options: make max_latency a 64-bit variable
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits;
104         unsigned long long k, base;
105
106         assert(idx < FIO_IO_U_PLAT_NR);
107
108         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
109          * all bits of the sample as index */
110         if (idx < (FIO_IO_U_PLAT_VAL << 1))
111                 return idx;
112
113         /* Find the group and compute the minimum value of that group */
114         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
115         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116
117         /* Find its bucket number of the group */
118         k = idx % FIO_IO_U_PLAT_VAL;
119
120         /* Return the mean of the range of the bucket */
121         return base + ((k + 0.5) * (1 << error_bits));
122 }
123
124 static int double_cmp(const void *a, const void *b)
125 {
126         const fio_fp64_t fa = *(const fio_fp64_t *) a;
127         const fio_fp64_t fb = *(const fio_fp64_t *) b;
128         int cmp = 0;
129
130         if (fa.u.f > fb.u.f)
131                 cmp = 1;
132         else if (fa.u.f < fb.u.f)
133                 cmp = -1;
134
135         return cmp;
136 }
137
138 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
139                                    fio_fp64_t *plist, unsigned long long **output,
140                                    unsigned long long *maxv, unsigned long long *minv)
141 {
142         unsigned long long sum = 0;
143         unsigned int len, i, j = 0;
144         unsigned int oval_len = 0;
145         unsigned long long *ovals = NULL;
146         bool is_last;
147
148         *minv = -1ULL;
149         *maxv = 0;
150
151         len = 0;
152         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
153                 len++;
154
155         if (!len)
156                 return 0;
157
158         /*
159          * Sort the percentile list. Note that it may already be sorted if
160          * we are using the default values, but since it's a short list this
161          * isn't a worry. Also note that this does not work for NaN values.
162          */
163         if (len > 1)
164                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
165
166         /*
167          * Calculate bucket values, note down max and min values
168          */
169         is_last = false;
170         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
171                 sum += io_u_plat[i];
172                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
173                         assert(plist[j].u.f <= 100.0);
174
175                         if (j == oval_len) {
176                                 oval_len += 100;
177                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
178                         }
179
180                         ovals[j] = plat_idx_to_val(i);
181                         if (ovals[j] < *minv)
182                                 *minv = ovals[j];
183                         if (ovals[j] > *maxv)
184                                 *maxv = ovals[j];
185
186                         is_last = (j == len - 1) != 0;
187                         if (is_last)
188                                 break;
189
190                         j++;
191                 }
192         }
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   bool is_clat, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         const char *pre = is_clat ? "clat" : " lat";
210         bool is_last;
211         char fmt[32];
212
213         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
214         if (!len)
215                 goto out;
216
217         /*
218          * We default to nsecs, but if the value range is such that we
219          * should scale down to usecs or msecs, do that.
220          */
221         if (minv > 2000000 && maxv > 99999999ULL) {
222                 scale_down = 2;
223                 divisor = 1000000;
224                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
225         } else if (minv > 2000 && maxv > 99999) {
226                 scale_down = 1;
227                 divisor = 1000;
228                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
229         } else {
230                 scale_down = 0;
231                 divisor = 1;
232                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
233         }
234
235
236         time_width = max(5, (int) (log10(maxv / divisor) + 1));
237         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
238                         precision, time_width);
239         /* fmt will be something like " %5.2fth=[%4llu]%c" */
240         per_line = (80 - 7) / (precision + 10 + time_width);
241
242         for (j = 0; j < len; j++) {
243                 /* for formatting */
244                 if (j != 0 && (j % per_line) == 0)
245                         log_buf(out, "     |");
246
247                 /* end of the list */
248                 is_last = (j == len - 1) != 0;
249
250                 for (i = 0; i < scale_down; i++)
251                         ovals[j] = (ovals[j] + 999) / 1000;
252
253                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
254
255                 if (is_last)
256                         break;
257
258                 if ((j % per_line) == per_line - 1)     /* for formatting */
259                         log_buf(out, "\n");
260         }
261
262 out:
263         if (ovals)
264                 free(ovals);
265 }
266
267 bool calc_lat(struct io_stat *is, unsigned long long *min,
268               unsigned long long *max, double *mean, double *dev)
269 {
270         double n = (double) is->samples;
271
272         if (n == 0)
273                 return false;
274
275         *min = is->min_val;
276         *max = is->max_val;
277         *mean = is->mean.u.f;
278
279         if (n > 1.0)
280                 *dev = sqrt(is->S.u.f / (n - 1.0));
281         else
282                 *dev = 0;
283
284         return true;
285 }
286
287 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
288 {
289         char *io, *agg, *min, *max;
290         char *ioalt, *aggalt, *minalt, *maxalt;
291         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
292         int i;
293
294         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
295
296         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
297                 const int i2p = is_power_of_2(rs->kb_base);
298
299                 if (!rs->max_run[i])
300                         continue;
301
302                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
303                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
304                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
305                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
309                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
310                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
311                                 rs->unified_rw_rep ? "  MIXED" : str[i],
312                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
313                                 (unsigned long long) rs->min_run[i],
314                                 (unsigned long long) rs->max_run[i]);
315
316                 free(io);
317                 free(agg);
318                 free(min);
319                 free(max);
320                 free(ioalt);
321                 free(aggalt);
322                 free(minalt);
323                 free(maxalt);
324         }
325 }
326
327 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
328 {
329         int i;
330
331         /*
332          * Do depth distribution calculations
333          */
334         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
335                 if (total) {
336                         io_u_dist[i] = (double) map[i] / (double) total;
337                         io_u_dist[i] *= 100.0;
338                         if (io_u_dist[i] < 0.1 && map[i])
339                                 io_u_dist[i] = 0.1;
340                 } else
341                         io_u_dist[i] = 0.0;
342         }
343 }
344
345 static void stat_calc_lat(struct thread_stat *ts, double *dst,
346                           unsigned int *src, int nr)
347 {
348         unsigned long total = ddir_rw_sum(ts->total_io_u);
349         int i;
350
351         /*
352          * Do latency distribution calculations
353          */
354         for (i = 0; i < nr; i++) {
355                 if (total) {
356                         dst[i] = (double) src[i] / (double) total;
357                         dst[i] *= 100.0;
358                         if (dst[i] < 0.01 && src[i])
359                                 dst[i] = 0.01;
360                 } else
361                         dst[i] = 0.0;
362         }
363 }
364
365 /*
366  * To keep the terse format unaltered, add all of the ns latency
367  * buckets to the first us latency bucket
368  */
369 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
370 {
371         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
372         int i;
373
374         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
375
376         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
377                 ntotal += ts->io_u_lat_n[i];
378
379         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
380 }
381
382 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
383 {
384         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
385 }
386
387 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
388 {
389         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
390 }
391
392 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
393 {
394         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
395 }
396
397 static void display_lat(const char *name, unsigned long long min,
398                         unsigned long long max, double mean, double dev,
399                         struct buf_output *out)
400 {
401         const char *base = "(nsec)";
402         char *minp, *maxp;
403
404         if (nsec_to_msec(&min, &max, &mean, &dev))
405                 base = "(msec)";
406         else if (nsec_to_usec(&min, &max, &mean, &dev))
407                 base = "(usec)";
408
409         minp = num2str(min, 6, 1, 0, N2S_NONE);
410         maxp = num2str(max, 6, 1, 0, N2S_NONE);
411
412         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
413                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
414
415         free(minp);
416         free(maxp);
417 }
418
419 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
420                              int ddir, struct buf_output *out)
421 {
422         const char *str[] = { " read", "write", " trim" };
423         unsigned long runt;
424         unsigned long long min, max, bw, iops;
425         double mean, dev;
426         char *io_p, *bw_p, *bw_p_alt, *iops_p;
427         int i2p;
428
429         assert(ddir_rw(ddir));
430
431         if (!ts->runtime[ddir])
432                 return;
433
434         i2p = is_power_of_2(rs->kb_base);
435         runt = ts->runtime[ddir];
436
437         bw = (1000 * ts->io_bytes[ddir]) / runt;
438         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
439         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
440         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
441
442         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
443         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
444
445         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
446                         rs->unified_rw_rep ? "mixed" : str[ddir],
447                         iops_p, bw_p, bw_p_alt, io_p,
448                         (unsigned long long) ts->runtime[ddir]);
449
450         free(io_p);
451         free(bw_p);
452         free(bw_p_alt);
453         free(iops_p);
454
455         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
456                 display_lat("slat", min, max, mean, dev, out);
457         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
458                 display_lat("clat", min, max, mean, dev, out);
459         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
460                 display_lat(" lat", min, max, mean, dev, out);
461
462         if (ts->clat_percentiles || ts->lat_percentiles) {
463                 show_clat_percentiles(ts->io_u_plat[ddir],
464                                         ts->clat_stat[ddir].samples,
465                                         ts->percentile_list,
466                                         ts->percentile_precision,
467                                         ts->clat_percentiles, out);
468         }
469         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
470                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
471                 const char *bw_str;
472
473                 if ((rs->unit_base == 1) && i2p)
474                         bw_str = "Kibit";
475                 else if (rs->unit_base == 1)
476                         bw_str = "kbit";
