Silence Cygwin warning "'vsprintf_s' redeclared without dllimport..."
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned int val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned int plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned int **output,
139                                    unsigned int *maxv, unsigned int *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned int *ovals = NULL;
145         int is_last;
146
147         *minv = -1U;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int len, j = 0, minv, maxv;
205         unsigned int *ovals;
206         int is_last, per_line, scale_down;
207         char fmt[32];
208
209         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210         if (!len)
211                 goto out;
212
213         /*
214          * We default to usecs, but if the value range is such that we
215          * should scale down to msecs, do that.
216          */
217         if (minv > 2000 && maxv > 99999) {
218                 scale_down = 1;
219                 log_buf(out, "    clat percentiles (msec):\n     |");
220         } else {
221                 scale_down = 0;
222                 log_buf(out, "    clat percentiles (usec):\n     |");
223         }
224
225         snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226         per_line = (80 - 7) / (precision + 14);
227
228         for (j = 0; j < len; j++) {
229                 char fbuf[16], *ptr = fbuf;
230
231                 /* for formatting */
232                 if (j != 0 && (j % per_line) == 0)
233                         log_buf(out, "     |");
234
235                 /* end of the list */
236                 is_last = (j == len - 1);
237
238                 if (plist[j].u.f < 10.0)
239                         ptr += sprintf(fbuf, " ");
240
241                 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243                 if (scale_down)
244                         ovals[j] = (ovals[j] + 999) / 1000;
245
246                 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248                 if (is_last)
249                         break;
250
251                 if ((j % per_line) == per_line - 1)     /* for formatting */
252                         log_buf(out, "\n");
253         }
254
255 out:
256         if (ovals)
257                 free(ovals);
258 }
259
260 bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261               double *mean, double *dev)
262 {
263         double n = (double) is->samples;
264
265         if (n == 0)
266                 return false;
267
268         *min = is->min_val;
269         *max = is->max_val;
270         *mean = is->mean.u.f;
271
272         if (n > 1.0)
273                 *dev = sqrt(is->S.u.f / (n - 1.0));
274         else
275                 *dev = 0;
276
277         return true;
278 }
279
280 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281 {
282         char *io, *agg, *min, *max;
283         char *ioalt, *aggalt, *minalt, *maxalt;
284         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
285         int i;
286
287         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
288
289         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
290                 const int i2p = is_power_of_2(rs->kb_base);
291
292                 if (!rs->max_run[i])
293                         continue;
294
295                 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
296                 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
297                 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
298                 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
299                 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
300                 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
301                 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
302                 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
303                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
304                                 rs->unified_rw_rep ? "  MIXED" : str[i],
305                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
306                                 (unsigned long long) rs->min_run[i],
307                                 (unsigned long long) rs->max_run[i]);
308
309                 free(io);
310                 free(agg);
311                 free(min);
312                 free(max);
313                 free(ioalt);
314                 free(aggalt);
315                 free(minalt);
316                 free(maxalt);
317         }
318 }
319
320 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
321 {
322         int i;
323
324         /*
325          * Do depth distribution calculations
326          */
327         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
328                 if (total) {
329                         io_u_dist[i] = (double) map[i] / (double) total;
330                         io_u_dist[i] *= 100.0;
331                         if (io_u_dist[i] < 0.1 && map[i])
332                                 io_u_dist[i] = 0.1;
333                 } else
334                         io_u_dist[i] = 0.0;
335         }
336 }
337
338 static void stat_calc_lat(struct thread_stat *ts, double *dst,
339                           unsigned int *src, int nr)
340 {
341         unsigned long total = ddir_rw_sum(ts->total_io_u);
342         int i;
343
344         /*
345          * Do latency distribution calculations
346          */
347         for (i = 0; i < nr; i++) {
348                 if (total) {
349                         dst[i] = (double) src[i] / (double) total;
350                         dst[i] *= 100.0;
351                         if (dst[i] < 0.01 && src[i])
352                                 dst[i] = 0.01;
