engines/io_uring: ensure sqe stores are ordered SQ ring tail update
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18
19 #define LOG_MSEC_SLACK  1
20
21 struct fio_sem *stat_sem;
22
23 void clear_rusage_stat(struct thread_data *td)
24 {
25         struct thread_stat *ts = &td->ts;
26
27         fio_getrusage(&td->ru_start);
28         ts->usr_time = ts->sys_time = 0;
29         ts->ctx = 0;
30         ts->minf = ts->majf = 0;
31 }
32
33 void update_rusage_stat(struct thread_data *td)
34 {
35         struct thread_stat *ts = &td->ts;
36
37         fio_getrusage(&td->ru_end);
38         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39                                         &td->ru_end.ru_utime);
40         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41                                         &td->ru_end.ru_stime);
42         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48 }
49
50 /*
51  * Given a latency, return the index of the corresponding bucket in
52  * the structure tracking percentiles.
53  *
54  * (1) find the group (and error bits) that the value (latency)
55  * belongs to by looking at its MSB. (2) find the bucket number in the
56  * group by looking at the index bits.
57  *
58  */
59 static unsigned int plat_val_to_idx(unsigned long long val)
60 {
61         unsigned int msb, error_bits, base, offset, idx;
62
63         /* Find MSB starting from bit 0 */
64         if (val == 0)
65                 msb = 0;
66         else
67                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69         /*
70          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71          * all bits of the sample as index
72          */
73         if (msb <= FIO_IO_U_PLAT_BITS)
74                 return val;
75
76         /* Compute the number of error bits to discard*/
77         error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79         /* Compute the number of buckets before the group */
80         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82         /*
83          * Discard the error bits and apply the mask to find the
84          * index for the buckets in the group
85          */
86         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88         /* Make sure the index does not exceed (array size - 1) */
89         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92         return idx;
93 }
94
95 /*
96  * Convert the given index of the bucket array to the value
97  * represented by the bucket
98  */
99 static unsigned long long plat_idx_to_val(unsigned int idx)
100 {
101         unsigned int error_bits;
102         unsigned long long k, base;
103
104         assert(idx < FIO_IO_U_PLAT_NR);
105
106         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107          * all bits of the sample as index */
108         if (idx < (FIO_IO_U_PLAT_VAL << 1))
109                 return idx;
110
111         /* Find the group and compute the minimum value of that group */
112         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115         /* Find its bucket number of the group */
116         k = idx % FIO_IO_U_PLAT_VAL;
117
118         /* Return the mean of the range of the bucket */
119         return base + ((k + 0.5) * (1 << error_bits));
120 }
121
122 static int double_cmp(const void *a, const void *b)
123 {
124         const fio_fp64_t fa = *(const fio_fp64_t *) a;
125         const fio_fp64_t fb = *(const fio_fp64_t *) b;
126         int cmp = 0;
127
128         if (fa.u.f > fb.u.f)
129                 cmp = 1;
130         else if (fa.u.f < fb.u.f)
131                 cmp = -1;
132
133         return cmp;
134 }
135
136 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137                                    fio_fp64_t *plist, unsigned long long **output,
138                                    unsigned long long *maxv, unsigned long long *minv)
139 {
140         unsigned long long sum = 0;
141         unsigned int len, i, j = 0;
142         unsigned int oval_len = 0;
143         unsigned long long *ovals = NULL;
144         bool is_last;
145
146         *minv = -1ULL;
147         *maxv = 0;
148
149         len = 0;
150         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151                 len++;
152
153         if (!len)
154                 return 0;
155
156         /*
157          * Sort the percentile list. Note that it may already be sorted if
158          * we are using the default values, but since it's a short list this
159          * isn't a worry. Also note that this does not work for NaN values.
160          */
161         if (len > 1)
162                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
163
164         /*
165          * Calculate bucket values, note down max and min values
166          */
167         is_last = false;
168         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
169                 sum += io_u_plat[i];
170                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
171                         assert(plist[j].u.f <= 100.0);
172
173                         if (j == oval_len) {
174                                 oval_len += 100;
175                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
176                         }
177
178                         ovals[j] = plat_idx_to_val(i);
179                         if (ovals[j] < *minv)
180                                 *minv = ovals[j];
181                         if (ovals[j] > *maxv)
182                                 *maxv = ovals[j];
183
184                         is_last = (j == len - 1) != 0;
185                         if (is_last)
186                                 break;
187
188                         j++;
189                 }
190         }
191
192         *output = ovals;
193         return len;
194 }
195
196 /*
197  * Find and display the p-th percentile of clat
198  */
199 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
200                                   fio_fp64_t *plist, unsigned int precision,
201                                   const char *pre, struct buf_output *out)
202 {
203         unsigned int divisor, len, i, j = 0;
204         unsigned long long minv, maxv;
205         unsigned long long *ovals;
206         int per_line, scale_down, time_width;
207         bool is_last;
208         char fmt[32];
209
210         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211         if (!len || !ovals)
212                 goto out;
213
214         /*
215          * We default to nsecs, but if the value range is such that we
216          * should scale down to usecs or msecs, do that.
217          */
218         if (minv > 2000000 && maxv > 99999999ULL) {
219                 scale_down = 2;
220                 divisor = 1000000;
221                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
222         } else if (minv > 2000 && maxv > 99999) {
223                 scale_down = 1;
224                 divisor = 1000;
225                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
226         } else {
227                 scale_down = 0;
228                 divisor = 1;
229                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
230         }
231
232
233         time_width = max(5, (int) (log10(maxv / divisor) + 1));
234         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235                         precision, time_width);
236         /* fmt will be something like " %5.2fth=[%4llu]%c" */
237         per_line = (80 - 7) / (precision + 10 + time_width);
238
239         for (j = 0; j < len; j++) {
240                 /* for formatting */
241                 if (j != 0 && (j % per_line) == 0)
242                         log_buf(out, "     |");
243
244                 /* end of the list */
245                 is_last = (j == len - 1) != 0;
246
247                 for (i = 0; i < scale_down; i++)
248                         ovals[j] = (ovals[j] + 999) / 1000;
249
250                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252                 if (is_last)
253                         break;
254
255                 if ((j % per_line) == per_line - 1)     /* for formatting */
256                         log_buf(out, "\n");
257         }
258
259 out:
260         if (ovals)
261                 free(ovals);
262 }
263
264 bool calc_lat(struct io_stat *is, unsigned long long *min,
265               unsigned long long *max, double *mean, double *dev)
266 {
267         double n = (double) is->samples;
268
269         if (n == 0)
270                 return false;
271
272         *min = is->min_val;
273         *max = is->max_val;
274         *mean = is->mean.u.f;
275
276         if (n > 1.0)
277                 *dev = sqrt(is->S.u.f / (n - 1.0));
278         else
279                 *dev = 0;
280
281         return true;
282 }
283
284 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285 {
286         char *io, *agg, *min, *max;
287         char *ioalt, *aggalt, *minalt, *maxalt;
288         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
289         int i;
290
291         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294                 const int i2p = is_power_of_2(rs->kb_base);
295
296                 if (!rs->max_run[i])
297                         continue;
298
299                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
300                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
301                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
302                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
303                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
304                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308                                 rs->unified_rw_rep ? "  MIXED" : str[i],
309                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310                                 (unsigned long long) rs->min_run[i],
311                                 (unsigned long long) rs->max_run[i]);
312
313                 free(io);
314                 free(agg);
315                 free(min);
316                 free(max);
317                 free(ioalt);
318                 free(aggalt);
319                 free(minalt);
320                 free(maxalt);
321         }
322 }
323
324 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
325 {
326         int i;
327
328         /*
329          * Do depth distribution calculations
330          */
331         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332                 if (total) {
333                         io_u_dist[i] = (double) map[i] / (double) total;
334                         io_u_dist[i] *= 100.0;
335                         if (io_u_dist[i] < 0.1 && map[i])
336                                 io_u_dist[i] = 0.1;
337                 } else
338                         io_u_dist[i] = 0.0;
339         }
340 }
341
342 static void stat_calc_lat(struct thread_stat *ts, double *dst,
343                           uint64_t *src, int nr)
344 {
345         unsigned long total = ddir_rw_sum(ts->total_io_u);
346         int i;
347
348         /*
349          * Do latency distribution calculations
350          */
351         for (i = 0; i < nr; i++) {
352                 if (total) {
353                         dst[i] = (double) src[i] / (double) total;
354                         dst[i] *= 100.0;
355                         if (dst[i] < 0.01 && src[i])
356                                 dst[i] = 0.01;
357                 } else
358                         dst[i] = 0.0;
359         }
360 }
361
362 /*
363  * To keep the terse format unaltered, add all of the ns latency
364  * buckets to the first us latency bucket
365  */
366 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367 {
368         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369         int i;
370
371         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374                 ntotal += ts->io_u_lat_n[i];
375
376         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377 }
378
379 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380 {
381         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382 }
383
384 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385 {
386         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387 }
388
389 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390 {
391         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392 }
393
394 static void display_lat(const char *name, unsigned long long min,
395                         unsigned long long max, double mean, double dev,
396                         struct buf_output *out)
397 {
398         const char *base = "(nsec)";
399         char *minp, *maxp;
400
401         if (nsec_to_msec(&min, &max, &mean, &dev))
402                 base = "(msec)";
403         else if (nsec_to_usec(&min, &max, &mean, &dev))
404                 base = "(usec)";
405
406         minp = num2str(min, 6, 1, 0, N2S_NONE);
407         maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
410                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412         free(minp);
413         free(maxp);
414 }
415
416 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417                              int ddir, struct buf_output *out)
418 {
419         unsigned long runt;
420         unsigned long long min, max, bw, iops;
421         double mean, dev;
422         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
423         int i2p;
424
425         if (ddir_sync(ddir)) {
426                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
427                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
428                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
429                         show_clat_percentiles(ts->io_u_sync_plat,
430                                                 ts->sync_stat.samples,
431                                                 ts->percentile_list,
432                                                 ts->percentile_precision,
433                                                 io_ddir_name(ddir), out);
434                 }
435                 return;
436         }
437
438         assert(ddir_rw(ddir));
439
440         if (!ts->runtime[ddir])
441                 return;
442
443         i2p = is_power_of_2(rs->kb_base);
444         runt = ts->runtime[ddir];
445
446         bw = (1000 * ts->io_bytes[ddir]) / runt;
447         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
448         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
449         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
450
451         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
452         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
453         if (ddir == DDIR_WRITE)
454                 post_st = zbd_write_status(ts);
455         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
456                 uint64_t total;
457                 double hit;
458
459                 total = ts->cachehit + ts->cachemiss;
460                 hit = (double) ts->cachehit / (double) total;
461                 hit *= 100.0;
