td)
2110 {
2111         struct thread_stat *ts = &td->ts;
2112         int i, j;
2113
2114         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2115                 reset_io_stat(&ts->clat_stat[i]);
2116                 reset_io_stat(&ts->slat_stat[i]);
2117                 reset_io_stat(&ts->lat_stat[i]);
2118                 reset_io_stat(&ts->bw_stat[i]);
2119                 reset_io_stat(&ts->iops_stat[i]);
2120
2121                 ts->io_bytes[i] = 0;
2122                 ts->runtime[i] = 0;
2123
2124                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2125                         ts->io_u_plat[i][j] = 0;
2126         }
2127
2128         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2129                 ts->io_u_map[i] = 0;
2130                 ts->io_u_submit[i] = 0;
2131                 ts->io_u_complete[i] = 0;
2132                 ts->io_u_lat_u[i] = 0;
2133                 ts->io_u_lat_m[i] = 0;
2134                 ts->total_submit = 0;
2135                 ts->total_complete = 0;
2136         }
2137
2138         for (i = 0; i < 3; i++) {
2139                 ts->total_io_u[i] = 0;
2140                 ts->short_io_u[i] = 0;
2141                 ts->drop_io_u[i] = 0;
2142         }
2143 }
2144
2145 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2146                               unsigned long elapsed, bool log_max)
2147 {
2148         /*
2149          * Note an entry in the log. Use the mean from the logged samples,
2150          * making sure to properly round up. Only write a log entry if we
2151          * had actual samples done.
2152          */
2153         if (iolog->avg_window[ddir].samples) {
2154                 unsigned long val;
2155
2156                 if (log_max)
2157                         val = iolog->avg_window[ddir].max_val;
2158                 else
2159                         val = iolog->avg_window[ddir].mean.u.f + 0.50;
2160
2161                 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2162         }
2163
2164         reset_io_stat(&iolog->avg_window[ddir]);
2165 }
2166
2167 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2168                              bool log_max)
2169 {
2170         int ddir;
2171
2172         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2173                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2174 }
2175
2176 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2177                            unsigned long val, enum fio_ddir ddir,
2178                            unsigned int bs, uint64_t offset)
2179 {
2180         unsigned long elapsed, this_window;
2181
2182         if (!ddir_rw(ddir))
2183                 return 0;
2184
2185         elapsed = mtime_since_now(&td->epoch);
2186
2187         /*
2188          * If no time averaging, just add the log sample.
2189          */
2190         if (!iolog->avg_msec) {
2191                 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2192                 return 0;
2193         }
2194
2195         /*
2196          * Add the sample. If the time period has passed, then
2197          * add that entry to the log and clear.
2198          */
2199         add_stat_sample(&iolog->avg_window[ddir], val);
2200
2201         /*
2202          * If period hasn't passed, adding the above sample is all we
2203          * need to do.
2204          */
2205         this_window = elapsed - iolog->avg_last;
2206         if (elapsed < iolog->avg_last)
2207                 return iolog->avg_last - elapsed;
2208         else if (this_window < iolog->avg_msec) {
2209                 int diff = iolog->avg_msec - this_window;
2210
2211                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2212                         return diff;
2213         }
2214
2215         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2216
2217         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2218         return iolog->avg_msec;
2219 }
2220
2221 void finalize_logs(struct thread_data *td, bool unit_logs)
2222 {
2223         unsigned long elapsed;
2224
2225         elapsed = mtime_since_now(&td->epoch);
2226
2227         if (td->clat_log && unit_logs)
2228                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2229         if (td->slat_log && unit_logs)
2230                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2231         if (td->lat_log && unit_logs)
2232                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2233         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2234                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2235         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2236                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2237 }
2238
2239 void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2240 {
2241         struct io_log *iolog;
2242
2243         if (!ddir_rw(ddir))
2244                 return;
2245
2246         iolog = agg_io_log[ddir];
2247         __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2248 }
2249
2250 static void add_clat_percentile_sample(struct thread_stat *ts,