353                 } else
354                         dst[i] = 0.0;
355         }
356 }
357
358 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
359 {
360         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
361 }
362
363 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
364 {
365         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
366 }
367
368 static void display_lat(const char *name, unsigned long min, unsigned long max,
369                         double mean, double dev, struct buf_output *out)
370 {
371         const char *base = "(usec)";
372         char *minp, *maxp;
373
374         if (usec_to_msec(&min, &max, &mean, &dev))
375                 base = "(msec)";
376
377         minp = num2str(min, 6, 1, 0, N2S_NONE);
378         maxp = num2str(max, 6, 1, 0, N2S_NONE);
379
380         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
381                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
382
383         free(minp);
384         free(maxp);
385 }
386
387 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
388                              int ddir, struct buf_output *out)
389 {
390         const char *str[] = { " read", "write", " trim" };
391         unsigned long min, max, runt;
392         unsigned long long bw, iops;
393         double mean, dev;
394         char *io_p, *bw_p, *bw_p_alt, *iops_p;
395         int i2p;
396
397         assert(ddir_rw(ddir));
398
399         if (!ts->runtime[ddir])
400                 return;
401
402         i2p = is_power_of_2(rs->kb_base);
403         runt = ts->runtime[ddir];
404
405         bw = (1000 * ts->io_bytes[ddir]) / runt;
406         io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
407         bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
408         bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
409
410         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
411         iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
412
413         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
414                         rs->unified_rw_rep ? "mixed" : str[ddir],
415                         iops_p, bw_p, bw_p_alt, io_p,
416                         (unsigned long long) ts->runtime[ddir]);
417
418         free(io_p);
419         free(bw_p);
420         free(bw_p_alt);
421         free(iops_p);
422
423         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
424                 display_lat("slat", min, max, mean, dev, out);
425         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
426                 display_lat("clat", min, max, mean, dev, out);
427         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
428                 display_lat(" lat", min, max, mean, dev, out);
429
430         if (ts->clat_percentiles) {
431                 show_clat_percentiles(ts->io_u_plat[ddir],
432                                         ts->clat_stat[ddir].samples,
433                                         ts->percentile_list,
434                                         ts->percentile_precision, out);
435         }
436         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
437                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
438                 const char *bw_str;
439
440                 if ((rs->unit_base == 1) && i2p)
441                         bw_str = "Kibit";
442                 else if (rs->unit_base == 1)
443                         bw_str = "kbit";
444                 else if (i2p)
445                         bw_str = "KiB";
446                 else
447                         bw_str = "kB";
448
449                 if (rs->unit_base == 1) {
450                         min *= 8.0;
451                         max *= 8.0;
452                         mean *= 8.0;
453                         dev *= 8.0;
454                 }
455
456                 if (rs->agg[ddir]) {
457                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
458                         if (p_of_agg > 100.0)
459                                 p_of_agg = 100.0;
460                 }
461
462                 if (mean > fkb_base * fkb_base) {
463                         min /= fkb_base;
464                         max /= fkb_base;
465                         mean /= fkb_base;
466                         dev /= fkb_base;
467                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
468                 }
469
470                 log_buf(out, "   bw (%5s/s): min=%5lu, max=%5lu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
471                         bw_str, min, max, p_of_agg, mean, dev);
472         }
473 }
474
475 static int show_lat(double *io_u_lat, int nr, const char **ranges,
476                     const char *msg, struct buf_output *out)
477 {
478         int new_line = 1, i, line = 0, shown = 0;
479
480         for (i = 0; i < nr; i++) {
481                 if (io_u_lat[i] <= 0.0)
482                         continue;
483                 shown = 1;
484                 if (new_line) {
485                         if (line)
486                                 log_buf(out, "\n");
487                         log_buf(out, "    lat (%s) : ", msg);
488                         new_line = 0;
489                         line = 0;
490                 }
491                 if (line)
492                         log_buf(out, ", ");
493                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
494                 line++;
495                 if (line == 5)
496                         new_line = 1;
497         }
498
499         if (shown)
500                 log_buf(out, "\n");
501
502         return shown;
503 }
504
505 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
506 {
507         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