462                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
463                         post_st = NULL;
464         }
465
466         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
467                         rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
468                         iops_p, bw_p, bw_p_alt, io_p,
469                         (unsigned long long) ts->runtime[ddir],
470                         post_st ? : "");
471
472         free(post_st);
473         free(io_p);
474         free(bw_p);
475         free(bw_p_alt);
476         free(iops_p);
477
478         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
479                 display_lat("slat", min, max, mean, dev, out);
480         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
481                 display_lat("clat", min, max, mean, dev, out);
482         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
483                 display_lat(" lat", min, max, mean, dev, out);
484
485         if (ts->clat_percentiles || ts->lat_percentiles) {
486                 const char *name = ts->clat_percentiles ? "clat" : " lat";
487                 uint64_t samples;
488
489                 if (ts->clat_percentiles)
490                         samples = ts->clat_stat[ddir].samples;
491                 else
492                         samples = ts->lat_stat[ddir].samples;
493
494                 show_clat_percentiles(ts->io_u_plat[ddir],
495                                         samples,
496                                         ts->percentile_list,
497                                         ts->percentile_precision, name, out);
498         }
499         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
500                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
501                 const char *bw_str;
502
503                 if ((rs->unit_base == 1) && i2p)
504                         bw_str = "Kibit";
505                 else if (rs->unit_base == 1)
506                         bw_str = "kbit";
507                 else if (i2p)
508                         bw_str = "KiB";
509                 else
510                         bw_str = "kB";
511
512                 if (rs->agg[ddir]) {
513                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
514                         if (p_of_agg > 100.0)
515                                 p_of_agg = 100.0;
516                 }
517
518                 if (rs->unit_base == 1) {
519                         min *= 8.0;
520                         max *= 8.0;
521                         mean *= 8.0;
522                         dev *= 8.0;
523                 }
524
525                 if (mean > fkb_base * fkb_base) {
526                         min /= fkb_base;
527                         max /= fkb_base;
528                         mean /= fkb_base;
529                         dev /= fkb_base;
530                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
531                 }
532
533                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
534                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
535                         bw_str, min, max, p_of_agg, mean, dev,
536                         (&ts->bw_stat[ddir])->samples);
537         }
538         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
539                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
540                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
541                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
542         }
543 }
544
545 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
546                      const char *msg, struct buf_output *out)
547 {
548         bool new_line = true, shown = false;
549         int i, line = 0;
550
551         for (i = 0; i < nr; i++) {
552                 if (io_u_lat[i] <= 0.0)
553                         continue;
554                 shown = true;
555                 if (new_line) {
556                         if (line)
557                                 log_buf(out, "\n");
558                         log_buf(out, "  lat (%s)   : ", msg);
559                         new_line = false;
560                         line = 0;
561                 }
562                 if (line)
563                         log_buf(out, ", ");
564                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
565                 line++;
566                 if (line == 5)
567                         new_line = true;
568         }
569
570         if (shown)
571                 log_buf(out, "\n");
572
573         return true;
574 }
575
576 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
577 {
578         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
579                                  "250=", "500=", "750=", "1000=", };
580
581         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
582 }
583
584 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
585 {
586         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
587                                  "250=", "500=", "750=", "1000=", };
588
589         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
590 }
591
592 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
593 {
594         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
595                                  "250=", "500=", "750=", "1000=", "2000=",
596                                  ">=2000=", };
597
598         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
599 }
600
601 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
602 {
603         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
604         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
605         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
606
607         stat_calc_lat_n(ts, io_u_lat_n);
608         stat_calc_lat_u(ts, io_u_lat_u);
609         stat_calc_lat_m(ts, io_u_lat_m);
610
611         show_lat_n(io_u_lat_n, out);
612         show_lat_u(io_u_lat_u, out);
613         show_lat_m(io_u_lat_m, out);
614 }
615
616 static int block_state_category(int block_state)
617 {
618         switch (block_state) {
619         case BLOCK_STATE_UNINIT:
620                 return 0;
621         case BLOCK_STATE_TRIMMED:
622         case BLOCK_STATE_WRITTEN:
623                 return 1;
624         case BLOCK_STATE_WRITE_FAILURE:
625         case BLOCK_STATE_TRIM_FAILURE:
626                 return 2;
627         default:
628                 /* Silence compile warning on some BSDs and have a return */
629                 assert(0);
630                 return -1;
631         }
632 }
633
634 static int compare_block_infos(const void *bs1, const void *bs2)
635 {
636         uint64_t block1 = *(uint64_t *)bs1;
637         uint64_t block2 = *(uint64_t *)bs2;
638         int state1 = BLOCK_INFO_STATE(block1);
639         int state2 = BLOCK_INFO_STATE(block2);
640         int bscat1 = block_state_category(state1);
641         int bscat2 = block_state_category(state2);
642         int cycles1 = BLOCK_INFO_TRIMS(block1);
643         int cycles2 = BLOCK_INFO_TRIMS(block2);
644
645         if (bscat1 < bscat2)
646                 return -1;
647         if (bscat1 > bscat2)
648                 return 1;
649
650         if (cycles1 < cycles2)
651                 return -1;
652         if (cycles1 > cycles2)
653                 return 1;
654
655         if (state1 < state2)
656                 return -1;
657         if (state1 > state2)
658                 return 1;
659
660         assert(block1 == block2);
661         return 0;
662 }
663
664 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
665                                   fio_fp64_t *plist, unsigned int **percentiles,
666                                   unsigned int *types)
667 {
668         int len = 0;
669         int i, nr_uninit;
670
671         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
672
673         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
674                 len++;
675
676         if (!len)
677                 return 0;
678
679         /*
680          * Sort the percentile list. Note that it may already be sorted if
681          * we are using the default values, but since it's a short list this
682          * isn't a worry. Also note that this does not work for NaN values.
683          */
684         if (len > 1)
685                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
686
687         /* Start only after the uninit entries end */
688         for (nr_uninit = 0;
689              nr_uninit < nr_block_infos
690                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
691              nr_uninit ++)
692                 ;
693
694         if (nr_uninit == nr_block_infos)
695                 return 0;
696
697         *percentiles = calloc(len, sizeof(**percentiles));
698
699         for (i = 0; i < len; i++) {
700                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
701                                 + nr_uninit;
702                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
703         }
704
705         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
706         for (i = 0; i < nr_block_infos; i++)
707                 types[BLOCK_INFO_STATE(block_infos[i])]++;
708
709         return len;
710 }
711
712 static const char *block_state_names[] = {
713         [BLOCK_STATE_UNINIT] = "unwritten",
714         [BLOCK_STATE_TRIMMED] = "trimmed",
715         [BLOCK_STATE_WRITTEN] = "written",
716         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
717         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
718 };
719
720 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
721                              fio_fp64_t *plist, struct buf_output *out)
722 {
723         int len, pos, i;
724         unsigned int *percentiles = NULL;
725         unsigned int block_state_counts[BLOCK_STATE_COUNT];
726
727         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
728                                      &percentiles, block_state_counts);
729
730         log_buf(out, "  block lifetime percentiles :\n   |");
731         pos = 0;
732         for (i = 0; i < len; i++) {
733                 uint32_t block_info = percentiles[i];
734 #define LINE_LENGTH     75
735                 char str[LINE_LENGTH];
736                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
737                                      plist[i].u.f, block_info,
738                                      i == len - 1 ? '\n' : ',');
739                 assert(strln < LINE_LENGTH);
740                 if (pos + strln > LINE_LENGTH) {
741                         pos = 0;
742                         log_buf(out, "\n   |");
743                 }
744                 log_buf(out, "%s", str);
745                 pos += strln;
746 #undef LINE_LENGTH
747         }
748         if (percentiles)
749                 free(percentiles);
750
751         log_buf(out, "        states               :");
752         for (i = 0; i < BLOCK_STATE_COUNT; i++)
753                 log_buf(out, " %s=%u%c",
754                          block_state_names[i], block_state_counts[i],
755                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
756 }
757
758 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
759 {
760         char *p1, *p1alt, *p2;
761         unsigned long long bw_mean, iops_mean;
762         const int i2p = is_power_of_2(ts->kb_base);
763
764         if (!ts->ss_dur)
765                 return;
766
767         bw_mean = steadystate_bw_mean(ts);
768         iops_mean = steadystate_iops_mean(ts);
769
770         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
771         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
772         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
773
774         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
775                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
776                 p1, p1alt, p2,
777                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
778                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
779                 ts->ss_criterion.u.f,
780                 ts->ss_state & FIO_SS_PCT ? "%" : "");
781
782         free(p1);
783         free(p1alt);
784         free(p2);
785 }
786
787 static void show_thread_status_normal(struct thread_stat *ts,
788                                       struct group_run_stats *rs,
789                                       struct buf_output *out)
790 {
791         double usr_cpu, sys_cpu;
792         unsigned long runtime;
793         double io_u_dist[FIO_IO_U_MAP_NR];
794         time_t time_p;
795         char time_buf[32];
796
797         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
798                 return;
799                 
800         memset(time_buf, 0, sizeof(time_buf));
801
802         time(&time_p);
803         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
804
805         if (!ts->error) {
806                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
807                                         ts->name, ts->groupid, ts->members,
808                                         ts->error, (int) ts->pid, time_buf);
809         } else {
810                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
811                                         ts->name, ts->groupid, ts->members,
812                                         ts->error, ts->verror, (int) ts->pid,
813                                         time_buf);
814         }
815
816         if (strlen(ts->description))
817                 log_buf(out, "  Description  : [%s]\n", ts->description);
818
819         if (ts->io_bytes[DDIR_READ])
820                 show_ddir_status(rs, ts, DDIR_READ, out);
821         if (ts->io_bytes[DDIR_WRITE])
822                 show_ddir_status(rs, ts, DDIR_WRITE, out);
823         if (ts->io_bytes[DDIR_TRIM])
824                 show_ddir_status(rs, ts, DDIR_TRIM, out);
825
826         show_latencies(ts, out);
827
828         if (ts->sync_stat.samples)
829                 show_ddir_status(rs, ts, DDIR_SYNC, out);
830
831         runtime = ts->total_run_time;
832         if (runtime) {
833                 double runt = (double) runtime;
834
835                 usr_cpu = (double) ts->usr_time * 100 / runt;
836                 sys_cpu = (double) ts->sys_time * 100 / runt;
837         } else {
838                 usr_cpu = 0;
839                 sys_cpu = 0;
840         }
841
842         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
843                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
844                         (unsigned long long) ts->ctx,
845                         (unsigned long long) ts->majf,
846                         (unsigned long long) ts->minf);
847
848         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
849         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
850                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
851                                         io_u_dist[1], io_u_dist[2],
852                                         io_u_dist[3], io_u_dist[4],