2251                                 unsigned long usec, enum fio_ddir ddir)
2252 {
2253         unsigned int idx = plat_val_to_idx(usec);
2254         assert(idx < FIO_IO_U_PLAT_NR);
2255
2256         ts->io_u_plat[ddir][idx]++;
2257 }
2258
2259 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2260                      unsigned long usec, unsigned int bs, uint64_t offset)
2261 {
2262         unsigned long elapsed, this_window;
2263         struct thread_stat *ts = &td->ts;
2264         struct io_log *iolog = td->clat_hist_log;
2265
2266         td_io_u_lock(td);
2267
2268         add_stat_sample(&ts->clat_stat[ddir], usec);
2269
2270         if (td->clat_log)
2271                 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2272
2273         if (ts->clat_percentiles)
2274                 add_clat_percentile_sample(ts, usec, ddir);
2275
2276         if (iolog && iolog->hist_msec) {
2277                 struct io_hist *hw = &iolog->hist_window[ddir];
2278
2279                 hw->samples++;
2280                 elapsed = mtime_since_now(&td->epoch);
2281                 if (!hw->hist_last)
2282                         hw->hist_last = elapsed;
2283                 this_window = elapsed - hw->hist_last;
2284                 
2285                 if (this_window >= iolog->hist_msec) {
2286                         unsigned int *io_u_plat;
2287                         unsigned int *dst;
2288
2289                         /*
2290                          * Make a byte-for-byte copy of the latency histogram
2291                          * stored in td->ts.io_u_plat[ddir], recording it in a
2292                          * log sample. Note that the matching call to free() is
2293                          * located in iolog.c after printing this sample to the
2294                          * log file.
2295                          */
2296                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2297                         dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2298                         memcpy(dst, io_u_plat,
2299                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2300                         __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2301                                                 elapsed, offset);
2302
2303                         /*
2304                          * Update the last time we recorded as being now, minus
2305                          * any drift in time we encountered before actually
2306                          * making the record.
2307                          */
2308                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2309                         hw->samples = 0;
2310                 }
2311         }
2312
2313         td_io_u_unlock(td);
2314 }
2315
2316 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2317                      unsigned long usec, unsigned int bs, uint64_t offset)
2318 {
2319         struct thread_stat *ts = &td->ts;
2320
2321         if (!ddir_rw(ddir))
2322                 return;
2323
2324         td_io_u_lock(td);
2325
2326         add_stat_sample(&ts->slat_stat[ddir], usec);
2327
2328         if (td->slat_log)
2329                 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2330
2331         td_io_u_unlock(td);
2332 }
2333
2334 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2335                     unsigned long usec, unsigned int bs, uint64_t offset)
2336 {
2337         struct thread_stat *ts = &td->ts;
2338
2339         if (!ddir_rw(ddir))
2340                 return;
2341
2342         td_io_u_lock(td);
2343
2344         add_stat_sample(&ts->lat_stat[ddir], usec);
2345
2346         if (td->lat_log)
2347                 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2348
2349         td_io_u_unlock(td);
2350 }
2351
2352 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2353                    unsigned int bytes, unsigned long spent)
2354 {
2355         struct thread_stat *ts = &td->ts;
2356         unsigned long rate;
2357
2358         if (spent)
2359                 rate = bytes * 1000 / spent;
2360         else
2361                 rate = 0;
2362
2363         td_io_u_lock(td);
2364
2365         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2366
2367         if (td->bw_log)
2368                 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2369
2370         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2371         td_io_u_unlock(td);
2372 }
2373
2374 static int add_bw_samples(struct thread_data *td, struct timeval *t)
2375 {
2376         struct thread_stat *ts = &td->ts;
2377         unsigned long spent, rate;
2378         enum fio_ddir ddir;
2379         unsigned int next, next_log;
2380
2381         next_log = td->o.bw_avg_time;
2382
2383         spent = mtime_since(&td->bw_sample_time, t);
2384         if (spent < td->o.bw_avg_time &&
2385             td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2386                 return td->o.bw_avg_time - spent;
2387
2388         td_io_u_lock(td);
2389
2390         /*
2391          * Compute both read and write rates for the interval.