508                                  "250=", "500=", "750=", "1000=", };
509
510         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
511 }
512
513 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
514 {
515         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
516                                  "250=", "500=", "750=", "1000=", "2000=",
517                                  ">=2000=", };
518
519         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
520 }
521
522 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
523 {
524         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
525         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
526
527         stat_calc_lat_u(ts, io_u_lat_u);
528         stat_calc_lat_m(ts, io_u_lat_m);
529
530         show_lat_u(io_u_lat_u, out);
531         show_lat_m(io_u_lat_m, out);
532 }
533
534 static int block_state_category(int block_state)
535 {
536         switch (block_state) {
537         case BLOCK_STATE_UNINIT:
538                 return 0;
539         case BLOCK_STATE_TRIMMED:
540         case BLOCK_STATE_WRITTEN:
541                 return 1;
542         case BLOCK_STATE_WRITE_FAILURE:
543         case BLOCK_STATE_TRIM_FAILURE:
544                 return 2;
545         default:
546                 /* Silence compile warning on some BSDs and have a return */
547                 assert(0);
548                 return -1;
549         }
550 }
551
552 static int compare_block_infos(const void *bs1, const void *bs2)
553 {
554         uint32_t block1 = *(uint32_t *)bs1;
555         uint32_t block2 = *(uint32_t *)bs2;
556         int state1 = BLOCK_INFO_STATE(block1);
557         int state2 = BLOCK_INFO_STATE(block2);
558         int bscat1 = block_state_category(state1);
559         int bscat2 = block_state_category(state2);
560         int cycles1 = BLOCK_INFO_TRIMS(block1);
561         int cycles2 = BLOCK_INFO_TRIMS(block2);
562
563         if (bscat1 < bscat2)
564                 return -1;
565         if (bscat1 > bscat2)
566                 return 1;
567
568         if (cycles1 < cycles2)
569                 return -1;
570         if (cycles1 > cycles2)
571                 return 1;
572
573         if (state1 < state2)
574                 return -1;
575         if (state1 > state2)
576                 return 1;
577
578         assert(block1 == block2);
579         return 0;
580 }
581
582 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
583                                   fio_fp64_t *plist, unsigned int **percentiles,
584                                   unsigned int *types)
585 {
586         int len = 0;
587         int i, nr_uninit;
588
589         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
590
591         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
592                 len++;
593
594         if (!len)
595                 return 0;
596
597         /*
598          * Sort the percentile list. Note that it may already be sorted if
599          * we are using the default values, but since it's a short list this
600          * isn't a worry. Also note that this does not work for NaN values.
601          */
602         if (len > 1)
603                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
604
605         nr_uninit = 0;
606         /* Start only after the uninit entries end */
607         for (nr_uninit = 0;
608              nr_uninit < nr_block_infos
609                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
610              nr_uninit ++)
611                 ;
612
613         if (nr_uninit == nr_block_infos)
614                 return 0;
615
616         *percentiles = calloc(len, sizeof(**percentiles));
617
618         for (i = 0; i < len; i++) {
619                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
620                                 + nr_uninit;
621                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
622         }
623
624         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
625         for (i = 0; i < nr_block_infos; i++)
626                 types[BLOCK_INFO_STATE(block_infos[i])]++;
627
628         return len;
629 }
630
631 static const char *block_state_names[] = {
632         [BLOCK_STATE_UNINIT] = "unwritten",
633         [BLOCK_STATE_TRIMMED] = "trimmed",
634         [BLOCK_STATE_WRITTEN] = "written",
635         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
636         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
637 };
638
639 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
640                              fio_fp64_t *plist, struct buf_output *out)
641 {
642         int len, pos, i;
643         unsigned int *percentiles = NULL;
644         unsigned int block_state_counts[BLOCK_STATE_COUNT];
645
646         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
647                                      &percentiles, block_state_counts);
648
649         log_buf(out, "  block lifetime percentiles :\n   |");
650         pos = 0;
651         for (i = 0; i < len; i++) {
652                 uint32_t block_info = percentiles[i];
653 #define LINE_LENGTH     75
654                 char str[LINE_LENGTH];
655                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
656                                      plist[i].u.f, block_info,
657                                      i == len - 1 ? '\n' : ',');
658                 assert(strln < LINE_LENGTH);
659                 if (pos + strln > LINE_LENGTH) {
660                         pos = 0;
661                         log_buf(out, "\n   |");
662                 }
663                 log_buf(out, "%s", str);
664                 pos += strln;
665 #undef LINE_LENGTH
666         }
667         if (percentiles)
668                 free(percentiles);
669
670         log_buf(out, "        states               :");