853                                         io_u_dist[5], io_u_dist[6]);
854
855         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
856         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
857                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
858                                         io_u_dist[1], io_u_dist[2],
859                                         io_u_dist[3], io_u_dist[4],
860                                         io_u_dist[5], io_u_dist[6]);
861         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
862         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
863                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
864                                         io_u_dist[1], io_u_dist[2],
865                                         io_u_dist[3], io_u_dist[4],
866                                         io_u_dist[5], io_u_dist[6]);
867         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
868                                  " short=%llu,%llu,%llu,0"
869                                  " dropped=%llu,%llu,%llu,0\n",
870                                         (unsigned long long) ts->total_io_u[0],
871                                         (unsigned long long) ts->total_io_u[1],
872                                         (unsigned long long) ts->total_io_u[2],
873                                         (unsigned long long) ts->total_io_u[3],
874                                         (unsigned long long) ts->short_io_u[0],
875                                         (unsigned long long) ts->short_io_u[1],
876                                         (unsigned long long) ts->short_io_u[2],
877                                         (unsigned long long) ts->drop_io_u[0],
878                                         (unsigned long long) ts->drop_io_u[1],
879                                         (unsigned long long) ts->drop_io_u[2]);
880         if (ts->continue_on_error) {
881                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
882                                         (unsigned long long)ts->total_err_count,
883                                         ts->first_error,
884                                         strerror(ts->first_error));
885         }
886         if (ts->latency_depth) {
887                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
888                                         (unsigned long long)ts->latency_target,
889                                         (unsigned long long)ts->latency_window,
890                                         ts->latency_percentile.u.f,
891                                         ts->latency_depth);
892         }
893
894         if (ts->nr_block_infos)
895                 show_block_infos(ts->nr_block_infos, ts->block_infos,
896                                   ts->percentile_list, out);
897
898         if (ts->ss_dur)
899                 show_ss_normal(ts, out);
900 }
901
902 static void show_ddir_status_terse(struct thread_stat *ts,
903                                    struct group_run_stats *rs, int ddir,
904                                    int ver, struct buf_output *out)
905 {
906         unsigned long long min, max, minv, maxv, bw, iops;
907         unsigned long long *ovals = NULL;
908         double mean, dev;
909         unsigned int len;
910         int i, bw_stat;
911
912         assert(ddir_rw(ddir));
913
914         iops = bw = 0;
915         if (ts->runtime[ddir]) {
916                 uint64_t runt = ts->runtime[ddir];
917
918                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
919                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
920         }
921
922         log_buf(out, ";%llu;%llu;%llu;%llu",
923                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
924                                         (unsigned long long) ts->runtime[ddir]);
925
926         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
927                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
928         else
929                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
930
931         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
932                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
933         else
934                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
935
936         if (ts->clat_percentiles || ts->lat_percentiles) {
937                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
938                                         ts->clat_stat[ddir].samples,
939                                         ts->percentile_list, &ovals, &maxv,
940                                         &minv);
941         } else
942                 len = 0;
943
944         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
945                 if (i >= len) {
946                         log_buf(out, ";0%%=0");
947                         continue;
948                 }
949                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
950         }
951
952         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
953                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
954         else
955                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
956
957         if (ovals)
958                 free(ovals);
959
960         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
961         if (bw_stat) {
962                 double p_of_agg = 100.0;
963
964                 if (rs->agg[ddir]) {
965                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
966                         if (p_of_agg > 100.0)
967                                 p_of_agg = 100.0;
968                 }
969
970                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
971         } else
972                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
973
974         if (ver == 5) {
975                 if (bw_stat)
976                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
977                 else
978                         log_buf(out, ";%lu", 0UL);
979
980                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
981                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
982                                 mean, dev, (&ts->iops_stat[ddir])->samples);
983                 else
984                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
985         }
986 }
987
988 static void add_ddir_status_json(struct thread_stat *ts,
989                 struct group_run_stats *rs, int ddir, struct json_object *parent)
990 {
991         unsigned long long min, max, minv, maxv;
992         unsigned long long bw_bytes, bw;
993         unsigned long long *ovals = NULL;
994         double mean, dev, iops;
995         unsigned int len;
996         int i;
997         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
998         char buf[120];
999         double p_of_agg = 100.0;
1000
1001         assert(ddir_rw(ddir) || ddir_sync(ddir));
1002
1003         if (ts->unified_rw_rep && ddir != DDIR_READ)
1004                 return;
1005
1006         dir_object = json_create_object();
1007         json_object_add_value_object(parent,
1008                 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1009
1010         if (ddir_rw(ddir)) {
1011                 bw_bytes = 0;
1012                 bw = 0;
1013                 iops = 0.0;
1014                 if (ts->runtime[ddir]) {
1015                         uint64_t runt = ts->runtime[ddir];
1016
1017                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1018                         bw = bw_bytes / 1024; /* KiB/s */
1019                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1020                 }
1021
1022                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1023                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1024                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1025                 json_object_add_value_int(dir_object, "bw", bw);
1026                 json_object_add_value_float(dir_object, "iops", iops);
1027                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1028                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1029                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1030                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1031
1032                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1033                         min = max = 0;
1034                         mean = dev = 0.0;
1035                 }
1036                 tmp_object = json_create_object();
1037                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1038                 json_object_add_value_int(tmp_object, "min", min);
1039                 json_object_add_value_int(tmp_object, "max", max);
1040                 json_object_add_value_float(tmp_object, "mean", mean);
1041                 json_object_add_value_float(tmp_object, "stddev", dev);
1042
1043                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1044                         min = max = 0;
1045                         mean = dev = 0.0;
1046                 }
1047                 tmp_object = json_create_object();
1048                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1049                 json_object_add_value_int(tmp_object, "min", min);
1050                 json_object_add_value_int(tmp_object, "max", max);
1051                 json_object_add_value_float(tmp_object, "mean", mean);
1052                 json_object_add_value_float(tmp_object, "stddev", dev);
1053         } else {
1054                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1055                         min = max = 0;
1056                         mean = dev = 0.0;
1057                 }
1058
1059                 tmp_object = json_create_object();
1060                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1061                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1062                 json_object_add_value_int(tmp_object, "min", min);
1063                 json_object_add_value_int(tmp_object, "max", max);
1064                 json_object_add_value_float(tmp_object, "mean", mean);
1065                 json_object_add_value_float(tmp_object, "stddev", dev);
1066         }
1067
1068         if (ts->clat_percentiles || ts->lat_percentiles) {
1069                 if (ddir_rw(ddir)) {
1070                         uint64_t samples;
1071
1072                         if (ts->clat_percentiles)
1073                                 samples = ts->clat_stat[ddir].samples;
1074                         else
1075                                 samples = ts->lat_stat[ddir].samples;
1076
1077                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1078                                         samples, ts->percentile_list, &ovals,
1079                                         &maxv, &minv);
1080                 } else {
1081                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1082                                         ts->sync_stat.samples,
1083                                         ts->percentile_list, &ovals, &maxv,
1084                                         &minv);
1085                 }
1086
1087                 if (len > FIO_IO_U_LIST_MAX_LEN)
1088                         len = FIO_IO_U_LIST_MAX_LEN;
1089         } else
1090                 len = 0;
1091
1092         percentile_object = json_create_object();
1093         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1094         for (i = 0; i < len; i++) {
1095                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1096                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1097         }
1098
1099         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1100                 clat_bins_object = json_create_object();
1101                 if (ts->clat_percentiles)
1102                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1103
1104                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1105                         if (ddir_rw(ddir)) {
1106                                 if (ts->io_u_plat[ddir][i]) {
1107                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1108                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1109                                 }
1110                         } else {
1111                                 if (ts->io_u_sync_plat[i]) {
1112                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1113                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1114                                 }
1115                         }
1116                 }
1117         }
1118
1119         if (!ddir_rw(ddir))
1120                 return;
1121
1122         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1123                 min = max = 0;
1124                 mean = dev = 0.0;
1125         }
1126         tmp_object = json_create_object();
1127         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1128         json_object_add_value_int(tmp_object, "min", min);
1129         json_object_add_value_int(tmp_object, "max", max);
1130         json_object_add_value_float(tmp_object, "mean", mean);
1131         json_object_add_value_float(tmp_object, "stddev", dev);
1132         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1133                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1134
1135         if (ovals)
1136                 free(ovals);
1137
1138         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1139                 if (rs->agg[ddir]) {
1140                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1141                         if (p_of_agg > 100.0)
1142                                 p_of_agg = 100.0;
1143                 }
1144         } else {
1145                 min = max = 0;
1146                 p_of_agg = mean = dev = 0.0;
1147         }
1148         json_object_add_value_int(dir_object, "bw_min", min);
1149         json_object_add_value_int(dir_object, "bw_max", max);
1150         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1151         json_object_add_value_float(dir_object, "bw_mean", mean);
1152         json_object_add_value_float(dir_object, "bw_dev", dev);
1153         json_object_add_value_int(dir_object, "bw_samples",
1154                                 (&ts->bw_stat[ddir])->samples);
1155
1156         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1157                 min = max = 0;
1158                 mean = dev = 0.0;
1159         }
1160         json_object_add_value_int(dir_object, "iops_min", min);
1161         json_object_add_value_int(dir_object, "iops_max", max);
1162         json_object_add_value_float(dir_object, "iops_mean", mean);
1163         json_object_add_value_float(dir_object, "iops_stddev", dev);
1164         json_object_add_value_int(dir_object, "iops_samples",
1165                                 (&ts->iops_stat[ddir])->samples);
1166