477                 else if (i2p)
478                         bw_str = "KiB";
479                 else
480                         bw_str = "kB";
481
482                 if (rs->agg[ddir]) {
483                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
484                         if (p_of_agg > 100.0)
485                                 p_of_agg = 100.0;
486                 }
487
488                 if (rs->unit_base == 1) {
489                         min *= 8.0;
490                         max *= 8.0;
491                         mean *= 8.0;
492                         dev *= 8.0;
493                 }
494
495                 if (mean > fkb_base * fkb_base) {
496                         min /= fkb_base;
497                         max /= fkb_base;
498                         mean /= fkb_base;
499                         dev /= fkb_base;
500                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
501                 }
502
503                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
504                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
505                         bw_str, min, max, p_of_agg, mean, dev,
506                         (&ts->bw_stat[ddir])->samples);
507         }
508         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
509                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
510                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
511                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
512         }
513 }
514
515 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
516                      const char *msg, struct buf_output *out)
517 {
518         bool new_line = true, shown = false;
519         int i, line = 0;
520
521         for (i = 0; i < nr; i++) {
522                 if (io_u_lat[i] <= 0.0)
523                         continue;
524                 shown = true;
525                 if (new_line) {
526                         if (line)
527                                 log_buf(out, "\n");
528                         log_buf(out, "  lat (%s)   : ", msg);
529                         new_line = false;
530                         line = 0;
531                 }
532                 if (line)
533                         log_buf(out, ", ");
534                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
535                 line++;
536                 if (line == 5)
537                         new_line = true;
538         }
539
540         if (shown)
541                 log_buf(out, "\n");
542
543         return true;
544 }
545
546 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
547 {
548         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
549                                  "250=", "500=", "750=", "1000=", };
550
551         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
552 }
553
554 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
555 {
556         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
557                                  "250=", "500=", "750=", "1000=", };
558
559         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
560 }
561
562 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
563 {
564         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
565                                  "250=", "500=", "750=", "1000=", "2000=",
566                                  ">=2000=", };
567
568         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
569 }
570
571 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
572 {
573         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
574         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
575         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
576
577         stat_calc_lat_n(ts, io_u_lat_n);
578         stat_calc_lat_u(ts, io_u_lat_u);
579         stat_calc_lat_m(ts, io_u_lat_m);
580
581         show_lat_n(io_u_lat_n, out);
582         show_lat_u(io_u_lat_u, out);
583         show_lat_m(io_u_lat_m, out);
584 }
585
586 static int block_state_category(int block_state)
587 {
588         switch (block_state) {
589         case BLOCK_STATE_UNINIT:
590                 return 0;
591         case BLOCK_STATE_TRIMMED:
592         case BLOCK_STATE_WRITTEN:
593                 return 1;
594         case BLOCK_STATE_WRITE_FAILURE:
595         case BLOCK_STATE_TRIM_FAILURE:
596                 return 2;
597         default:
598                 /* Silence compile warning on some BSDs and have a return */
599                 assert(0);
600                 return -1;
601         }
602 }
603
604 static int compare_block_infos(const void *bs1, const void *bs2)
605 {
606         uint32_t block1 = *(uint32_t *)bs1;
607         uint32_t block2 = *(uint32_t *)bs2;
608         int state1 = BLOCK_INFO_STATE(block1);
609         int state2 = BLOCK_INFO_STATE(block2);
610         int bscat1 = block_state_category(state1);
611         int bscat2 = block_state_category(state2);
612         int cycles1 = BLOCK_INFO_TRIMS(block1);
613         int cycles2 = BLOCK_INFO_TRIMS(block2);
614
615         if (bscat1 < bscat2)
616                 return -1;
617         if (bscat1 > bscat2)
618                 return 1;
619
620         if (cycles1 < cycles2)
621                 return -1;
622         if (cycles1 > cycles2)
623                 return 1;
624
625         if (state1 < state2)
626                 return -1;
627         if (state1 > state2)
628                 return 1;
629
630         assert(block1 == block2);
631         return 0;
632 }
633
634 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
635                                   fio_fp64_t *plist, unsigned int **percentiles,
636                                   unsigned int *types)
637 {
638         int len = 0;
639         int i, nr_uninit;
640
641         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
642
643         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
644                 len++;
645
646         if (!len)
647                 return 0;
648
649         /*
650          * Sort the percentile list. Note that it may already be sorted if
651          * we are using the default values, but since it's a short list this
652          * isn't a worry. Also note that this does not work for NaN values.
653          */
654         if (len > 1)
655                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
656
657         nr_uninit = 0;
658         /* Start only after the uninit entries end */
659         for (nr_uninit = 0;
660              nr_uninit < nr_block_infos
661                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
662              nr_uninit ++)
663                 ;
664
665         if (nr_uninit == nr_block_infos)
666                 return 0;
667
668         *percentiles = calloc(len, sizeof(**percentiles));
669
670         for (i = 0; i < len; i++) {
671                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
672                                 + nr_uninit;
673                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
674         }
675
676         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
677         for (i = 0; i < nr_block_infos; i++)
678                 types[BLOCK_INFO_STATE(block_infos[i])]++;
679
680         return len;
681 }
682
683 static const char *block_state_names[] = {
684         [BLOCK_STATE_UNINIT] = "unwritten",
685         [BLOCK_STATE_TRIMMED] = "trimmed",
686         [BLOCK_STATE_WRITTEN] = "written",
687         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
688         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
689 };
690
691 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
692                              fio_fp64_t *plist, struct buf_output *out)
693 {
694         int len, pos, i;
695         unsigned int *percentiles = NULL;
696         unsigned int block_state_counts[BLOCK_STATE_COUNT];
697
698         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
699                                      &percentiles, block_state_counts);
700
701         log_buf(out, "  block lifetime percentiles :\n   |");
702         pos = 0;
703         for (i = 0; i < len; i++) {
704                 uint32_t block_info = percentiles[i];
705 #define LINE_LENGTH     75
706                 char str[LINE_LENGTH];
707                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
708                                      plist[i].u.f, block_info,
709                                      i == len - 1 ? '\n' : ',');
710                 assert(strln < LINE_LENGTH);
711                 if (pos + strln > LINE_LENGTH) {
712                         pos = 0;
713                         log_buf(out, "\n   |");
714                 }
715                 log_buf(out, "%s", str);
716                 pos += strln;
717 #undef LINE_LENGTH
718         }
719         if (percentiles)
720                 free(percentiles);
721
722         log_buf(out, "        states               :");
723         for (i = 0; i < BLOCK_STATE_COUNT; i++)
724                 log_buf(out, " %s=%u%c",
725                          block_state_names[i], block_state_counts[i],
726                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
727 }
728
729 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
730 {
731         char *p1, *p1alt, *p2;
732         unsigned long long bw_mean, iops_mean;
733         const int i2p = is_power_of_2(ts->kb_base);
734
735         if (!ts->ss_dur)
736                 return;
737
738         bw_mean = steadystate_bw_mean(ts);
739         iops_mean = steadystate_iops_mean(ts);
740
741         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
742         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
743         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
744
745         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
746                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
747                 p1, p1alt, p2,
748                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
749                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
750                 ts->ss_criterion.u.f,
751                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
752
753         free(p1);
754         free(p1alt);
755         free(p2);
756 }
757
758 static void show_thread_status_normal(struct thread_stat *ts,
759                                       struct group_run_stats *rs,
760                                       struct buf_output *out)
761 {
762         double usr_cpu, sys_cpu;
763         unsigned long runtime;
764         double io_u_dist[FIO_IO_U_MAP_NR];
765         time_t time_p;
766         char time_buf[32];
767
768         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
769                 return;
770                 
771         memset(time_buf, 0, sizeof(time_buf));
772
773         time(&time_p);
774         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
775
776         if (!ts->error) {
777                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
778                                         ts->name, ts->groupid, ts->members,
779                                         ts->error, (int) ts->pid, time_buf);
780         } else {
781                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
782                                         ts->name, ts->groupid, ts->members,
783                                         ts->error, ts->verror, (int) ts->pid,
784                                         time_buf);
785         }
786
787         if (strlen(ts->description))
788                 log_buf(out, "  Description  : [%s]\n", ts->description);
789
790         if (ts->io_bytes[DDIR_READ])
791                 show_ddir_status(rs, ts, DDIR_READ, out);
792         if (ts->io_bytes[DDIR_WRITE])
793                 show_ddir_status(rs, ts, DDIR_WRITE, out);
794         if (ts->io_bytes[DDIR_TRIM])
795                 show_ddir_status(rs, ts, DDIR_TRIM, out);
796
797         show_latencies(ts, out);
798
799         runtime = ts->total_run_time;
800         if (runtime) {
801                 double runt = (double) runtime;
802
803                 usr_cpu = (double) ts->usr_time * 100 / runt;
804                 sys_cpu = (double) ts->sys_time * 100 / runt;
805         } else {
806                 usr_cpu = 0;
807                 sys_cpu = 0;
808         }
809
810         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
811                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
812                         (unsigned long long) ts->ctx,
813                         (unsigned long long) ts->majf,
814                         (unsigned long long) ts->minf);
815
816         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
817         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
818                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
819                                         io_u_dist[1], io_u_dist[2],
820                                         io_u_dist[3], io_u_dist[4],
821                                         io_u_dist[5], io_u_dist[6]);