671         for (i = 0; i < BLOCK_STATE_COUNT; i++)
672                 log_buf(out, " %s=%u%c",
673                          block_state_names[i], block_state_counts[i],
674                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
675 }
676
677 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
678 {
679         char *p1, *p1alt, *p2;
680         unsigned long long bw_mean, iops_mean;
681         const int i2p = is_power_of_2(ts->kb_base);
682
683         if (!ts->ss_dur)
684                 return;
685
686         bw_mean = steadystate_bw_mean(ts);
687         iops_mean = steadystate_iops_mean(ts);
688
689         p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
690         p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
691         p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
692
693         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
694                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
695                 p1, p1alt, p2,
696                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
697                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
698                 ts->ss_criterion.u.f,
699                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
700
701         free(p1);
702         free(p1alt);
703         free(p2);
704 }
705
706 static void show_thread_status_normal(struct thread_stat *ts,
707                                       struct group_run_stats *rs,
708                                       struct buf_output *out)
709 {
710         double usr_cpu, sys_cpu;
711         unsigned long runtime;
712         double io_u_dist[FIO_IO_U_MAP_NR];
713         time_t time_p;
714         char time_buf[32];
715
716         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
717                 return;
718                 
719         memset(time_buf, 0, sizeof(time_buf));
720
721         time(&time_p);
722         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
723
724         if (!ts->error) {
725                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
726                                         ts->name, ts->groupid, ts->members,
727                                         ts->error, (int) ts->pid, time_buf);
728         } else {
729                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
730                                         ts->name, ts->groupid, ts->members,
731                                         ts->error, ts->verror, (int) ts->pid,
732                                         time_buf);
733         }
734
735         if (strlen(ts->description))
736                 log_buf(out, "  Description  : [%s]\n", ts->description);
737
738         if (ts->io_bytes[DDIR_READ])
739                 show_ddir_status(rs, ts, DDIR_READ, out);
740         if (ts->io_bytes[DDIR_WRITE])
741                 show_ddir_status(rs, ts, DDIR_WRITE, out);
742         if (ts->io_bytes[DDIR_TRIM])
743                 show_ddir_status(rs, ts, DDIR_TRIM, out);
744
745         show_latencies(ts, out);
746
747         runtime = ts->total_run_time;
748         if (runtime) {
749                 double runt = (double) runtime;
750
751                 usr_cpu = (double) ts->usr_time * 100 / runt;
752                 sys_cpu = (double) ts->sys_time * 100 / runt;
753         } else {
754                 usr_cpu = 0;
755                 sys_cpu = 0;
756         }
757
758         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
759                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
760                         (unsigned long long) ts->ctx,
761                         (unsigned long long) ts->majf,
762                         (unsigned long long) ts->minf);
763
764         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
765         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
766                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
767                                         io_u_dist[1], io_u_dist[2],
768                                         io_u_dist[3], io_u_dist[4],
769                                         io_u_dist[5], io_u_dist[6]);
770
771         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
772         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
773                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
774                                         io_u_dist[1], io_u_dist[2],
775                                         io_u_dist[3], io_u_dist[4],
776                                         io_u_dist[5], io_u_dist[6]);
777         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
778         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
779                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
780                                         io_u_dist[1], io_u_dist[2],
781                                         io_u_dist[3], io_u_dist[4],
782                                         io_u_dist[5], io_u_dist[6]);
783         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
784                                  " short=%llu,%llu,%llu,"
785                                  " dropped=%llu,%llu,%llu\n",
786                                         (unsigned long long) ts->total_io_u[0],
787                                         (unsigned long long) ts->total_io_u[1],
788                                         (unsigned long long) ts->total_io_u[2],
789                                         (unsigned long long) ts->short_io_u[0],
790                                         (unsigned long long) ts->short_io_u[1],
791                                         (unsigned long long) ts->short_io_u[2],
792                                         (unsigned long long) ts->drop_io_u[0],