1167         if (ts->cachehit + ts->cachemiss) {
1168                 uint64_t total;
1169                 double hit;
1170
1171                 total = ts->cachehit + ts->cachemiss;
1172                 hit = (double) ts->cachehit / (double) total;
1173                 hit *= 100.0;
1174                 json_object_add_value_float(dir_object, "cachehit", hit);
1175         }
1176 }
1177
1178 static void show_thread_status_terse_all(struct thread_stat *ts,
1179                                          struct group_run_stats *rs, int ver,
1180                                          struct buf_output *out)
1181 {
1182         double io_u_dist[FIO_IO_U_MAP_NR];
1183         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1184         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1185         double usr_cpu, sys_cpu;
1186         int i;
1187
1188         /* General Info */
1189         if (ver == 2)
1190                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1191         else
1192                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1193                         ts->name, ts->groupid, ts->error);
1194
1195         /* Log Read Status */
1196         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1197         /* Log Write Status */
1198         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1199         /* Log Trim Status */
1200         if (ver == 2 || ver == 4 || ver == 5)
1201                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1202
1203         /* CPU Usage */
1204         if (ts->total_run_time) {
1205                 double runt = (double) ts->total_run_time;
1206
1207                 usr_cpu = (double) ts->usr_time * 100 / runt;
1208                 sys_cpu = (double) ts->sys_time * 100 / runt;
1209         } else {
1210                 usr_cpu = 0;
1211                 sys_cpu = 0;
1212         }
1213
1214         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1215                                                 (unsigned long long) ts->ctx,
1216                                                 (unsigned long long) ts->majf,
1217                                                 (unsigned long long) ts->minf);
1218
1219         /* Calc % distribution of IO depths, usecond, msecond latency */
1220         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1221         stat_calc_lat_nu(ts, io_u_lat_u);
1222         stat_calc_lat_m(ts, io_u_lat_m);
1223
1224         /* Only show fixed 7 I/O depth levels*/
1225         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1226                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1227                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1228
1229         /* Microsecond latency */
1230         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1231                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1232         /* Millisecond latency */
1233         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1234                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1235
1236         /* disk util stats, if any */
1237         if (ver >= 3 && is_running_backend())
1238                 show_disk_util(1, NULL, out);
1239
1240         /* Additional output if continue_on_error set - default off*/
1241         if (ts->continue_on_error)
1242                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1243         if (ver == 2)
1244                 log_buf(out, "\n");
1245
1246         /* Additional output if description is set */
1247         if (strlen(ts->description))
1248                 log_buf(out, ";%s", ts->description);
1249
1250         log_buf(out, "\n");
1251 }
1252
1253 static void json_add_job_opts(struct json_object *root, const char *name,
1254                               struct flist_head *opt_list)
1255 {
1256         struct json_object *dir_object;
1257         struct flist_head *entry;
1258         struct print_option *p;
1259
1260         if (flist_empty(opt_list))
1261                 return;
1262
1263         dir_object = json_create_object();
1264         json_object_add_value_object(root, name, dir_object);
1265
1266         flist_for_each(entry, opt_list) {
1267                 const char *pos = "";
1268
1269                 p = flist_entry(entry, struct print_option, list);
1270                 if (p->value)
1271                         pos = p->value;
1272                 json_object_add_value_string(dir_object, p->name, pos);
1273         }
1274 }
1275
1276 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1277                                                    struct group_run_stats *rs,
1278                                                    struct flist_head *opt_list)
1279 {
1280         struct json_object *root, *tmp;
1281         struct jobs_eta *je;
1282         double io_u_dist[FIO_IO_U_MAP_NR];
1283         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1284         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1285         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1286         double usr_cpu, sys_cpu;
1287         int i;
1288         size_t size;
1289
1290         root = json_create_object();
1291         json_object_add_value_string(root, "jobname", ts->name);
1292         json_object_add_value_int(root, "groupid", ts->groupid);
1293         json_object_add_value_int(root, "error", ts->error);
1294
1295         /* ETA Info */
1296         je = get_jobs_eta(true, &size);
1297         if (je) {
1298                 json_object_add_value_int(root, "eta", je->eta_sec);
1299                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1300         }
1301
1302         if (opt_list)
1303                 json_add_job_opts(root, "job options", opt_list);
1304
1305         add_ddir_status_json(ts, rs, DDIR_READ, root);
1306         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1307         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1308         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1309
1310         /* CPU Usage */
1311         if (ts->total_run_time) {
1312                 double runt = (double) ts->total_run_time;
1313
1314                 usr_cpu = (double) ts->usr_time * 100 / runt;
1315                 sys_cpu = (double) ts->sys_time * 100 / runt;
1316         } else {
1317                 usr_cpu = 0;
1318                 sys_cpu = 0;
1319         }
1320         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1321         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1322         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1323         json_object_add_value_int(root, "ctx", ts->ctx);
1324         json_object_add_value_int(root, "majf", ts->majf);
1325         json_object_add_value_int(root, "minf", ts->minf);
1326
1327         /* Calc % distribution of IO depths */
1328         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1329         tmp = json_create_object();
1330         json_object_add_value_object(root, "iodepth_level", tmp);
1331         /* Only show fixed 7 I/O depth levels*/
1332         for (i = 0; i < 7; i++) {
1333                 char name[20];
1334                 if (i < 6)
1335                         snprintf(name, 20, "%d", 1 << i);
1336                 else
1337                         snprintf(name, 20, ">=%d", 1 << i);
1338                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1339         }
1340
1341         /* Calc % distribution of submit IO depths */
1342         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1343         tmp = json_create_object();
1344         json_object_add_value_object(root, "iodepth_submit", tmp);
1345         /* Only show fixed 7 I/O depth levels*/
1346         for (i = 0; i < 7; i++) {
1347                 char name[20];
1348                 if (i == 0)
1349                         snprintf(name, 20, "0");
1350                 else if (i < 6)
1351                         snprintf(name, 20, "%d", 1 << (i+1));
1352                 else
1353                         snprintf(name, 20, ">=%d", 1 << i);
1354                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1355         }
1356
1357         /* Calc % distribution of completion IO depths */
1358         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1359         tmp = json_create_object();
1360         json_object_add_value_object(root, "iodepth_complete", tmp);
1361         /* Only show fixed 7 I/O depth levels*/
1362         for (i = 0; i < 7; i++) {
1363                 char name[20];
1364                 if (i == 0)
1365                         snprintf(name, 20, "0");
1366                 else if (i < 6)
1367                         snprintf(name, 20, "%d", 1 << (i+1));
1368                 else
1369                         snprintf(name, 20, ">=%d", 1 << i);
1370                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1371         }
1372
1373         /* Calc % distribution of nsecond, usecond, msecond latency */
1374         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1375         stat_calc_lat_n(ts, io_u_lat_n);
1376         stat_calc_lat_u(ts, io_u_lat_u);
1377         stat_calc_lat_m(ts, io_u_lat_m);
1378
1379         /* Nanosecond latency */
1380         tmp = json_create_object();
1381         json_object_add_value_object(root, "latency_ns", tmp);
1382         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1383                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1384                                  "250", "500", "750", "1000", };
1385                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1386         }
1387         /* Microsecond latency */
1388         tmp = json_create_object();
1389         json_object_add_value_object(root, "latency_us", tmp);
1390         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1391                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1392                                  "250", "500", "750", "1000", };
1393                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1394         }
1395         /* Millisecond latency */
1396         tmp = json_create_object();
1397         json_object_add_value_object(root, "latency_ms", tmp);
1398         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1399                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1400                                  "250", "500", "750", "1000", "2000",
1401                                  ">=2000", };
1402                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1403         }
1404
1405         /* Additional output if continue_on_error set - default off*/
1406         if (ts->continue_on_error) {
1407                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1408                 json_object_add_value_int(root, "first_error", ts->first_error);
1409         }
1410
1411         if (ts->latency_depth) {
1412                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1413                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1414                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1415                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1416         }
1417
1418         /* Additional output if description is set */
1419         if (strlen(ts->description))
1420                 json_object_add_value_string(root, "desc", ts->description);
1421
1422         if (ts->nr_block_infos) {
1423                 /* Block error histogram and types */
1424                 int len;
1425                 unsigned int *percentiles = NULL;
1426                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1427
1428                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1429                                              ts->percentile_list,
1430                                              &percentiles, block_state_counts);
1431
1432                 if (len) {
1433                         struct json_object *block, *percentile_object, *states;
1434                         int state;
1435                         block = json_create_object();
1436                         json_object_add_value_object(root, "block", block);
1437
1438                         percentile_object = json_create_object();
1439                         json_object_add_value_object(block, "percentiles",
1440                                                      percentile_object);
1441                         for (i = 0; i < len; i++) {
1442                                 char buf[20];
1443                                 snprintf(buf, sizeof(buf), "%f",
1444                                          ts->percentile_list[i].u.f);
1445                                 json_object_add_value_int(percentile_object,
1446                                                           (const char *)buf,
1447                                                           percentiles[i]);
1448                         }
1449
1450                         states = json_create_object();
1451                         json_object_add_value_object(block, "states", states);
1452                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1453                                 json_object_add_value_int(states,
1454                                         block_state_names[state],
1455                                         block_state_counts[state]);
1456                         }
1457                         free(percentiles);
1458                 }
1459         }
1460
1461         if (ts->ss_dur) {
1462                 struct json_object *data;
1463                 struct json_array *iops, *bw;
1464                 int j, k, l;
1465                 char ss_buf[64];
1466
1467                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1468                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1469                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1470                         (float) ts->ss_limit.u.f,
1471                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1472
1473                 tmp = json_create_object();
1474                 json_object_add_value_object(root, "steadystate", tmp);
1475                 json_object_add_value_string(tmp, "ss", ss_buf);
1476                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1477                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1478
1479                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1480                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1481                 json_object_add_value_string(tmp, "criterion", ss_buf);
1482                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1483                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1484
1485                 data = json_create_object();
1486                 json_object_add_value_object(tmp, "data", data);
1487                 bw = json_create_array();
1488                 iops = json_create_array();
1489
1490                 /*
1491                 ** if ss was attained or the buffer is not full,
1492                 ** ss->head points to the first element in the list.