822
823         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
824         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
825                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
826                                         io_u_dist[1], io_u_dist[2],
827                                         io_u_dist[3], io_u_dist[4],
828                                         io_u_dist[5], io_u_dist[6]);
829         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
830         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
831                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
832                                         io_u_dist[1], io_u_dist[2],
833                                         io_u_dist[3], io_u_dist[4],
834                                         io_u_dist[5], io_u_dist[6]);
835         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
836                                  " short=%llu,%llu,%llu,"
837                                  " dropped=%llu,%llu,%llu\n",
838                                         (unsigned long long) ts->total_io_u[0],
839                                         (unsigned long long) ts->total_io_u[1],
840                                         (unsigned long long) ts->total_io_u[2],
841                                         (unsigned long long) ts->short_io_u[0],
842                                         (unsigned long long) ts->short_io_u[1],
843                                         (unsigned long long) ts->short_io_u[2],
844                                         (unsigned long long) ts->drop_io_u[0],
845                                         (unsigned long long) ts->drop_io_u[1],
846                                         (unsigned long long) ts->drop_io_u[2]);
847         if (ts->continue_on_error) {
848                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
849                                         (unsigned long long)ts->total_err_count,
850                                         ts->first_error,
851                                         strerror(ts->first_error));
852         }
853         if (ts->latency_depth) {
854                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
855                                         (unsigned long long)ts->latency_target,
856                                         (unsigned long long)ts->latency_window,
857                                         ts->latency_percentile.u.f,
858                                         ts->latency_depth);
859         }
860
861         if (ts->nr_block_infos)
862                 show_block_infos(ts->nr_block_infos, ts->block_infos,
863                                   ts->percentile_list, out);
864
865         if (ts->ss_dur)
866                 show_ss_normal(ts, out);
867 }
868
869 static void show_ddir_status_terse(struct thread_stat *ts,
870                                    struct group_run_stats *rs, int ddir,
871                                    int ver, struct buf_output *out)
872 {
873         unsigned long long min, max, minv, maxv, bw, iops;
874         unsigned long long *ovals = NULL;
875         double mean, dev;
876         unsigned int len;
877         int i, bw_stat;
878
879         assert(ddir_rw(ddir));
880
881         iops = bw = 0;
882         if (ts->runtime[ddir]) {
883                 uint64_t runt = ts->runtime[ddir];
884
885                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
886                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
887         }
888
889         log_buf(out, ";%llu;%llu;%llu;%llu",
890                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
891                                         (unsigned long long) ts->runtime[ddir]);
892
893         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
894                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
895         else
896                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
897
898         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
899                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
900         else
901                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
902
903         if (ts->clat_percentiles || ts->lat_percentiles) {
904                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
905                                         ts->clat_stat[ddir].samples,
906                                         ts->percentile_list, &ovals, &maxv,
907                                         &minv);
908         } else
909                 len = 0;
910
911         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
912                 if (i >= len) {
913                         log_buf(out, ";0%%=0");
914                         continue;
915                 }
916                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
917         }
918
919         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
920                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
921         else
922                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
923
924         if (ovals)
925                 free(ovals);
926
927         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
928         if (bw_stat) {
929                 double p_of_agg = 100.0;
930
931                 if (rs->agg[ddir]) {
932                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
933                         if (p_of_agg > 100.0)
934                                 p_of_agg = 100.0;
935                 }
936
937                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
938         } else
939                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
940
941         if (ver == 5) {
942                 if (bw_stat)
943                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
944                 else
945                         log_buf(out, ";%lu", 0UL);
946
947                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
948                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
949                                 mean, dev, (&ts->iops_stat[ddir])->samples);
950                 else
951                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
952         }
953 }
954
955 static void add_ddir_status_json(struct thread_stat *ts,
956                 struct group_run_stats *rs, int ddir, struct json_object *parent)
957 {
958         unsigned long long min, max, minv, maxv;
959         unsigned long long bw_bytes, bw;
960         unsigned long long *ovals = NULL;
961         double mean, dev, iops;
962         unsigned int len;
963         int i;
964         const char *ddirname[] = {"read", "write", "trim"};
965         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
966         char buf[120];
967         double p_of_agg = 100.0;
968
969         assert(ddir_rw(ddir));
970
971         if (ts->unified_rw_rep && ddir != DDIR_READ)
972                 return;
973
974         dir_object = json_create_object();
975         json_object_add_value_object(parent,
976                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
977
978         bw_bytes = 0;
979         bw = 0;
980         iops = 0.0;
981         if (ts->runtime[ddir]) {
982                 uint64_t runt = ts->runtime[ddir];
983
984                 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
985                 bw = bw_bytes / 1024; /* KiB/s */
986                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
987         }
988
989         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
990         json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
991         json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
992         json_object_add_value_int(dir_object, "bw", bw);
993         json_object_add_value_float(dir_object, "iops", iops);
994         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
995         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
996         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
997         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
998
999         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1000                 min = max = 0;
1001                 mean = dev = 0.0;
1002         }
1003         tmp_object = json_create_object();
1004         json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1005         json_object_add_value_int(tmp_object, "min", min);
1006         json_object_add_value_int(tmp_object, "max", max);
1007         json_object_add_value_float(tmp_object, "mean", mean);
1008         json_object_add_value_float(tmp_object, "stddev", dev);
1009
1010         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1011                 min = max = 0;
1012                 mean = dev = 0.0;
1013         }
1014         tmp_object = json_create_object();
1015         json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1016         json_object_add_value_int(tmp_object, "min", min);
1017         json_object_add_value_int(tmp_object, "max", max);
1018         json_object_add_value_float(tmp_object, "mean", mean);
1019         json_object_add_value_float(tmp_object, "stddev", dev);
1020
1021         if (ts->clat_percentiles || ts->lat_percentiles) {
1022                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1023                                         ts->clat_stat[ddir].samples,
1024                                         ts->percentile_list, &ovals, &maxv,
1025                                         &minv);
1026         } else
1027                 len = 0;
1028
1029         percentile_object = json_create_object();
1030         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1031         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1032                 if (i >= len) {
1033                         json_object_add_value_int(percentile_object, "0.00", 0);
1034                         continue;
1035                 }
1036                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1037                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1038         }
1039
1040         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1041                 clat_bins_object = json_create_object();
1042                 if (ts->clat_percentiles)
1043                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1044
1045                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1046                         if (ts->io_u_plat[ddir][i]) {
1047                                 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1048                                 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1049                         }
1050                 }
1051         }
1052
1053         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1054                 min = max = 0;
1055                 mean = dev = 0.0;
1056         }
1057         tmp_object = json_create_object();
1058         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1059         json_object_add_value_int(tmp_object, "min", min);
1060         json_object_add_value_int(tmp_object, "max", max);
1061         json_object_add_value_float(tmp_object, "mean", mean);
1062         json_object_add_value_float(tmp_object, "stddev", dev);
1063         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1064                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1065
1066         if (ovals)
1067                 free(ovals);
1068
1069         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1070                 if (rs->agg[ddir]) {
1071                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1072                         if (p_of_agg > 100.0)
1073                                 p_of_agg = 100.0;
1074                 }
1075         } else {
1076                 min = max = 0;
1077                 p_of_agg = mean = dev = 0.0;
1078         }
1079         json_object_add_value_int(dir_object, "bw_min", min);
1080         json_object_add_value_int(dir_object, "bw_max", max);
1081         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1082         json_object_add_value_float(dir_object, "bw_mean", mean);
1083         json_object_add_value_float(dir_object, "bw_dev", dev);
1084         json_object_add_value_int(dir_object, "bw_samples",
1085                                 (&ts->bw_stat[ddir])->samples);
1086
1087         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1088                 min = max = 0;
1089                 mean = dev = 0.0;
1090         }
1091         json_object_add_value_int(dir_object, "iops_min", min);
1092         json_object_add_value_int(dir_object, "iops_max", max);
1093         json_object_add_value_float(dir_object, "iops_mean", mean);
1094         json_object_add_value_float(dir_object, "iops_stddev", dev);
1095         json_object_add_value_int(dir_object, "iops_samples",
1096                                 (&ts->iops_stat[ddir])->samples);
1097 }
1098
1099 static void show_thread_status_terse_all(struct thread_stat *ts,