793                                         (unsigned long long) ts->drop_io_u[1],
794                                         (unsigned long long) ts->drop_io_u[2]);
795         if (ts->continue_on_error) {
796                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
797                                         (unsigned long long)ts->total_err_count,
798                                         ts->first_error,
799                                         strerror(ts->first_error));
800         }
801         if (ts->latency_depth) {
802                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
803                                         (unsigned long long)ts->latency_target,
804                                         (unsigned long long)ts->latency_window,
805                                         ts->latency_percentile.u.f,
806                                         ts->latency_depth);
807         }
808
809         if (ts->nr_block_infos)
810                 show_block_infos(ts->nr_block_infos, ts->block_infos,
811                                   ts->percentile_list, out);
812
813         if (ts->ss_dur)
814                 show_ss_normal(ts, out);
815 }
816
817 static void show_ddir_status_terse(struct thread_stat *ts,
818                                    struct group_run_stats *rs, int ddir,
819                                    struct buf_output *out)
820 {
821         unsigned long min, max;
822         unsigned long long bw, iops;
823         unsigned int *ovals = NULL;
824         double mean, dev;
825         unsigned int len, minv, maxv;
826         int i;
827
828         assert(ddir_rw(ddir));
829
830         iops = bw = 0;
831         if (ts->runtime[ddir]) {
832                 uint64_t runt = ts->runtime[ddir];
833
834                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
835                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
836         }
837
838         log_buf(out, ";%llu;%llu;%llu;%llu",
839                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
840                                         (unsigned long long) ts->runtime[ddir]);
841
842         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
843                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
844         else
845                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
846
847         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
848                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
849         else
850                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
851
852         if (ts->clat_percentiles) {
853                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
854                                         ts->clat_stat[ddir].samples,
855                                         ts->percentile_list, &ovals, &maxv,
856                                         &minv);
857         } else
858                 len = 0;
859
860         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
861                 if (i >= len) {
862                         log_buf(out, ";0%%=0");
863                         continue;
864                 }
865                 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
866         }
867
868         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
869                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
870         else
871                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
872
873         if (ovals)
874                 free(ovals);
875
876         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
877                 double p_of_agg = 100.0;
878
879                 if (rs->agg[ddir]) {
880                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
881                         if (p_of_agg > 100.0)
882                                 p_of_agg = 100.0;
883                 }
884
885                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
886         } else
887                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
888 }
889
890 static void add_ddir_status_json(struct thread_stat *ts,
891                 struct group_run_stats *rs, int ddir, struct json_object *parent)
892 {
893         unsigned long min, max;
894         unsigned long long bw;
895         unsigned int *ovals = NULL;
896         double mean, dev, iops;
897         unsigned int len, minv, maxv;
898         int i;
899         const char *ddirname[] = {"read", "write", "trim"};
900         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
901         char buf[120];
902         double p_of_agg = 100.0;
903
904         assert(ddir_rw(ddir));
905
906         if (ts->unified_rw_rep && ddir != DDIR_READ)
907                 return;
908
909         dir_object = json_create_object();
910         json_object_add_value_object(parent,
911                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
912
913         bw = 0;
914         iops = 0.0;
915         if (ts->runtime[ddir]) {
916                 uint64_t runt = ts->runtime[ddir];
917
918                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
919                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
920         }
921
922         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
923         json_object_add_value_int(dir_object, "bw", bw);
924         json_object_add_value_float(dir_object, "iops", iops);
925         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
926         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
927         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
928         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
929
930         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