1493                 ** otherwise it actually points to the second element
1494                 ** in the list
1495                 */
1496                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1497                         j = ts->ss_head;
1498                 else
1499                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1500                 for (l = 0; l < ts->ss_dur; l++) {
1501                         k = (j + l) % ts->ss_dur;
1502                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1503                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1504                 }
1505                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1506                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1507                 json_object_add_value_array(data, "iops", iops);
1508                 json_object_add_value_array(data, "bw", bw);
1509         }
1510
1511         return root;
1512 }
1513
1514 static void show_thread_status_terse(struct thread_stat *ts,
1515                                      struct group_run_stats *rs,
1516                                      struct buf_output *out)
1517 {
1518         if (terse_version >= 2 && terse_version <= 5)
1519                 show_thread_status_terse_all(ts, rs, terse_version, out);
1520         else
1521                 log_err("fio: bad terse version!? %d\n", terse_version);
1522 }
1523
1524 struct json_object *show_thread_status(struct thread_stat *ts,
1525                                        struct group_run_stats *rs,
1526                                        struct flist_head *opt_list,
1527                                        struct buf_output *out)
1528 {
1529         struct json_object *ret = NULL;
1530
1531         if (output_format & FIO_OUTPUT_TERSE)
1532                 show_thread_status_terse(ts, rs,  out);
1533         if (output_format & FIO_OUTPUT_JSON)
1534                 ret = show_thread_status_json(ts, rs, opt_list);
1535         if (output_format & FIO_OUTPUT_NORMAL)
1536                 show_thread_status_normal(ts, rs,  out);
1537
1538         return ret;
1539 }
1540
1541 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1542 {
1543         double mean, S;
1544
1545         dst->min_val = min(dst->min_val, src->min_val);
1546         dst->max_val = max(dst->max_val, src->max_val);
1547
1548         /*
1549          * Compute new mean and S after the merge
1550          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1551          *  #Parallel_algorithm>
1552          */
1553         if (first) {
1554                 mean = src->mean.u.f;
1555                 S = src->S.u.f;
1556         } else {
1557                 double delta = src->mean.u.f - dst->mean.u.f;
1558
1559                 mean = ((src->mean.u.f * src->samples) +
1560                         (dst->mean.u.f * dst->samples)) /
1561                         (dst->samples + src->samples);
1562
1563                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1564                         (dst->samples * src->samples) /
1565                         (dst->samples + src->samples);
1566         }
1567
1568         dst->samples += src->samples;
1569         dst->mean.u.f = mean;
1570         dst->S.u.f = S;
1571
1572 }
1573
1574 /*
1575  * We sum two kinds of stats - one that is time based, in which case we
1576  * apply the proper summing technique, and then one that is iops/bw
1577  * numbers. For group_reporting, we should just add those up, not make
1578  * them the mean of everything.
1579  */
1580 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1581                      bool pure_sum)
1582 {
1583         if (src->samples == 0)
1584                 return;
1585
1586         if (!pure_sum) {
1587                 __sum_stat(dst, src, first);
1588                 return;
1589         }
1590
1591         if (first) {
1592                 dst->min_val = src->min_val;
1593                 dst->max_val = src->max_val;
1594                 dst->samples = src->samples;
1595                 dst->mean.u.f = src->mean.u.f;
1596                 dst->S.u.f = src->S.u.f;
1597         } else {
1598                 dst->min_val += src->min_val;
1599                 dst->max_val += src->max_val;
1600                 dst->samples += src->samples;
1601                 dst->mean.u.f += src->mean.u.f;
1602                 dst->S.u.f += src->S.u.f;
1603         }
1604 }
1605
1606 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1607 {
1608         int i;
1609
1610         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1611                 if (dst->max_run[i] < src->max_run[i])
1612                         dst->max_run[i] = src->max_run[i];
1613                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1614                         dst->min_run[i] = src->min_run[i];
1615                 if (dst->max_bw[i] < src->max_bw[i])
1616                         dst->max_bw[i] = src->max_bw[i];
1617                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1618                         dst->min_bw[i] = src->min_bw[i];
1619
1620                 dst->iobytes[i] += src->iobytes[i];
1621                 dst->agg[i] += src->agg[i];
1622         }
1623
1624         if (!dst->kb_base)
1625                 dst->kb_base = src->kb_base;
1626         if (!dst->unit_base)
1627                 dst->unit_base = src->unit_base;
1628         if (!dst->sig_figs)
1629                 dst->sig_figs = src->sig_figs;
1630 }
1631
1632 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1633                       bool first)
1634 {
1635         int l, k;
1636
1637         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1638                 if (!dst->unified_rw_rep) {
1639                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1640                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1641                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1642                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1643                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1644
1645                         dst->io_bytes[l] += src->io_bytes[l];
1646
1647                         if (dst->runtime[l] < src->runtime[l])
1648                                 dst->runtime[l] = src->runtime[l];
1649                 } else {
1650                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1651                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1652                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1653                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1654                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1655
1656                         dst->io_bytes[0] += src->io_bytes[l];
1657
1658                         if (dst->runtime[0] < src->runtime[l])
1659                                 dst->runtime[0] = src->runtime[l];
1660
1661                         /*
1662                          * We're summing to the same destination, so override
1663                          * 'first' after the first iteration of the loop
1664                          */
1665                         first = false;
1666                 }
1667         }
1668
1669         sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1670         dst->usr_time += src->usr_time;
1671         dst->sys_time += src->sys_time;
1672         dst->ctx += src->ctx;
1673         dst->majf += src->majf;
1674         dst->minf += src->minf;
1675
1676         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1677                 dst->io_u_map[k] += src->io_u_map[k];
1678                 dst->io_u_submit[k] += src->io_u_submit[k];
1679                 dst->io_u_complete[k] += src->io_u_complete[k];
1680         }
1681         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1682                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1683                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1684                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1685         }
1686         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1687                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1688
1689         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1690                 if (!dst->unified_rw_rep) {
1691                         dst->total_io_u[k] += src->total_io_u[k];
1692                         dst->short_io_u[k] += src->short_io_u[k];
1693                         dst->drop_io_u[k] += src->drop_io_u[k];
1694                 } else {
1695                         dst->total_io_u[0] += src->total_io_u[k];
1696                         dst->short_io_u[0] += src->short_io_u[k];
1697                         dst->drop_io_u[0] += src->drop_io_u[k];
1698                 }
1699         }
1700
1701         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1702
1703         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1704                 int m;
1705
1706                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1707                         if (!dst->unified_rw_rep)
1708                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1709                         else
1710                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1711                 }
1712         }
1713
1714         dst->total_run_time += src->total_run_time;
1715         dst->total_submit += src->total_submit;
1716         dst->total_complete += src->total_complete;
1717         dst->nr_zone_resets += src->nr_zone_resets;
1718         dst->cachehit += src->cachehit;
1719         dst->cachemiss += src->cachemiss;
1720 }
1721
1722 void init_group_run_stat(struct group_run_stats *gs)
1723 {
1724         int i;
1725         memset(gs, 0, sizeof(*gs));
1726
1727         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1728                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1729 }
1730
1731 void init_thread_stat(struct thread_stat *ts)
1732 {
1733         int j;
1734
1735         memset(ts, 0, sizeof(*ts));
1736
1737         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1738                 ts->lat_stat[j].min_val = -1UL;
1739                 ts->clat_stat[j].min_val = -1UL;
1740                 ts->slat_stat[j].min_val = -1UL;
1741                 ts->bw_stat[j].min_val = -1UL;
1742                 ts->iops_stat[j].min_val = -1UL;
1743         }
1744         ts->sync_stat.min_val = -1UL;
1745         ts->groupid = -1;
1746 }
1747
1748 void __show_run_stats(void)
1749 {
1750         struct group_run_stats *runstats, *rs;
1751         struct thread_data *td;
1752         struct thread_stat *threadstats, *ts;
1753         int i, j, k, nr_ts, last_ts, idx;
1754         bool kb_base_warned = false;
1755         bool unit_base_warned = false;
1756         struct json_object *root = NULL;
1757         struct json_array *array = NULL;
1758         struct buf_output output[FIO_OUTPUT_NR];
1759         struct flist_head **opt_lists;
1760
1761         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1762
1763         for (i = 0; i < groupid + 1; i++)
1764                 init_group_run_stat(&runstats[i]);
1765
1766         /*
1767          * find out how many threads stats we need. if group reporting isn't
1768          * enabled, it's one-per-td.
1769          */
1770         nr_ts = 0;
1771         last_ts = -1;
1772         for_each_td(td, i) {
1773                 if (!td->o.group_reporting) {
1774                         nr_ts++;
1775                         continue;
1776                 }
1777                 if (last_ts == td->groupid)
1778                         continue;
1779                 if (!td->o.stats)
1780                         continue;
1781
1782                 last_ts = td->groupid;
1783                 nr_ts++;
1784         }
1785
1786         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1787         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1788
1789         for (i = 0; i < nr_ts; i++) {
1790                 init_thread_stat(&threadstats[i]);
1791                 opt_lists[i] = NULL;
1792         }
1793
1794         j = 0;
1795         last_ts = -1;
1796         idx = 0;
1797         for_each_td(td, i) {
1798                 if (!td->o.stats)
1799                         continue;
1800                 if (idx && (!td->o.group_reporting ||
1801                     (td->o.group_reporting && last_ts != td->groupid))) {
1802                         idx = 0;
1803                         j++;
1804                 }
1805
1806                 last_ts = td->groupid;
1807
1808                 ts = &threadstats[j];
1809
1810                 ts->clat_percentiles = td->o.clat_percentiles;
1811                 ts->lat_percentiles = td->o.lat_percentiles;
1812                 ts->percentile_precision = td->o.percentile_precision;
1813                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1814                 opt_lists[j] = &td->opt_list;
1815
1816                 idx++;
1817                 ts->members++;
1818
1819                 if (ts->groupid == -1) {
1820                         /*
1821                          * These are per-group shared already
1822                          */
1823                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1824                         if (td->o.description)
1825                                 strncpy(ts->description, td->o.description,
1826                                                 FIO_JOBDESC_SIZE - 1);
1827                         else
1828                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1829
1830                         /*
1831                          * If multiple entries in this group, this is
1832                          * the first member.