1100                                          struct group_run_stats *rs, int ver,
1101                                          struct buf_output *out)
1102 {
1103         double io_u_dist[FIO_IO_U_MAP_NR];
1104         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1105         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1106         double usr_cpu, sys_cpu;
1107         int i;
1108
1109         /* General Info */
1110         if (ver == 2)
1111                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1112         else
1113                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1114                         ts->name, ts->groupid, ts->error);
1115
1116         /* Log Read Status */
1117         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1118         /* Log Write Status */
1119         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1120         /* Log Trim Status */
1121         if (ver == 2 || ver == 4 || ver == 5)
1122                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1123
1124         /* CPU Usage */
1125         if (ts->total_run_time) {
1126                 double runt = (double) ts->total_run_time;
1127
1128                 usr_cpu = (double) ts->usr_time * 100 / runt;
1129                 sys_cpu = (double) ts->sys_time * 100 / runt;
1130         } else {
1131                 usr_cpu = 0;
1132                 sys_cpu = 0;
1133         }
1134
1135         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1136                                                 (unsigned long long) ts->ctx,
1137                                                 (unsigned long long) ts->majf,
1138                                                 (unsigned long long) ts->minf);
1139
1140         /* Calc % distribution of IO depths, usecond, msecond latency */
1141         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1142         stat_calc_lat_nu(ts, io_u_lat_u);
1143         stat_calc_lat_m(ts, io_u_lat_m);
1144
1145         /* Only show fixed 7 I/O depth levels*/
1146         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1147                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1148                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1149
1150         /* Microsecond latency */
1151         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1152                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1153         /* Millisecond latency */
1154         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1155                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1156
1157         /* disk util stats, if any */
1158         if (ver >= 3)
1159                 show_disk_util(1, NULL, out);
1160
1161         /* Additional output if continue_on_error set - default off*/
1162         if (ts->continue_on_error)
1163                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1164         if (ver == 2)
1165                 log_buf(out, "\n");
1166
1167         /* Additional output if description is set */
1168         if (strlen(ts->description))
1169                 log_buf(out, ";%s", ts->description);
1170
1171         log_buf(out, "\n");
1172 }
1173
1174 static void json_add_job_opts(struct json_object *root, const char *name,
1175                               struct flist_head *opt_list, bool num_jobs)
1176 {
1177         struct json_object *dir_object;
1178         struct flist_head *entry;
1179         struct print_option *p;
1180
1181         if (flist_empty(opt_list))
1182                 return;
1183
1184         dir_object = json_create_object();
1185         json_object_add_value_object(root, name, dir_object);
1186
1187         flist_for_each(entry, opt_list) {
1188                 const char *pos = "";
1189
1190                 p = flist_entry(entry, struct print_option, list);
1191                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1192                         continue;
1193                 if (p->value)
1194                         pos = p->value;
1195                 json_object_add_value_string(dir_object, p->name, pos);
1196         }
1197 }
1198
1199 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1200                                                    struct group_run_stats *rs,
1201                                                    struct flist_head *opt_list)
1202 {
1203         struct json_object *root, *tmp;
1204         struct jobs_eta *je;
1205         double io_u_dist[FIO_IO_U_MAP_NR];
1206         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1207         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1208         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1209         double usr_cpu, sys_cpu;
1210         int i;
1211         size_t size;
1212
1213         root = json_create_object();
1214         json_object_add_value_string(root, "jobname", ts->name);
1215         json_object_add_value_int(root, "groupid", ts->groupid);
1216         json_object_add_value_int(root, "error", ts->error);
1217
1218         /* ETA Info */
1219         je = get_jobs_eta(true, &size);
1220         if (je) {
1221                 json_object_add_value_int(root, "eta", je->eta_sec);
1222                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1223         }
1224
1225         if (opt_list)
1226                 json_add_job_opts(root, "job options", opt_list, true);
1227
1228         add_ddir_status_json(ts, rs, DDIR_READ, root);
1229         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1230         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1231
1232         /* CPU Usage */
1233         if (ts->total_run_time) {
1234                 double runt = (double) ts->total_run_time;
1235
1236                 usr_cpu = (double) ts->usr_time * 100 / runt;
1237                 sys_cpu = (double) ts->sys_time * 100 / runt;
1238         } else {
1239                 usr_cpu = 0;
1240                 sys_cpu = 0;
1241         }
1242         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1243         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1244         json_object_add_value_int(root, "ctx", ts->ctx);
1245         json_object_add_value_int(root, "majf", ts->majf);
1246         json_object_add_value_int(root, "minf", ts->minf);
1247
1248
1249         /* Calc % distribution of IO depths, usecond, msecond latency */
1250         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1251         stat_calc_lat_n(ts, io_u_lat_n);
1252         stat_calc_lat_u(ts, io_u_lat_u);
1253         stat_calc_lat_m(ts, io_u_lat_m);
1254
1255         tmp = json_create_object();
1256         json_object_add_value_object(root, "iodepth_level", tmp);
1257         /* Only show fixed 7 I/O depth levels*/
1258         for (i = 0; i < 7; i++) {
1259                 char name[20];
1260                 if (i < 6)
1261                         snprintf(name, 20, "%d", 1 << i);
1262                 else
1263                         snprintf(name, 20, ">=%d", 1 << i);
1264                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1265         }
1266
1267         /* Nanosecond latency */
1268         tmp = json_create_object();
1269         json_object_add_value_object(root, "latency_ns", tmp);
1270         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1271                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1272                                  "250", "500", "750", "1000", };
1273                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1274         }
1275         /* Microsecond latency */
1276         tmp = json_create_object();
1277         json_object_add_value_object(root, "latency_us", tmp);
1278         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1279                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1280                                  "250", "500", "750", "1000", };
1281                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1282         }
1283         /* Millisecond latency */
1284         tmp = json_create_object();
1285         json_object_add_value_object(root, "latency_ms", tmp);
1286         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1287                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1288                                  "250", "500", "750", "1000", "2000",
1289                                  ">=2000", };
1290                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1291         }
1292
1293         /* Additional output if continue_on_error set - default off*/
1294         if (ts->continue_on_error) {
1295                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1296                 json_object_add_value_int(root, "first_error", ts->first_error);
1297         }
1298
1299         if (ts->latency_depth) {
1300                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1301                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1302                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1303                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1304         }
1305
1306         /* Additional output if description is set */
1307         if (strlen(ts->description))
1308                 json_object_add_value_string(root, "desc", ts->description);
1309
1310         if (ts->nr_block_infos) {
1311                 /* Block error histogram and types */
1312                 int len;
1313                 unsigned int *percentiles = NULL;
1314                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1315
1316                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1317                                              ts->percentile_list,
1318                                              &percentiles, block_state_counts);
1319
1320                 if (len) {
1321                         struct json_object *block, *percentile_object, *states;
1322                         int state;
1323                         block = json_create_object();
1324                         json_object_add_value_object(root, "block", block);
1325
1326                         percentile_object = json_create_object();
1327                         json_object_add_value_object(block, "percentiles",
1328                                                      percentile_object);
1329                         for (i = 0; i < len; i++) {
1330                                 char buf[20];
1331                                 snprintf(buf, sizeof(buf), "%f",
1332                                          ts->percentile_list[i].u.f);
1333                                 json_object_add_value_int(percentile_object,
1334                                                           (const char *)buf,
1335                                                           percentiles[i]);
1336                         }
1337
1338                         states = json_create_object();
1339                         json_object_add_value_object(block, "states", states);
1340                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1341                                 json_object_add_value_int(states,
1342                                         block_state_names[state],
1343                                         block_state_counts[state]);
1344                         }
1345                         free(percentiles);
1346                 }
1347         }
1348
1349         if (ts->ss_dur) {
1350                 struct json_object *data;
1351                 struct json_array *iops, *bw;
1352                 int i, j, k;
1353                 char ss_buf[64];
1354
1355                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1356                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1357                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1358                         (float) ts->ss_limit.u.f,
1359                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1360
1361                 tmp = json_create_object();
1362                 json_object_add_value_object(root, "steadystate", tmp);
1363                 json_object_add_value_string(tmp, "ss", ss_buf);
1364                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1365                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1366
1367                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1368                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1369                 json_object_add_value_string(tmp, "criterion", ss_buf);
1370                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1371                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1372
1373                 data = json_create_object();
1374                 json_object_add_value_object(tmp, "data", data);
1375                 bw = json_create_array();
1376                 iops = json_create_array();
1377
1378                 /*
1379                 ** if ss was attained or the buffer is not full,
1380                 ** ss->head points to the first element in the list.