931                 min = max = 0;
932                 mean = dev = 0.0;
933         }
934         tmp_object = json_create_object();
935         json_object_add_value_object(dir_object, "slat", tmp_object);
936         json_object_add_value_int(tmp_object, "min", min);
937         json_object_add_value_int(tmp_object, "max", max);
938         json_object_add_value_float(tmp_object, "mean", mean);
939         json_object_add_value_float(tmp_object, "stddev", dev);
940
941         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
942                 min = max = 0;
943                 mean = dev = 0.0;
944         }
945         tmp_object = json_create_object();
946         json_object_add_value_object(dir_object, "clat", tmp_object);
947         json_object_add_value_int(tmp_object, "min", min);
948         json_object_add_value_int(tmp_object, "max", max);
949         json_object_add_value_float(tmp_object, "mean", mean);
950         json_object_add_value_float(tmp_object, "stddev", dev);
951
952         if (ts->clat_percentiles) {
953                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
954                                         ts->clat_stat[ddir].samples,
955                                         ts->percentile_list, &ovals, &maxv,
956                                         &minv);
957         } else
958                 len = 0;
959
960         percentile_object = json_create_object();
961         json_object_add_value_object(tmp_object, "percentile", percentile_object);
962         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
963                 if (i >= len) {
964                         json_object_add_value_int(percentile_object, "0.00", 0);
965                         continue;
966                 }
967                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
968                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
969         }
970
971         if (output_format & FIO_OUTPUT_JSON_PLUS) {
972                 clat_bins_object = json_create_object();
973                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
974                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
975                         snprintf(buf, sizeof(buf), "%d", i);
976                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
977                 }
978                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
979                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
980                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
981         }
982
983         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
984                 min = max = 0;
985                 mean = dev = 0.0;
986         }
987         tmp_object = json_create_object();
988         json_object_add_value_object(dir_object, "lat", tmp_object);
989         json_object_add_value_int(tmp_object, "min", min);
990         json_object_add_value_int(tmp_object, "max", max);
991         json_object_add_value_float(tmp_object, "mean", mean);
992         json_object_add_value_float(tmp_object, "stddev", dev);
993         if (ovals)
994                 free(ovals);
995
996         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
997                 if (rs->agg[ddir]) {
998                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
999                         if (p_of_agg > 100.0)
1000                                 p_of_agg = 100.0;
1001                 }
1002         } else {
1003                 min = max = 0;
1004                 p_of_agg = mean = dev = 0.0;
1005         }
1006         json_object_add_value_int(dir_object, "bw_min", min);
1007         json_object_add_value_int(dir_object, "bw_max", max);
1008         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1009         json_object_add_value_float(dir_object, "bw_mean", mean);
1010         json_object_add_value_float(dir_object, "bw_dev", dev);
1011 }
1012
1013 static void show_thread_status_terse_v2(struct thread_stat *ts,
1014                                         struct group_run_stats *rs,
1015                                         struct buf_output *out)
1016 {
1017         double io_u_dist[FIO_IO_U_MAP_NR];
1018         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1019         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1020         double usr_cpu, sys_cpu;
1021         int i;
1022
1023         /* General Info */
1024         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1025         /* Log Read Status */
1026         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1027         /* Log Write Status */
1028         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1029         /* Log Trim Status */
1030         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1031
1032         /* CPU Usage */
1033         if (ts->total_run_time) {
1034                 double runt = (double) ts->total_run_time;
1035
1036                 usr_cpu = (double) ts->usr_time * 100 / runt;
1037                 sys_cpu = (double) ts->sys_time * 100 / runt;
1038         } else {
1039                 usr_cpu = 0;
1040                 sys_cpu = 0;
1041         }
1042
1043         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1044                                                 (unsigned long long) ts->ctx,
1045                                                 (unsigned long long) ts->majf,
1046                                                 (unsigned long long) ts->minf);
1047
1048         /* Calc % distribution of IO depths, usecond, msecond latency */
1049         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1050         stat_calc_lat_u(ts, io_u_lat_u);
1051         stat_calc_lat_m(ts, io_u_lat_m);
1052
1053         /* Only show fixed 7 I/O depth levels*/