1833                          */
1834                         ts->thread_number = td->thread_number;
1835                         ts->groupid = td->groupid;
1836
1837                         /*
1838                          * first pid in group, not very useful...
1839                          */
1840                         ts->pid = td->pid;
1841
1842                         ts->kb_base = td->o.kb_base;
1843                         ts->unit_base = td->o.unit_base;
1844                         ts->sig_figs = td->o.sig_figs;
1845                         ts->unified_rw_rep = td->o.unified_rw_rep;
1846                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1847                         log_info("fio: kb_base differs for jobs in group, using"
1848                                  " %u as the base\n", ts->kb_base);
1849                         kb_base_warned = true;
1850                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1851                         log_info("fio: unit_base differs for jobs in group, using"
1852                                  " %u as the base\n", ts->unit_base);
1853                         unit_base_warned = true;
1854                 }
1855
1856                 ts->continue_on_error = td->o.continue_on_error;
1857                 ts->total_err_count += td->total_err_count;
1858                 ts->first_error = td->first_error;
1859                 if (!ts->error) {
1860                         if (!td->error && td->o.continue_on_error &&
1861                             td->first_error) {
1862                                 ts->error = td->first_error;
1863                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1864                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1865                         } else  if (td->error) {
1866                                 ts->error = td->error;
1867                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1868                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1869                         }
1870                 }
1871
1872                 ts->latency_depth = td->latency_qd;
1873                 ts->latency_target = td->o.latency_target;
1874                 ts->latency_percentile = td->o.latency_percentile;
1875                 ts->latency_window = td->o.latency_window;
1876
1877                 ts->nr_block_infos = td->ts.nr_block_infos;
1878                 for (k = 0; k < ts->nr_block_infos; k++)
1879                         ts->block_infos[k] = td->ts.block_infos[k];
1880
1881                 sum_thread_stats(ts, &td->ts, idx == 1);
1882
1883                 if (td->o.ss_dur) {
1884                         ts->ss_state = td->ss.state;
1885                         ts->ss_dur = td->ss.dur;
1886                         ts->ss_head = td->ss.head;
1887                         ts->ss_bw_data = td->ss.bw_data;
1888                         ts->ss_iops_data = td->ss.iops_data;
1889                         ts->ss_limit.u.f = td->ss.limit;
1890                         ts->ss_slope.u.f = td->ss.slope;
1891                         ts->ss_deviation.u.f = td->ss.deviation;
1892                         ts->ss_criterion.u.f = td->ss.criterion;
1893                 }
1894                 else
1895                         ts->ss_dur = ts->ss_state = 0;
1896         }
1897
1898         for (i = 0; i < nr_ts; i++) {
1899                 unsigned long long bw;
1900
1901                 ts = &threadstats[i];
1902                 if (ts->groupid == -1)
1903                         continue;
1904                 rs = &runstats[ts->groupid];
1905                 rs->kb_base = ts->kb_base;
1906                 rs->unit_base = ts->unit_base;
1907                 rs->sig_figs = ts->sig_figs;
1908                 rs->unified_rw_rep += ts->unified_rw_rep;
1909
1910                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1911                         if (!ts->runtime[j])
1912                                 continue;
1913                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1914                                 rs->min_run[j] = ts->runtime[j];
1915                         if (ts->runtime[j] > rs->max_run[j])
1916                                 rs->max_run[j] = ts->runtime[j];
1917
1918                         bw = 0;
1919                         if (ts->runtime[j])
1920                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1921                         if (bw < rs->min_bw[j])
1922                                 rs->min_bw[j] = bw;
1923                         if (bw > rs->max_bw[j])
1924                                 rs->max_bw[j] = bw;
1925
1926                         rs->iobytes[j] += ts->io_bytes[j];
1927                 }
1928         }
1929
1930         for (i = 0; i < groupid + 1; i++) {
1931                 int ddir;
1932
1933                 rs = &runstats[i];
1934
1935                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1936                         if (rs->max_run[ddir])
1937                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1938                                                 rs->max_run[ddir];
1939                 }
1940         }
1941
1942         for (i = 0; i < FIO_OUTPUT_NR; i++)
1943                 buf_output_init(&output[i]);
1944
1945         /*
1946          * don't overwrite last signal output
1947          */
1948         if (output_format & FIO_OUTPUT_NORMAL)
1949                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1950         if (output_format & FIO_OUTPUT_JSON) {
1951                 struct thread_data *global;
1952                 char time_buf[32];
1953                 struct timeval now;
1954                 unsigned long long ms_since_epoch;
1955                 time_t tv_sec;
1956
1957                 gettimeofday(&now, NULL);
1958                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1959                                  (unsigned long long)(now.tv_usec) / 1000;
1960
1961                 tv_sec = now.tv_sec;
1962                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1963                 if (time_buf[strlen(time_buf) - 1] == '\n')
1964                         time_buf[strlen(time_buf) - 1] = '\0';
1965
1966                 root = json_create_object();
1967                 json_object_add_value_string(root, "fio version", fio_version_string);
1968                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1969                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1970                 json_object_add_value_string(root, "time", time_buf);
1971                 global = get_global_options();
1972                 json_add_job_opts(root, "global options", &global->opt_list);
1973                 array = json_create_array();
1974                 json_object_add_value_array(root, "jobs", array);
1975         }
1976
1977         if (is_backend)
1978                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1979
1980         for (i = 0; i < nr_ts; i++) {
1981                 ts = &threadstats[i];
1982                 rs = &runstats[ts->groupid];
1983
1984                 if (is_backend) {
1985                         fio_server_send_job_options(opt_lists[i], i);
1986                         fio_server_send_ts(ts, rs);
1987                 } else {
1988                         if (output_format & FIO_OUTPUT_TERSE)
1989                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1990                         if (output_format & FIO_OUTPUT_JSON) {
1991                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1992                                 json_array_add_value_object(array, tmp);
1993                         }
1994                         if (output_format & FIO_OUTPUT_NORMAL)
1995                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1996                 }
1997         }
1998         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1999                 /* disk util stats, if any */
2000                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2001
2002                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2003
2004                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2005                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2006                 json_free_object(root);
2007         }
2008
2009         for (i = 0; i < groupid + 1; i++) {
2010                 rs = &runstats[i];
2011
2012                 rs->groupid = i;
2013                 if (is_backend)
2014                         fio_server_send_gs(rs);
2015                 else if (output_format & FIO_OUTPUT_NORMAL)
2016                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2017         }
2018
2019         if (is_backend)
2020                 fio_server_send_du();
2021         else if (output_format & FIO_OUTPUT_NORMAL) {
2022                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2023                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2024         }
2025
2026         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2027                 struct buf_output *out = &output[i];
2028
2029                 log_info_buf(out->buf, out->buflen);
2030                 buf_output_free(out);
2031         }
2032
2033         fio_idle_prof_cleanup();
2034
2035         log_info_flush();
2036         free(runstats);
2037         free(threadstats);
2038         free(opt_lists);
2039 }
2040
2041 void __show_running_run_stats(void)
2042 {
2043         struct thread_data *td;
2044         unsigned long long *rt;
2045         struct timespec ts;
2046         int i;
2047
2048         fio_sem_down(stat_sem);
2049
2050         rt = malloc(thread_number * sizeof(unsigned long long));
2051         fio_gettime(&ts, NULL);
2052
2053         for_each_td(td, i) {
2054                 td->update_rusage = 1;
2055                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2056                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2057                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2058                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2059
2060                 rt[i] = mtime_since(&td->start, &ts);
2061                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2062                         td->ts.runtime[DDIR_READ] += rt[i];
2063                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2064                         td->ts.runtime[DDIR_WRITE] += rt[i];
2065                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2066                         td->ts.runtime[DDIR_TRIM] += rt[i];
2067         }
2068
2069         for_each_td(td, i) {
2070                 if (td->runstate >= TD_EXITED)
2071                         continue;
2072                 if (td->rusage_sem) {
2073                         td->update_rusage = 1;
2074                         fio_sem_down(td->rusage_sem);
2075                 }
2076                 td->update_rusage = 0;
2077         }
2078
2079         __show_run_stats();
2080
2081         for_each_td(td, i) {
2082                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2083                         td->ts.runtime[DDIR_READ] -= rt[i];
2084                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2085                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2086                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2087                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2088         }
2089
2090         free(rt);
2091         fio_sem_up(stat_sem);
2092 }
2093
2094 static bool status_interval_init;
2095 static struct timespec status_time;
2096 static bool status_file_disabled;
2097
2098 #define FIO_STATUS_FILE         "fio-dump-status"
2099
2100 static int check_status_file(void)
2101 {
2102         struct stat sb;
2103         const char *temp_dir;
2104         char fio_status_file_path[PATH_MAX];
2105
2106         if (status_file_disabled)
2107                 return 0;
2108
2109         temp_dir = getenv("TMPDIR");
2110         if (temp_dir == NULL) {
2111                 temp_dir = getenv("TEMP");
2112                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2113                         temp_dir = NULL;
2114         }
2115         if (temp_dir == NULL)
2116                 temp_dir = "/tmp";
2117
2118         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2119
2120         if (stat(fio_status_file_path, &sb))
2121                 return 0;
2122
2123         if (unlink(fio_status_file_path) < 0) {
2124                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2125                                                         strerror(errno));
2126                 log_err("fio: disabling status file updates\n");
2127                 status_file_disabled = true;
2128         }
2129
2130         return 1;
2131 }
2132
2133 void check_for_running_stats(void)
2134 {
2135         if (status_interval) {
2136                 if (!status_interval_init) {
2137                         fio_gettime(&status_time, NULL);
2138                         status_interval_init = true;
2139                 } else if (mtime_since_now(&status_time) >= status_interval) {
2140                         show_running_run_stats();
2141                         fio_gettime(&status_time, NULL);
2142                         return;
2143                 }
2144         }
2145         if (check_status_file()) {
2146                 show_running_run_stats();
2147                 return;
2148         }
2149 }
2150
2151 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2152 {
2153         double val = data;
2154         double delta;
2155
2156         if (data > is->max_val)
2157                 is->max_val = data;
2158         if (data < is->min_val)
2159                 is->min_val = data;
2160
2161         delta = val - is->mean.u.f;
2162         if (delta) {
2163                 is->mean.u.f += delta / (is->samples + 1.0);
2164                 is->S.u.f += delta * (val - is->mean.u.f);
2165         }
2166
2167         is->samples++;
2168 }
2169
2170 /*
2171  * Return a struct io_logs, which is added to the tail of the log
2172  * list for 'iolog'.