1381                 ** otherwise it actually points to the second element
1382                 ** in the list
1383                 */
1384                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1385                         j = ts->ss_head;
1386                 else
1387                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1388                 for (i = 0; i < ts->ss_dur; i++) {
1389                         k = (j + i) % ts->ss_dur;
1390                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1391                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1392                 }
1393                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1394                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1395                 json_object_add_value_array(data, "iops", iops);
1396                 json_object_add_value_array(data, "bw", bw);
1397         }
1398
1399         return root;
1400 }
1401
1402 static void show_thread_status_terse(struct thread_stat *ts,
1403                                      struct group_run_stats *rs,
1404                                      struct buf_output *out)
1405 {
1406         if (terse_version >= 2 && terse_version <= 5)
1407                 show_thread_status_terse_all(ts, rs, terse_version, out);
1408         else
1409                 log_err("fio: bad terse version!? %d\n", terse_version);
1410 }
1411
1412 struct json_object *show_thread_status(struct thread_stat *ts,
1413                                        struct group_run_stats *rs,
1414                                        struct flist_head *opt_list,
1415                                        struct buf_output *out)
1416 {
1417         struct json_object *ret = NULL;
1418
1419         if (output_format & FIO_OUTPUT_TERSE)
1420                 show_thread_status_terse(ts, rs,  out);
1421         if (output_format & FIO_OUTPUT_JSON)
1422                 ret = show_thread_status_json(ts, rs, opt_list);
1423         if (output_format & FIO_OUTPUT_NORMAL)
1424                 show_thread_status_normal(ts, rs,  out);
1425
1426         return ret;
1427 }
1428
1429 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1430 {
1431         double mean, S;
1432
1433         if (src->samples == 0)
1434                 return;
1435
1436         dst->min_val = min(dst->min_val, src->min_val);
1437         dst->max_val = max(dst->max_val, src->max_val);
1438
1439         /*
1440          * Compute new mean and S after the merge
1441          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1442          *  #Parallel_algorithm>
1443          */
1444         if (first) {
1445                 mean = src->mean.u.f;
1446                 S = src->S.u.f;
1447         } else {
1448                 double delta = src->mean.u.f - dst->mean.u.f;
1449
1450                 mean = ((src->mean.u.f * src->samples) +
1451                         (dst->mean.u.f * dst->samples)) /
1452                         (dst->samples + src->samples);
1453
1454                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1455                         (dst->samples * src->samples) /
1456                         (dst->samples + src->samples);
1457         }
1458
1459         dst->samples += src->samples;
1460         dst->mean.u.f = mean;
1461         dst->S.u.f = S;
1462 }
1463
1464 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1465 {
1466         int i;
1467
1468         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1469                 if (dst->max_run[i] < src->max_run[i])
1470                         dst->max_run[i] = src->max_run[i];
1471                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1472                         dst->min_run[i] = src->min_run[i];
1473                 if (dst->max_bw[i] < src->max_bw[i])
1474                         dst->max_bw[i] = src->max_bw[i];
1475                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1476                         dst->min_bw[i] = src->min_bw[i];
1477
1478                 dst->iobytes[i] += src->iobytes[i];
1479                 dst->agg[i] += src->agg[i];
1480         }
1481
1482         if (!dst->kb_base)
1483                 dst->kb_base = src->kb_base;
1484         if (!dst->unit_base)
1485                 dst->unit_base = src->unit_base;
1486 }
1487
1488 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1489                       bool first)
1490 {
1491         int l, k;
1492
1493         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1494                 if (!dst->unified_rw_rep) {
1495                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1496                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1497                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1498                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1499                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1500
1501                         dst->io_bytes[l] += src->io_bytes[l];
1502
1503                         if (dst->runtime[l] < src->runtime[l])
1504                                 dst->runtime[l] = src->runtime[l];
1505                 } else {
1506                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1507                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1508                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1509                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1510                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1511
1512                         dst->io_bytes[0] += src->io_bytes[l];
1513
1514                         if (dst->runtime[0] < src->runtime[l])
1515                                 dst->runtime[0] = src->runtime[l];
1516
1517                         /*
1518                          * We're summing to the same destination, so override
1519                          * 'first' after the first iteration of the loop
1520                          */
1521                         first = false;
1522                 }
1523         }
1524
1525         dst->usr_time += src->usr_time;
1526         dst->sys_time += src->sys_time;
1527         dst->ctx += src->ctx;
1528         dst->majf += src->majf;
1529         dst->minf += src->minf;
1530
1531         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1532                 dst->io_u_map[k] += src->io_u_map[k];
1533         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1534                 dst->io_u_submit[k] += src->io_u_submit[k];
1535         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1536                 dst->io_u_complete[k] += src->io_u_complete[k];
1537         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1538                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1539         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1540                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1541         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1542                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1543
1544         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1545                 if (!dst->unified_rw_rep) {
1546                         dst->total_io_u[k] += src->total_io_u[k];
1547                         dst->short_io_u[k] += src->short_io_u[k];
1548                         dst->drop_io_u[k] += src->drop_io_u[k];
1549                 } else {
1550                         dst->total_io_u[0] += src->total_io_u[k];
1551                         dst->short_io_u[0] += src->short_io_u[k];
1552                         dst->drop_io_u[0] += src->drop_io_u[k];
1553                 }
1554         }
1555
1556         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1557                 int m;
1558
1559                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1560                         if (!dst->unified_rw_rep)
1561                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1562                         else
1563                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1564                 }
1565         }
1566
1567         dst->total_run_time += src->total_run_time;
1568         dst->total_submit += src->total_submit;
1569         dst->total_complete += src->total_complete;
1570 }
1571
1572 void init_group_run_stat(struct group_run_stats *gs)
1573 {
1574         int i;
1575         memset(gs, 0, sizeof(*gs));
1576
1577         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1578                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1579 }
1580
1581 void init_thread_stat(struct thread_stat *ts)
1582 {
1583         int j;
1584
1585         memset(ts, 0, sizeof(*ts));
1586
1587         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1588                 ts->lat_stat[j].min_val = -1UL;
1589                 ts->clat_stat[j].min_val = -1UL;
1590                 ts->slat_stat[j].min_val = -1UL;
1591                 ts->bw_stat[j].min_val = -1UL;
1592                 ts->iops_stat[j].min_val = -1UL;
1593         }
1594         ts->groupid = -1;
1595 }
1596
1597 void __show_run_stats(void)
1598 {
1599         struct group_run_stats *runstats, *rs;
1600         struct thread_data *td;
1601         struct thread_stat *threadstats, *ts;
1602         int i, j, k, nr_ts, last_ts, idx;
1603         bool kb_base_warned = false;
1604         bool unit_base_warned = false;
1605         struct json_object *root = NULL;
1606         struct json_array *array = NULL;
1607         struct buf_output output[FIO_OUTPUT_NR];
1608         struct flist_head **opt_lists;
1609
1610         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1611
1612         for (i = 0; i < groupid + 1; i++)
1613                 init_group_run_stat(&runstats[i]);
1614
1615         /*
1616          * find out how many threads stats we need. if group reporting isn't
1617          * enabled, it's one-per-td.
1618          */
1619         nr_ts = 0;
1620         last_ts = -1;
1621         for_each_td(td, i) {
1622                 if (!td->o.group_reporting) {
1623                         nr_ts++;
1624                         continue;
1625                 }
1626                 if (last_ts == td->groupid)
1627                         continue;
1628                 if (!td->o.stats)
1629                         continue;
1630
1631                 last_ts = td->groupid;
1632                 nr_ts++;
1633         }
1634
1635         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1636         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1637
1638         for (i = 0; i < nr_ts; i++) {
1639                 init_thread_stat(&threadstats[i]);
1640                 opt_lists[i] = NULL;
1641         }
1642
1643         j = 0;
1644         last_ts = -1;
1645         idx = 0;
1646         for_each_td(td, i) {
1647                 if (!td->o.stats)
1648                         continue;
1649                 if (idx && (!td->o.group_reporting ||
1650                     (td->o.group_reporting && last_ts != td->groupid))) {
1651                         idx = 0;
1652                         j++;
1653                 }
1654
1655                 last_ts = td->groupid;
1656
1657                 ts = &threadstats[j];
1658
1659                 ts->clat_percentiles = td->o.clat_percentiles;
1660                 ts->lat_percentiles = td->o.lat_percentiles;
1661                 ts->percentile_precision = td->o.percentile_precision;
1662                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1663                 opt_lists[j] = &td->opt_list;
1664
1665                 idx++;
1666                 ts->members++;
1667
1668                 if (ts->groupid == -1) {
1669                         /*
1670                          * These are per-group shared already
1671                          */
1672                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1673                         if (td->o.description)
1674                                 strncpy(ts->description, td->o.description,
1675                                                 FIO_JOBDESC_SIZE - 1);
1676                         else
1677                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1678
1679                         /*
1680                          * If multiple entries in this group, this is
1681                          * the first member.
1682                          */
1683                         ts->thread_number = td->thread_number;
1684                         ts->groupid = td->groupid;
1685
1686                         /*
1687                          * first pid in group, not very useful...