2392          */
2393         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2394                 uint64_t delta;
2395
2396                 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2397                 if (!delta)
2398                         continue; /* No entries for interval */
2399
2400                 if (spent)
2401                         rate = delta * 1000 / spent / 1024;
2402                 else
2403                         rate = 0;
2404
2405                 add_stat_sample(&ts->bw_stat[ddir], rate);
2406
2407                 if (td->bw_log) {
2408                         unsigned int bs = 0;
2409
2410                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2411                                 bs = td->o.min_bs[ddir];
2412
2413                         next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2414                         next_log = min(next_log, next);
2415                 }
2416
2417                 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2418         }
2419
2420         timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2421
2422         td_io_u_unlock(td);
2423
2424         if (spent <= td->o.bw_avg_time)
2425                 return min(next_log, td->o.bw_avg_time);
2426
2427         next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2428         return min(next, next_log);
2429 }
2430
2431 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2432                      unsigned int bytes)
2433 {
2434         struct thread_stat *ts = &td->ts;
2435
2436         td_io_u_lock(td);
2437
2438         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2439
2440         if (td->iops_log)
2441                 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2442
2443         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2444         td_io_u_unlock(td);
2445 }
2446
2447 static int add_iops_samples(struct thread_data *td, struct timeval *t)
2448 {
2449         struct thread_stat *ts = &td->ts;
2450         unsigned long spent, iops;
2451         enum fio_ddir ddir;
2452         unsigned int next, next_log;
2453
2454         next_log = td->o.iops_avg_time;
2455
2456         spent = mtime_since(&td->iops_sample_time, t);
2457         if (spent < td->o.iops_avg_time &&
2458             td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2459                 return td->o.iops_avg_time - spent;
2460
2461         td_io_u_lock(td);
2462
2463         /*
2464          * Compute both read and write rates for the interval.
2465          */
2466         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2467                 uint64_t delta;
2468
2469                 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2470                 if (!delta)
2471                         continue; /* No entries for interval */
2472
2473                 if (spent)
2474                         iops = (delta * 1000) / spent;
2475                 else
2476                         iops = 0;
2477
2478                 add_stat_sample(&ts->iops_stat[ddir], iops);
2479
2480                 if (td->iops_log) {
2481                         unsigned int bs = 0;
2482
2483                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2484                                 bs = td->o.min_bs[ddir];
2485
2486                         next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2487                         next_log = min(next_log, next);
2488                 }
2489
2490                 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2491         }
2492
2493         timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2494
2495         td_io_u_unlock(td);
2496
2497         if (spent <= td->o.iops_avg_time)
2498                 return min(next_log, td->o.iops_avg_time);
2499
2500         next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2501         return min(next, next_log);
2502 }
2503
2504 /*
2505  * Returns msecs to next event
2506  */
2507 int calc_log_samples(void)
2508 {
2509         struct thread_data *td;
2510         unsigned int next = ~0U, tmp;
2511         struct timeval now;
2512         int i;
2513
2514         fio_gettime(&now, NULL);
2515
2516         for_each_td(td, i) {
2517                 if (in_ramp_time(td) ||
2518                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2519                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2520                         continue;
2521                 }
2522                 if (!per_unit_log(td->bw_log)) {
2523                         tmp = add_bw_samples(td, &now);
2524                         if (tmp < next)
2525                                 next = tmp;
2526                 }
2527                 if (!per_unit_log(td->iops_log)) {
2528                         tmp = add_iops_samples(td, &now);
2529                         if (tmp < next)
2530                                 next = tmp;
2531                 }
2532         }
2533
2534         return next == ~0U ? 0 : next;
2535 }
2536
2537 void stat_init(void)
2538 {
2539         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2540 }
2541
2542 void stat_exit(void)
2543 {
2544         /*
2545          * When we have the mutex, we know out-of-band access to it
2546          * have ended.
2547          */
2548         fio_mutex_down(stat_mutex);
2549         fio_mutex_remove(stat_mutex);
2550 }
2551
2552 /*
2553  * Called from signal handler. Wake up status thread.
2554  */
2555 void show_running_run_stats(void)
2556 {
2557         helper_do_stat();
2558 }
2559
2560 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2561 {
2562         /* Ignore io_u's which span multiple blocks--they will just get
2563          * inaccurate counts. */
2564         int idx = (io_u->offset - io_u->file->file_offset)
2565                         / td->o.bs[DDIR_TRIM];
2566         uint32_t *info = &td->ts.block_infos[idx];
2567         assert(idx < td->ts.nr_block_infos);
2568         return info;
2569 }