2173  */
2174 static struct io_logs *get_new_log(struct io_log *iolog)
2175 {
2176         size_t new_size, new_samples;
2177         struct io_logs *cur_log;
2178
2179         /*
2180          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2181          * forever
2182          */
2183         if (!iolog->cur_log_max)
2184                 new_samples = DEF_LOG_ENTRIES;
2185         else {
2186                 new_samples = iolog->cur_log_max * 2;
2187                 if (new_samples > MAX_LOG_ENTRIES)
2188                         new_samples = MAX_LOG_ENTRIES;
2189         }
2190
2191         new_size = new_samples * log_entry_sz(iolog);
2192
2193         cur_log = smalloc(sizeof(*cur_log));
2194         if (cur_log) {
2195                 INIT_FLIST_HEAD(&cur_log->list);
2196                 cur_log->log = malloc(new_size);
2197                 if (cur_log->log) {
2198                         cur_log->nr_samples = 0;
2199                         cur_log->max_samples = new_samples;
2200                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2201                         iolog->cur_log_max = new_samples;
2202                         return cur_log;
2203                 }
2204                 sfree(cur_log);
2205         }
2206
2207         return NULL;
2208 }
2209
2210 /*
2211  * Add and return a new log chunk, or return current log if big enough
2212  */
2213 static struct io_logs *regrow_log(struct io_log *iolog)
2214 {
2215         struct io_logs *cur_log;
2216         int i;
2217
2218         if (!iolog || iolog->disabled)
2219                 goto disable;
2220
2221         cur_log = iolog_cur_log(iolog);
2222         if (!cur_log) {
2223                 cur_log = get_new_log(iolog);
2224                 if (!cur_log)
2225                         return NULL;
2226         }
2227
2228         if (cur_log->nr_samples < cur_log->max_samples)
2229                 return cur_log;
2230
2231         /*
2232          * No room for a new sample. If we're compressing on the fly, flush
2233          * out the current chunk
2234          */
2235         if (iolog->log_gz) {
2236                 if (iolog_cur_flush(iolog, cur_log)) {
2237                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2238                         return NULL;
2239                 }
2240         }
2241
2242         /*
2243          * Get a new log array, and add to our list
2244          */
2245         cur_log = get_new_log(iolog);
2246         if (!cur_log) {
2247                 log_err("fio: failed extending iolog! Will stop logging.\n");
2248                 return NULL;
2249         }
2250
2251         if (!iolog->pending || !iolog->pending->nr_samples)
2252                 return cur_log;
2253
2254         /*
2255          * Flush pending items to new log
2256          */
2257         for (i = 0; i < iolog->pending->nr_samples; i++) {
2258                 struct io_sample *src, *dst;
2259
2260                 src = get_sample(iolog, iolog->pending, i);
2261                 dst = get_sample(iolog, cur_log, i);
2262                 memcpy(dst, src, log_entry_sz(iolog));
2263         }
2264         cur_log->nr_samples = iolog->pending->nr_samples;
2265
2266         iolog->pending->nr_samples = 0;
2267         return cur_log;
2268 disable:
2269         if (iolog)
2270                 iolog->disabled = true;
2271         return NULL;
2272 }
2273
2274 void regrow_logs(struct thread_data *td)
2275 {
2276         regrow_log(td->slat_log);
2277         regrow_log(td->clat_log);
2278         regrow_log(td->clat_hist_log);
2279         regrow_log(td->lat_log);
2280         regrow_log(td->bw_log);
2281         regrow_log(td->iops_log);
2282         td->flags &= ~TD_F_REGROW_LOGS;
2283 }
2284
2285 static struct io_logs *get_cur_log(struct io_log *iolog)
2286 {
2287         struct io_logs *cur_log;
2288
2289         cur_log = iolog_cur_log(iolog);
2290         if (!cur_log) {
2291                 cur_log = get_new_log(iolog);
2292                 if (!cur_log)
2293                         return NULL;
2294         }
2295
2296         if (cur_log->nr_samples < cur_log->max_samples)
2297                 return cur_log;
2298
2299         /*
2300          * Out of space. If we're in IO offload mode, or we're not doing
2301          * per unit logging (hence logging happens outside of the IO thread
2302          * as well), add a new log chunk inline. If we're doing inline
2303          * submissions, flag 'td' as needing a log regrow and we'll take
2304          * care of it on the submission side.
2305          */
2306         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2307             !per_unit_log(iolog))
2308                 return regrow_log(iolog);
2309
2310         if (iolog->td)
2311                 iolog->td->flags |= TD_F_REGROW_LOGS;
2312         if (iolog->pending)
2313                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2314         return iolog->pending;
2315 }
2316
2317 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2318                              enum fio_ddir ddir, unsigned long long bs,
2319                              unsigned long t, uint64_t offset)
2320 {
2321         struct io_logs *cur_log;
2322
2323         if (iolog->disabled)
2324                 return;
2325         if (flist_empty(&iolog->io_logs))
2326                 iolog->avg_last[ddir] = t;
2327
2328         cur_log = get_cur_log(iolog);
2329         if (cur_log) {
2330                 struct io_sample *s;
2331
2332                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2333
2334                 s->data = data;
2335                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2336                 io_sample_set_ddir(iolog, s, ddir);
2337                 s->bs = bs;
2338
2339                 if (iolog->log_offset) {
2340                         struct io_sample_offset *so = (void *) s;
2341
2342                         so->offset = offset;
2343                 }
2344
2345                 cur_log->nr_samples++;
2346                 return;
2347         }
2348
2349         iolog->disabled = true;
2350 }
2351
2352 static inline void reset_io_stat(struct io_stat *ios)
2353 {
2354         ios->min_val = -1ULL;
2355         ios->max_val = ios->samples = 0;
2356         ios->mean.u.f = ios->S.u.f = 0;
2357 }
2358
2359 void reset_io_stats(struct thread_data *td)
2360 {
2361         struct thread_stat *ts = &td->ts;
2362         int i, j;
2363
2364         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2365                 reset_io_stat(&ts->clat_stat[i]);
2366                 reset_io_stat(&ts->slat_stat[i]);
2367                 reset_io_stat(&ts->lat_stat[i]);
2368                 reset_io_stat(&ts->bw_stat[i]);
2369                 reset_io_stat(&ts->iops_stat[i]);
2370
2371                 ts->io_bytes[i] = 0;
2372                 ts->runtime[i] = 0;
2373                 ts->total_io_u[i] = 0;
2374                 ts->short_io_u[i] = 0;
2375                 ts->drop_io_u[i] = 0;
2376
2377                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2378                         ts->io_u_plat[i][j] = 0;
2379                         if (!i)
2380                                 ts->io_u_sync_plat[j] = 0;
2381                 }
2382         }
2383
2384         ts->total_io_u[DDIR_SYNC] = 0;
2385
2386         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2387                 ts->io_u_map[i] = 0;
2388                 ts->io_u_submit[i] = 0;
2389                 ts->io_u_complete[i] = 0;
2390         }
2391
2392         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2393                 ts->io_u_lat_n[i] = 0;
2394         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2395                 ts->io_u_lat_u[i] = 0;
2396         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2397                 ts->io_u_lat_m[i] = 0;
2398
2399         ts->total_submit = 0;
2400         ts->total_complete = 0;
2401         ts->nr_zone_resets = 0;
2402         ts->cachehit = ts->cachemiss = 0;
2403 }
2404
2405 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2406                               unsigned long elapsed, bool log_max)
2407 {
2408         /*
2409          * Note an entry in the log. Use the mean from the logged samples,
2410          * making sure to properly round up. Only write a log entry if we
2411          * had actual samples done.
2412          */
2413         if (iolog->avg_window[ddir].samples) {
2414                 union io_sample_data data;
2415
2416                 if (log_max)
2417                         data.val = iolog->avg_window[ddir].max_val;
2418                 else
2419                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2420
2421                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2422         }
2423
2424         reset_io_stat(&iolog->avg_window[ddir]);
2425 }
2426
2427 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2428                              bool log_max)
2429 {
2430         int ddir;
2431
2432         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2433                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2434 }
2435
2436 static unsigned long add_log_sample(struct thread_data *td,
2437                                     struct io_log *iolog,
2438                                     union io_sample_data data,
2439                                     enum fio_ddir ddir, unsigned long long bs,
2440                                     uint64_t offset)
2441 {
2442         unsigned long elapsed, this_window;
2443
2444         if (!ddir_rw(ddir))
2445                 return 0;
2446
2447         elapsed = mtime_since_now(&td->epoch);
2448
2449         /*
2450          * If no time averaging, just add the log sample.
2451          */
2452         if (!iolog->avg_msec) {
2453                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2454                 return 0;
2455         }
2456
2457         /*
2458          * Add the sample. If the time period has passed, then
2459          * add that entry to the log and clear.
2460          */
2461         add_stat_sample(&iolog->avg_window[ddir], data.val);
2462
2463         /*
2464          * If period hasn't passed, adding the above sample is all we
2465          * need to do.