1688                          */
1689                         ts->pid = td->pid;
1690
1691                         ts->kb_base = td->o.kb_base;
1692                         ts->unit_base = td->o.unit_base;
1693                         ts->sig_figs = td->o.sig_figs;
1694                         ts->unified_rw_rep = td->o.unified_rw_rep;
1695                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1696                         log_info("fio: kb_base differs for jobs in group, using"
1697                                  " %u as the base\n", ts->kb_base);
1698                         kb_base_warned = true;
1699                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1700                         log_info("fio: unit_base differs for jobs in group, using"
1701                                  " %u as the base\n", ts->unit_base);
1702                         unit_base_warned = true;
1703                 }
1704
1705                 ts->continue_on_error = td->o.continue_on_error;
1706                 ts->total_err_count += td->total_err_count;
1707                 ts->first_error = td->first_error;
1708                 if (!ts->error) {
1709                         if (!td->error && td->o.continue_on_error &&
1710                             td->first_error) {
1711                                 ts->error = td->first_error;
1712                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1713                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1714                         } else  if (td->error) {
1715                                 ts->error = td->error;
1716                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1717                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1718                         }
1719                 }
1720
1721                 ts->latency_depth = td->latency_qd;
1722                 ts->latency_target = td->o.latency_target;
1723                 ts->latency_percentile = td->o.latency_percentile;
1724                 ts->latency_window = td->o.latency_window;
1725
1726                 ts->nr_block_infos = td->ts.nr_block_infos;
1727                 for (k = 0; k < ts->nr_block_infos; k++)
1728                         ts->block_infos[k] = td->ts.block_infos[k];
1729
1730                 sum_thread_stats(ts, &td->ts, idx == 1);
1731
1732                 if (td->o.ss_dur) {
1733                         ts->ss_state = td->ss.state;
1734                         ts->ss_dur = td->ss.dur;
1735                         ts->ss_head = td->ss.head;
1736                         ts->ss_bw_data = td->ss.bw_data;
1737                         ts->ss_iops_data = td->ss.iops_data;
1738                         ts->ss_limit.u.f = td->ss.limit;
1739                         ts->ss_slope.u.f = td->ss.slope;
1740                         ts->ss_deviation.u.f = td->ss.deviation;
1741                         ts->ss_criterion.u.f = td->ss.criterion;
1742                 }
1743                 else
1744                         ts->ss_dur = ts->ss_state = 0;
1745         }
1746
1747         for (i = 0; i < nr_ts; i++) {
1748                 unsigned long long bw;
1749
1750                 ts = &threadstats[i];
1751                 if (ts->groupid == -1)
1752                         continue;
1753                 rs = &runstats[ts->groupid];
1754                 rs->kb_base = ts->kb_base;
1755                 rs->unit_base = ts->unit_base;
1756                 rs->sig_figs = ts->sig_figs;
1757                 rs->unified_rw_rep += ts->unified_rw_rep;
1758
1759                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1760                         if (!ts->runtime[j])
1761                                 continue;
1762                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1763                                 rs->min_run[j] = ts->runtime[j];
1764                         if (ts->runtime[j] > rs->max_run[j])
1765                                 rs->max_run[j] = ts->runtime[j];
1766
1767                         bw = 0;
1768                         if (ts->runtime[j])
1769                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1770                         if (bw < rs->min_bw[j])
1771                                 rs->min_bw[j] = bw;
1772                         if (bw > rs->max_bw[j])
1773                                 rs->max_bw[j] = bw;
1774
1775                         rs->iobytes[j] += ts->io_bytes[j];
1776                 }
1777         }
1778
1779         for (i = 0; i < groupid + 1; i++) {
1780                 int ddir;
1781
1782                 rs = &runstats[i];
1783
1784                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1785                         if (rs->max_run[ddir])
1786                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1787                                                 rs->max_run[ddir];
1788                 }
1789         }
1790
1791         for (i = 0; i < FIO_OUTPUT_NR; i++)
1792                 buf_output_init(&output[i]);
1793
1794         /*
1795          * don't overwrite last signal output
1796          */
1797         if (output_format & FIO_OUTPUT_NORMAL)
1798                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1799         if (output_format & FIO_OUTPUT_JSON) {
1800                 struct thread_data *global;
1801                 char time_buf[32];
1802                 struct timeval now;
1803                 unsigned long long ms_since_epoch;
1804
1805                 gettimeofday(&now, NULL);
1806                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1807                                  (unsigned long long)(now.tv_usec) / 1000;
1808
1809                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1810                                 sizeof(time_buf));
1811                 if (time_buf[strlen(time_buf) - 1] == '\n')
1812                         time_buf[strlen(time_buf) - 1] = '\0';
1813
1814                 root = json_create_object();
1815                 json_object_add_value_string(root, "fio version", fio_version_string);
1816                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1817                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1818                 json_object_add_value_string(root, "time", time_buf);
1819                 global = get_global_options();
1820                 json_add_job_opts(root, "global options", &global->opt_list, false);
1821                 array = json_create_array();
1822                 json_object_add_value_array(root, "jobs", array);
1823         }
1824
1825         if (is_backend)
1826                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1827
1828         for (i = 0; i < nr_ts; i++) {
1829                 ts = &threadstats[i];
1830                 rs = &runstats[ts->groupid];
1831
1832                 if (is_backend) {
1833                         fio_server_send_job_options(opt_lists[i], i);
1834                         fio_server_send_ts(ts, rs);
1835                 } else {
1836                         if (output_format & FIO_OUTPUT_TERSE)
1837                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1838                         if (output_format & FIO_OUTPUT_JSON) {
1839                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1840                                 json_array_add_value_object(array, tmp);
1841                         }
1842                         if (output_format & FIO_OUTPUT_NORMAL)
1843                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1844                 }
1845         }
1846         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1847                 /* disk util stats, if any */
1848                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1849
1850                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1851
1852                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1853                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1854                 json_free_object(root);
1855         }
1856
1857         for (i = 0; i < groupid + 1; i++) {
1858                 rs = &runstats[i];
1859
1860                 rs->groupid = i;
1861                 if (is_backend)
1862                         fio_server_send_gs(rs);
1863                 else if (output_format & FIO_OUTPUT_NORMAL)
1864                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1865         }
1866
1867         if (is_backend)
1868                 fio_server_send_du();
1869         else if (output_format & FIO_OUTPUT_NORMAL) {
1870                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1871                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1872         }
1873
1874         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1875                 struct buf_output *out = &output[i];
1876
1877                 log_info_buf(out->buf, out->buflen);
1878                 buf_output_free(out);
1879         }
1880
1881         log_info_flush();
1882         free(runstats);
1883         free(threadstats);
1884         free(opt_lists);
1885 }
1886
1887 void show_run_stats(void)
1888 {
1889         fio_mutex_down(stat_mutex);
1890         __show_run_stats();
1891         fio_mutex_up(stat_mutex);
1892 }
1893
1894 void __show_running_run_stats(void)
1895 {
1896         struct thread_data *td;
1897         unsigned long long *rt;
1898         struct timespec ts;
1899         int i;
1900
1901         fio_mutex_down(stat_mutex);
1902
1903         rt = malloc(thread_number * sizeof(unsigned long long));
1904         fio_gettime(&ts, NULL);
1905
1906         for_each_td(td, i) {
1907                 td->update_rusage = 1;
1908                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1909                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1910                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1911                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1912
1913                 rt[i] = mtime_since(&td->start, &ts);
1914                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1915                         td->ts.runtime[DDIR_READ] += rt[i];
1916                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1917                         td->ts.runtime[DDIR_WRITE] += rt[i];
1918                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1919                         td->ts.runtime[DDIR_TRIM] += rt[i];
1920         }
1921
1922         for_each_td(td, i) {
1923                 if (td->runstate >= TD_EXITED)
1924                         continue;
1925                 if (td->rusage_sem) {
1926                         td->update_rusage = 1;
1927                         fio_mutex_down(td->rusage_sem);
1928                 }
1929                 td->update_rusage = 0;
1930         }
1931
1932         __show_run_stats();
1933
1934         for_each_td(td, i) {
1935                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1936                         td->ts.runtime[DDIR_READ] -= rt[i];
1937                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1938                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1939                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1940                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1941         }
1942
1943         free(rt);
1944         fio_mutex_up(stat_mutex);
1945 }
1946
1947 static bool status_interval_init;
1948 static struct timespec status_time;
1949 static bool status_file_disabled;
1950
1951 #define FIO_STATUS_FILE         "fio-dump-status"
1952
1953 static int check_status_file(void)
1954 {
1955         struct stat sb;
1956         const char *temp_dir;
1957         char fio_status_file_path[PATH_MAX];
1958
1959         if (status_file_disabled)
1960                 return 0;
1961
1962         temp_dir = getenv("TMPDIR");
1963         if (temp_dir == NULL) {
1964                 temp_dir = getenv("TEMP");
1965                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1966                         temp_dir = NULL;
1967         }
1968         if (temp_dir == NULL)
1969                 temp_dir = "/tmp";
1970
1971         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1972
1973         if (stat(fio_status_file_path, &sb))
1974                 return 0;
1975
1976         if (unlink(fio_status_file_path) < 0) {
1977                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1978                                                         strerror(errno));
1979                 log_err("fio: disabling status file updates\n");
1980                 status_file_disabled = true;
1981         }
1982
1983         return 1;
1984 }
1985
1986 void check_for_running_stats(void)
1987 {
1988         if (status_interval) {
1989                 if (!status_interval_init) {
1990                         fio_gettime(&status_time, NULL);
1991                         status_interval_init = true;
1992                 } else if (mtime_since_now(&status_time) >= status_interval) {
1993                         show_running_run_stats();
1994                         fio_gettime(&status_time, NULL);
1995                         return;
1996                 }
1997         }
1998         if (check_status_file()) {
1999                 show_running_run_stats();
2000                 return;
2001         }
2002 }
2003
2004 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2005 {
2006         double val = data;
2007         double delta;
2008
2009         if (data > is->max_val)
2010                 is->max_val = data;
2011         if (data < is->min_val)
2012                 is->min_val = data;
2013
2014         delta = val - is->mean.u.f;
2015         if (delta) {
2016                 is->mean.u.f += delta / (is->samples + 1.0);
2017                 is->S.u.f += delta * (val - is->mean.u.f);
2018         }
2019
2020         is->samples++;
2021 }
2022
2023 /*
2024  * Return a struct io_logs, which is added to the tail of the log
2025  * list for 'iolog'.