2466          */
2467         this_window = elapsed - iolog->avg_last[ddir];
2468         if (elapsed < iolog->avg_last[ddir])
2469                 return iolog->avg_last[ddir] - elapsed;
2470         else if (this_window < iolog->avg_msec) {
2471                 unsigned long diff = iolog->avg_msec - this_window;
2472
2473                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2474                         return diff;
2475         }
2476
2477         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2478
2479         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2480         return iolog->avg_msec;
2481 }
2482
2483 void finalize_logs(struct thread_data *td, bool unit_logs)
2484 {
2485         unsigned long elapsed;
2486
2487         elapsed = mtime_since_now(&td->epoch);
2488
2489         if (td->clat_log && unit_logs)
2490                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2491         if (td->slat_log && unit_logs)
2492                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2493         if (td->lat_log && unit_logs)
2494                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2495         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2496                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2497         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2498                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2499 }
2500
2501 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2502 {
2503         struct io_log *iolog;
2504
2505         if (!ddir_rw(ddir))
2506                 return;
2507
2508         iolog = agg_io_log[ddir];
2509         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2510 }
2511
2512 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2513 {
2514         unsigned int idx = plat_val_to_idx(nsec);
2515         assert(idx < FIO_IO_U_PLAT_NR);
2516
2517         ts->io_u_sync_plat[idx]++;
2518         add_stat_sample(&ts->sync_stat, nsec);
2519 }
2520
2521 static void add_clat_percentile_sample(struct thread_stat *ts,
2522                                 unsigned long long nsec, enum fio_ddir ddir)
2523 {
2524         unsigned int idx = plat_val_to_idx(nsec);
2525         assert(idx < FIO_IO_U_PLAT_NR);
2526
2527         ts->io_u_plat[ddir][idx]++;
2528 }
2529
2530 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2531                      unsigned long long nsec, unsigned long long bs,
2532                      uint64_t offset)
2533 {
2534         const bool needs_lock = td_async_processing(td);
2535         unsigned long elapsed, this_window;
2536         struct thread_stat *ts = &td->ts;
2537         struct io_log *iolog = td->clat_hist_log;
2538
2539         if (needs_lock)
2540                 __td_io_u_lock(td);
2541
2542         add_stat_sample(&ts->clat_stat[ddir], nsec);
2543
2544         if (td->clat_log)
2545                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2546                                offset);
2547
2548         if (ts->clat_percentiles)
2549                 add_clat_percentile_sample(ts, nsec, ddir);
2550
2551         if (iolog && iolog->hist_msec) {
2552                 struct io_hist *hw = &iolog->hist_window[ddir];
2553
2554                 hw->samples++;
2555                 elapsed = mtime_since_now(&td->epoch);
2556                 if (!hw->hist_last)
2557                         hw->hist_last = elapsed;
2558                 this_window = elapsed - hw->hist_last;
2559                 
2560                 if (this_window >= iolog->hist_msec) {
2561                         uint64_t *io_u_plat;
2562                         struct io_u_plat_entry *dst;
2563
2564                         /*
2565                          * Make a byte-for-byte copy of the latency histogram
2566                          * stored in td->ts.io_u_plat[ddir], recording it in a
2567                          * log sample. Note that the matching call to free() is
2568                          * located in iolog.c after printing this sample to the
2569                          * log file.
2570                          */
2571                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2572                         dst = malloc(sizeof(struct io_u_plat_entry));
2573                         memcpy(&(dst->io_u_plat), io_u_plat,
2574                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2575                         flist_add(&dst->list, &hw->list);
2576                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2577                                                 elapsed, offset);
2578
2579                         /*
2580                          * Update the last time we recorded as being now, minus
2581                          * any drift in time we encountered before actually
2582                          * making the record.
2583                          */
2584                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2585                         hw->samples = 0;
2586                 }
2587         }
2588
2589         if (needs_lock)
2590                 __td_io_u_unlock(td);
2591 }
2592
2593 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2594                      unsigned long usec, unsigned long long bs, uint64_t offset)
2595 {
2596         const bool needs_lock = td_async_processing(td);
2597         struct thread_stat *ts = &td->ts;
2598
2599         if (!ddir_rw(ddir))
2600                 return;
2601
2602         if (needs_lock)
2603                 __td_io_u_lock(td);
2604
2605         add_stat_sample(&ts->slat_stat[ddir], usec);
2606
2607         if (td->slat_log)
2608                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2609
2610         if (needs_lock)
2611                 __td_io_u_unlock(td);
2612 }
2613
2614 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2615                     unsigned long long nsec, unsigned long long bs,
2616                     uint64_t offset)
2617 {
2618         const bool needs_lock = td_async_processing(td);
2619         struct thread_stat *ts = &td->ts;
2620
2621         if (!ddir_rw(ddir))
2622                 return;
2623
2624         if (needs_lock)
2625                 __td_io_u_lock(td);
2626
2627         add_stat_sample(&ts->lat_stat[ddir], nsec);
2628
2629         if (td->lat_log)
2630                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2631                                offset);
2632
2633         if (ts->lat_percentiles)
2634                 add_clat_percentile_sample(ts, nsec, ddir);
2635
2636         if (needs_lock)
2637                 __td_io_u_unlock(td);
2638 }
2639
2640 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2641                    unsigned int bytes, unsigned long long spent)
2642 {
2643         const bool needs_lock = td_async_processing(td);
2644         struct thread_stat *ts = &td->ts;
2645         unsigned long rate;
2646
2647         if (spent)
2648                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2649         else
2650                 rate = 0;
2651
2652         if (needs_lock)
2653                 __td_io_u_lock(td);
2654
2655         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2656
2657         if (td->bw_log)
2658                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2659                                bytes, io_u->offset);
2660
2661         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2662
2663         if (needs_lock)
2664                 __td_io_u_unlock(td);
2665 }
2666
2667 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2668                          struct timespec *t, unsigned int avg_time,
2669                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2670                          struct io_stat *stat, struct io_log *log,
2671                          bool is_kb)
2672 {
2673         const bool needs_lock = td_async_processing(td);
2674         unsigned long spent, rate;
2675         enum fio_ddir ddir;
2676         unsigned long next, next_log;
2677
2678         next_log = avg_time;
2679
2680         spent = mtime_since(parent_tv, t);
2681         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2682                 return avg_time - spent;
2683
2684         if (needs_lock)
2685                 __td_io_u_lock(td);
2686
2687         /*
2688          * Compute both read and write rates for the interval.
2689          */
2690         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2691                 uint64_t delta;
2692
2693                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2694                 if (!delta)
2695                         continue; /* No entries for interval */
2696
2697                 if (spent) {
2698                         if (is_kb)
2699                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2700                         else
2701                                 rate = (delta * 1000) / spent;
2702                 } else
2703                         rate = 0;
2704
2705                 add_stat_sample(&stat[ddir], rate);
2706
2707                 if (log) {
2708                         unsigned long long bs = 0;
2709
2710                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2711                                 bs = td->o.min_bs[ddir];
2712
2713                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2714                         next_log = min(next_log, next);
2715                 }
2716
2717                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2718         }
2719
2720         timespec_add_msec(parent_tv, avg_time);
2721
2722         if (needs_lock)
2723                 __td_io_u_unlock(td);
2724
2725         if (spent <= avg_time)
2726                 next = avg_time;
2727         else
2728                 next = avg_time - (1 + spent - avg_time);
2729
2730         return min(next, next_log);
2731 }
2732
2733 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2734 {
2735         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2736                                 td->this_io_bytes, td->stat_io_bytes,
2737                                 td->ts.bw_stat, td->bw_log, true);
2738 }
2739
2740 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2741                      unsigned int bytes)
2742 {
2743         const bool needs_lock = td_async_processing(td);
2744         struct thread_stat *ts = &td->ts;
2745
2746         if (needs_lock)
2747                 __td_io_u_lock(td);
2748
2749         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2750
2751         if (td->iops_log)
2752                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2753                                bytes, io_u->offset);
2754
2755         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2756
2757         if (needs_lock)
2758                 __td_io_u_unlock(td);
2759 }
2760
2761 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2762 {
2763         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2764                                 td->this_io_blocks, td->stat_io_blocks,
2765                                 td->ts.iops_stat, td->iops_log, false);
2766 }
2767
2768 /*
2769  * Returns msecs to next event
2770  */
2771 int calc_log_samples(void)
2772 {
2773         struct thread_data *td;
2774         unsigned int next = ~0U, tmp;
2775         struct timespec now;
2776         int i;
2777
2778         fio_gettime(&now, NULL);
2779
2780         for_each_td(td, i) {
2781                 if (!td->o.stats)
2782                         continue;
2783                 if (in_ramp_time(td) ||
2784                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2785                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2786                         continue;
2787                 }
2788                 if (!td->bw_log ||
2789                         (td->bw_log && !per_unit_log(td->bw_log))) {
2790                         tmp = add_bw_samples(td, &now);
2791                         if (tmp < next)
2792                                 next = tmp;
2793                 }
2794                 if (!td->iops_log ||
2795                         (td->iops_log && !per_unit_log(td->iops_log))) {
2796                         tmp = add_iops_samples(td, &now);
2797                         if (tmp < next)
2798                                 next = tmp;
2799                 }
2800         }
2801
2802         return next == ~0U ? 0 : next;
2803 }
2804
2805 void stat_init(void)
2806 {
2807         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2808 }
2809
2810 void stat_exit(void)
2811 {
2812         /*
2813          * When we have the mutex, we know out-of-band access to it
2814          * have ended.
2815          */
2816         fio_sem_down(stat_sem);
2817         fio_sem_remove(stat_sem);
2818 }
2819
2820 /*
2821  * Called from signal handler. Wake up status thread.
2822  */
2823 void show_running_run_stats(void)
2824 {
2825         helper_do_stat();
2826 }
2827
2828 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2829 {
2830         /* Ignore io_u's which span multiple blocks--they will just get
2831          * inaccurate counts. */
2832         int idx = (io_u->offset - io_u->file->file_offset)
2833                         / td->o.bs[DDIR_TRIM];
2834         uint32_t *info = &td->ts.block_infos[idx];
2835         assert(idx < td->ts.nr_block_infos);
2836         return info;
2837 }