2026  */
2027 static struct io_logs *get_new_log(struct io_log *iolog)
2028 {
2029         size_t new_size, new_samples;
2030         struct io_logs *cur_log;
2031
2032         /*
2033          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2034          * forever
2035          */
2036         if (!iolog->cur_log_max)
2037                 new_samples = DEF_LOG_ENTRIES;
2038         else {
2039                 new_samples = iolog->cur_log_max * 2;
2040                 if (new_samples > MAX_LOG_ENTRIES)
2041                         new_samples = MAX_LOG_ENTRIES;
2042         }
2043
2044         new_size = new_samples * log_entry_sz(iolog);
2045
2046         cur_log = smalloc(sizeof(*cur_log));
2047         if (cur_log) {
2048                 INIT_FLIST_HEAD(&cur_log->list);
2049                 cur_log->log = malloc(new_size);
2050                 if (cur_log->log) {
2051                         cur_log->nr_samples = 0;
2052                         cur_log->max_samples = new_samples;
2053                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2054                         iolog->cur_log_max = new_samples;
2055                         return cur_log;
2056                 }
2057                 sfree(cur_log);
2058         }
2059
2060         return NULL;
2061 }
2062
2063 /*
2064  * Add and return a new log chunk, or return current log if big enough
2065  */
2066 static struct io_logs *regrow_log(struct io_log *iolog)
2067 {
2068         struct io_logs *cur_log;
2069         int i;
2070
2071         if (!iolog || iolog->disabled)
2072                 goto disable;
2073
2074         cur_log = iolog_cur_log(iolog);
2075         if (!cur_log) {
2076                 cur_log = get_new_log(iolog);
2077                 if (!cur_log)
2078                         return NULL;
2079         }
2080
2081         if (cur_log->nr_samples < cur_log->max_samples)
2082                 return cur_log;
2083
2084         /*
2085          * No room for a new sample. If we're compressing on the fly, flush
2086          * out the current chunk
2087          */
2088         if (iolog->log_gz) {
2089                 if (iolog_cur_flush(iolog, cur_log)) {
2090                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2091                         return NULL;
2092                 }
2093         }
2094
2095         /*
2096          * Get a new log array, and add to our list
2097          */
2098         cur_log = get_new_log(iolog);
2099         if (!cur_log) {
2100                 log_err("fio: failed extending iolog! Will stop logging.\n");
2101                 return NULL;
2102         }
2103
2104         if (!iolog->pending || !iolog->pending->nr_samples)
2105                 return cur_log;
2106
2107         /*
2108          * Flush pending items to new log
2109          */
2110         for (i = 0; i < iolog->pending->nr_samples; i++) {
2111                 struct io_sample *src, *dst;
2112
2113                 src = get_sample(iolog, iolog->pending, i);
2114                 dst = get_sample(iolog, cur_log, i);
2115                 memcpy(dst, src, log_entry_sz(iolog));
2116         }
2117         cur_log->nr_samples = iolog->pending->nr_samples;
2118
2119         iolog->pending->nr_samples = 0;
2120         return cur_log;
2121 disable:
2122         if (iolog)
2123                 iolog->disabled = true;
2124         return NULL;
2125 }
2126
2127 void regrow_logs(struct thread_data *td)
2128 {
2129         regrow_log(td->slat_log);
2130         regrow_log(td->clat_log);
2131         regrow_log(td->clat_hist_log);
2132         regrow_log(td->lat_log);
2133         regrow_log(td->bw_log);
2134         regrow_log(td->iops_log);
2135         td->flags &= ~TD_F_REGROW_LOGS;
2136 }
2137
2138 static struct io_logs *get_cur_log(struct io_log *iolog)
2139 {
2140         struct io_logs *cur_log;
2141
2142         cur_log = iolog_cur_log(iolog);
2143         if (!cur_log) {
2144                 cur_log = get_new_log(iolog);
2145                 if (!cur_log)
2146                         return NULL;
2147         }
2148
2149         if (cur_log->nr_samples < cur_log->max_samples)
2150                 return cur_log;
2151
2152         /*
2153          * Out of space. If we're in IO offload mode, or we're not doing
2154          * per unit logging (hence logging happens outside of the IO thread
2155          * as well), add a new log chunk inline. If we're doing inline
2156          * submissions, flag 'td' as needing a log regrow and we'll take
2157          * care of it on the submission side.
2158          */
2159         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2160             !per_unit_log(iolog))
2161                 return regrow_log(iolog);
2162
2163         iolog->td->flags |= TD_F_REGROW_LOGS;
2164         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2165         return iolog->pending;
2166 }
2167
2168 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2169                              enum fio_ddir ddir, unsigned int bs,
2170                              unsigned long t, uint64_t offset)
2171 {
2172         struct io_logs *cur_log;
2173
2174         if (iolog->disabled)
2175                 return;
2176         if (flist_empty(&iolog->io_logs))
2177                 iolog->avg_last[ddir] = t;
2178
2179         cur_log = get_cur_log(iolog);
2180         if (cur_log) {
2181                 struct io_sample *s;
2182
2183                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2184
2185                 s->data = data;
2186                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2187                 io_sample_set_ddir(iolog, s, ddir);
2188                 s->bs = bs;
2189
2190                 if (iolog->log_offset) {
2191                         struct io_sample_offset *so = (void *) s;
2192
2193                         so->offset = offset;
2194                 }
2195
2196                 cur_log->nr_samples++;
2197                 return;
2198         }
2199
2200         iolog->disabled = true;
2201 }
2202
2203 static inline void reset_io_stat(struct io_stat *ios)
2204 {
2205         ios->max_val = ios->min_val = ios->samples = 0;
2206         ios->mean.u.f = ios->S.u.f = 0;
2207 }
2208
2209 void reset_io_stats(struct thread_data *td)
2210 {
2211         struct thread_stat *ts = &td->ts;
2212         int i, j;
2213
2214         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2215                 reset_io_stat(&ts->clat_stat[i]);
2216                 reset_io_stat(&ts->slat_stat[i]);
2217                 reset_io_stat(&ts->lat_stat[i]);
2218                 reset_io_stat(&ts->bw_stat[i]);
2219                 reset_io_stat(&ts->iops_stat[i]);
2220
2221                 ts->io_bytes[i] = 0;
2222                 ts->runtime[i] = 0;
2223                 ts->total_io_u[i] = 0;
2224                 ts->short_io_u[i] = 0;
2225                 ts->drop_io_u[i] = 0;
2226
2227                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2228                         ts->io_u_plat[i][j] = 0;
2229         }
2230
2231         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2232                 ts->io_u_map[i] = 0;
2233                 ts->io_u_submit[i] = 0;
2234                 ts->io_u_complete[i] = 0;
2235         }
2236
2237         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2238                 ts->io_u_lat_n[i] = 0;
2239         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2240                 ts->io_u_lat_u[i] = 0;
2241         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2242                 ts->io_u_lat_m[i] = 0;
2243
2244         ts->total_submit = 0;
2245         ts->total_complete = 0;
2246 }
2247
2248 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2249                               unsigned long elapsed, bool log_max)
2250 {
2251         /*
2252          * Note an entry in the log. Use the mean from the logged samples,
2253          * making sure to properly round up. Only write a log entry if we
2254          * had actual samples done.
2255          */
2256         if (iolog->avg_window[ddir].samples) {
2257                 union io_sample_data data;
2258
2259                 if (log_max)
2260                         data.val = iolog->avg_window[ddir].max_val;
2261                 else
2262                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2263
2264                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2265         }
2266
2267         reset_io_stat(&iolog->avg_window[ddir]);
2268 }
2269
2270 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2271                              bool log_max)
2272 {
2273         int ddir;
2274
2275         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2276                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2277 }
2278
2279 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2280                            union io_sample_data data, enum fio_ddir ddir,
2281                            unsigned int bs, uint64_t offset)
2282 {
2283         unsigned long elapsed, this_window;
2284
2285         if (!ddir_rw(ddir))
2286                 return 0;
2287
2288         elapsed = mtime_since_now(&td->epoch);
2289
2290         /*
2291          * If no time averaging, just add the log sample.
2292          */
2293         if (!iolog->avg_msec) {
2294                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2295                 return 0;
2296         }
2297
2298         /*
2299          * Add the sample. If the time period has passed, then
2300          * add that entry to the log and clear.
2301          */
2302         add_stat_sample(&iolog->avg_window[ddir], data.val);
2303
2304         /*
2305          * If period hasn't passed, adding the above sample is all we
2306          * need to do.
2307          */
2308         this_window = elapsed - iolog->avg_last[ddir];
2309         if (elapsed < iolog->avg_last[ddir])
2310                 return iolog->avg_last[ddir] - elapsed;
2311         else if (this_window < iolog->avg_msec) {
2312                 int diff = iolog->avg_msec - this_window;
2313
2314                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2315                         return diff;
2316         }
2317
2318         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2319
2320         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2321         return iolog->avg_msec;
2322 }
2323
2324 void finalize_logs(struct thread_data *td, bool unit_logs)
2325 {
2326         unsigned long elapsed;
2327
2328         elapsed = mtime_since_now(&td->epoch);
2329
2330         if (td->clat_log && unit_logs)
2331                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2332         if (td->slat_log && unit_logs)
2333                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2334         if (td->lat_log && unit_logs)
2335                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2336         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2337                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2338         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2339                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2340 }
2341
2342 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2343 {
2344         struct io_log *iolog;
2345
2346         if (!ddir_rw(ddir))
2347                 return;
2348
2349         iolog = agg_io_log[ddir];
2350         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2351 }
2352
2353 static void add_clat_percentile_sample(struct thread_stat *ts,
2354                                 unsigned long long nsec, enum fio_ddir ddir)
2355 {
2356         unsigned int idx = plat_val_to_idx(nsec);
2357         assert(idx < FIO_IO_U_PLAT_NR);
2358
2359         ts->io_u_plat[ddir][idx]++;
2360 }
2361
2362 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2363                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2364 {
2365         unsigned long elapsed, this_window;
2366         struct thread_stat *ts = &td->ts;
2367         struct io_log *iolog = td->clat_hist_log;
2368
2369         td_io_u_lock(td);
2370
2371         add_stat_sample(&ts->clat_stat[ddir], nsec);
2372
2373         if (td->clat_log)
2374                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2375                                offset);
2376
2377         if (ts->clat_percentiles)
2378                 add_clat_percentile_sample(ts, nsec, ddir);
2379
2380         if (iolog && iolog->hist_msec) {
2381                 struct io_hist *hw = &iolog->hist_window[ddir];
2382
2383                 hw->samples++;
2384                 elapsed = mtime_since_now(&td->epoch);
2385                 if (!hw->hist_last)
2386                         hw->hist_last = elapsed;
2387                 this_window = elapsed - hw->hist_last;
2388                 
2389                 if (this_window >= iolog->hist_msec) {
2390                         unsigned int *io_u_plat;
2391                         struct io_u_plat_entry *dst;
2392
2393                         /*
2394                          * Make a byte-for-byte copy of the latency histogram
2395                          * stored in td->ts.io_u_plat[ddir], recording it in a
2396                          * log sample. Note that the matching call to free() is
2397                          * located in iolog.c after printing this sample to the
2398                          * log file.
2399                          */
2400                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2401                         dst = malloc(sizeof(struct io_u_plat_entry));
2402                         memcpy(&(dst->io_u_plat), io_u_plat,
2403                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2404                         flist_add(&dst->list, &hw->list);
2405                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2406                                                 elapsed, offset);
2407
2408                         /*
2409                          * Update the last time we recorded as being now, minus
2410                          * any drift in time we encountered before actually
2411                          * making the record.
2412                          */
2413                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2414                         hw->samples = 0;
2415                 }
2416         }
2417
2418         td_io_u_unlock(td);
2419 }
2420
2421 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2422                      unsigned long usec, unsigned int bs, uint64_t offset)
2423 {
2424         struct thread_stat *ts = &td->ts;
2425
2426         if (!ddir_rw(ddir))
2427                 return;
2428
2429         td_io_u_lock(td);
2430
2431         add_stat_sample(&ts->slat_stat[ddir], usec);
2432
2433         if (td->slat_log)
2434                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2435
2436         td_io_u_unlock(td);
2437 }
2438
2439 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2440                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2441 {
2442         struct thread_stat *ts = &td->ts;
2443
2444         if (!ddir_rw(ddir))
2445                 return;
2446
2447         td_io_u_lock(td);
2448
2449         add_stat_sample(&ts->lat_stat[ddir], nsec);
2450
2451         if (td->lat_log)
2452                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2453                                offset);
2454
2455         if (ts->lat_percentiles)
2456                 add_clat_percentile_sample(ts, nsec, ddir);
2457
2458         td_io_u_unlock(td);
2459 }
2460
2461 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2462                    unsigned int bytes, unsigned long long spent)
2463 {
2464         struct thread_stat *ts = &td->ts;
2465         unsigned long rate;
2466
2467         if (spent)
2468                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2469         else
2470                 rate = 0;
2471
2472         td_io_u_lock(td);
2473
2474         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2475
2476         if (td->bw_log)
2477                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2478                                bytes, io_u->offset);
2479
2480         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2481         td_io_u_unlock(td);
2482 }
2483
2484 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2485                          struct timespec *t, unsigned int avg_time,
2486                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2487                          struct io_stat *stat, struct io_log *log,
2488                          bool is_kb)
2489 {
2490         unsigned long spent, rate;
2491         enum fio_ddir ddir;
2492         unsigned int next, next_log;
2493
2494         next_log = avg_time;
2495
2496         spent = mtime_since(parent_tv, t);
2497         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2498                 return avg_time - spent;
2499
2500         td_io_u_lock(td);
2501
2502         /*
2503          * Compute both read and write rates for the interval.
2504          */
2505         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2506                 uint64_t delta;
2507
2508                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2509                 if (!delta)
2510                         continue; /* No entries for interval */
2511
2512                 if (spent) {
2513                         if (is_kb)
2514                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2515                         else
2516                                 rate = (delta * 1000) / spent;
2517                 } else
2518                         rate = 0;
2519
2520                 add_stat_sample(&stat[ddir], rate);
2521
2522                 if (log) {
2523                         unsigned int bs = 0;
2524
2525                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2526                                 bs = td->o.min_bs[ddir];
2527
2528                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2529                         next_log = min(next_log, next);
2530                 }
2531
2532                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2533         }
2534
2535         timespec_add_msec(parent_tv, avg_time);
2536
2537         td_io_u_unlock(td);
2538
2539         if (spent <= avg_time)
2540                 next = avg_time;
2541         else
2542                 next = avg_time - (1 + spent - avg_time);
2543
2544         return min(next, next_log);
2545 }
2546
2547 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2548 {
2549         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2550                                 td->this_io_bytes, td->stat_io_bytes,
2551                                 td->ts.bw_stat, td->bw_log, true);
2552 }
2553
2554 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2555                      unsigned int bytes)
2556 {
2557         struct thread_stat *ts = &td->ts;
2558
2559         td_io_u_lock(td);
2560
2561         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2562
2563         if (td->iops_log)
2564                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2565                                bytes, io_u->offset);
2566
2567         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2568         td_io_u_unlock(td);
2569 }
2570
2571 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2572 {
2573         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2574                                 td->this_io_blocks, td->stat_io_blocks,
2575                                 td->ts.iops_stat, td->iops_log, false);
2576 }
2577
2578 /*
2579  * Returns msecs to next event
2580  */
2581 int calc_log_samples(void)
2582 {
2583         struct thread_data *td;
2584         unsigned int next = ~0U, tmp;
2585         struct timespec now;
2586         int i;
2587
2588         fio_gettime(&now, NULL);
2589
2590         for_each_td(td, i) {
2591                 if (!td->o.stats)
2592                         continue;
2593                 if (in_ramp_time(td) ||
2594                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2595                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2596                         continue;
2597                 }
2598                 if (!td->bw_log ||
2599                         (td->bw_log && !per_unit_log(td->bw_log))) {
2600                         tmp = add_bw_samples(td, &now);
2601                         if (tmp < next)
2602                                 next = tmp;
2603                 }
2604                 if (!td->iops_log ||
2605                         (td->iops_log && !per_unit_log(td->iops_log))) {
2606                         tmp = add_iops_samples(td, &now);
2607                         if (tmp < next)
2608                                 next = tmp;
2609                 }
2610         }
2611
2612         return next == ~0U ? 0 : next;
2613 }
2614
2615 void stat_init(void)
2616 {
2617         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2618 }
2619
2620 void stat_exit(void)
2621 {
2622         /*
2623          * When we have the mutex, we know out-of-band access to it
2624          * have ended.
2625          */
2626         fio_mutex_down(stat_mutex);
2627         fio_mutex_remove(stat_mutex);
2628 }
2629
2630 /*
2631  * Called from signal handler. Wake up status thread.
2632  */
2633 void show_running_run_stats(void)
2634 {
2635         helper_do_stat();
2636 }
2637
2638 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2639 {
2640         /* Ignore io_u's which span multiple blocks--they will just get
2641          * inaccurate counts. */
2642         int idx = (io_u->offset - io_u->file->file_offset)
2643                         / td->o.bs[DDIR_TRIM];
2644         uint32_t *info = &td->ts.block_infos[idx];
2645         assert(idx < td->ts.nr_block_infos);
2646         return info;
2647 }