1054         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1055                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1056                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1057
1058         /* Microsecond latency */
1059         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1060                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1061         /* Millisecond latency */
1062         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1063                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1064         /* Additional output if continue_on_error set - default off*/
1065         if (ts->continue_on_error)
1066                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1067         log_buf(out, "\n");
1068
1069         /* Additional output if description is set */
1070         if (strlen(ts->description))
1071                 log_buf(out, ";%s", ts->description);
1072
1073         log_buf(out, "\n");
1074 }
1075
1076 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1077                                            struct group_run_stats *rs, int ver,
1078                                            struct buf_output *out)
1079 {
1080         double io_u_dist[FIO_IO_U_MAP_NR];
1081         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1082         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1083         double usr_cpu, sys_cpu;
1084         int i;
1085
1086         /* General Info */
1087         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1088                                         ts->name, ts->groupid, ts->error);
1089         /* Log Read Status */
1090         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1091         /* Log Write Status */
1092         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1093         /* Log Trim Status */
1094         if (ver == 4)
1095                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1096
1097         /* CPU Usage */
1098         if (ts->total_run_time) {
1099                 double runt = (double) ts->total_run_time;
1100
1101                 usr_cpu = (double) ts->usr_time * 100 / runt;
1102                 sys_cpu = (double) ts->sys_time * 100 / runt;
1103         } else {
1104                 usr_cpu = 0;
1105                 sys_cpu = 0;
1106         }
1107
1108         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1109                                                 (unsigned long long) ts->ctx,
1110                                                 (unsigned long long) ts->majf,
1111                                                 (unsigned long long) ts->minf);
1112
1113         /* Calc % distribution of IO depths, usecond, msecond latency */
1114         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1115         stat_calc_lat_u(ts, io_u_lat_u);
1116         stat_calc_lat_m(ts, io_u_lat_m);
1117
1118         /* Only show fixed 7 I/O depth levels*/
1119         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1120                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1121                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1122
1123         /* Microsecond latency */
1124         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1125                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1126         /* Millisecond latency */
1127         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1128                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1129
1130         /* disk util stats, if any */
1131         show_disk_util(1, NULL, out);
1132
1133         /* Additional output if continue_on_error set - default off*/
1134         if (ts->continue_on_error)
1135                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1136
1137         /* Additional output if description is set */
1138         if (strlen(ts->description))
1139                 log_buf(out, ";%s", ts->description);
1140
1141         log_buf(out, "\n");
1142 }
1143
1144 static void json_add_job_opts(struct json_object *root, const char *name,
1145                               struct flist_head *opt_list, bool num_jobs)
1146 {
1147         struct json_object *dir_object;
1148         struct flist_head *entry;
1149         struct print_option *p;
1150
1151         if (flist_empty(opt_list))
1152                 return;
1153
1154         dir_object = json_create_object();
1155         json_object_add_value_object(root, name, dir_object);
1156
1157         flist_for_each(entry, opt_list) {
1158                 const char *pos = "";
1159
1160                 p = flist_entry(entry, struct print_option, list);
1161                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1162                         continue;
1163                 if (p->value)
1164                         pos = p->value;
1165                 json_object_add_value_string(dir_object, p->name, pos);
1166         }
1167 }
1168
1169 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1170                                                    struct group_run_stats *rs,
1171                                                    struct flist_head *opt_list)
1172 {
1173         struct json_object *root, *tmp;
1174         struct jobs_eta *je;
1175         double io_u_dist[FIO_IO_U_MAP_NR];
1176         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1177         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1178         double usr_cpu, sys_cpu;
1179         int i;
1180         size_t size;
1181
1182         root = json_create_object();
1183         json_object_add_value_string(root, "jobname", ts->name);
1184         json_object_add_value_int(root, "groupid", ts->groupid);
1185         json_object_add_value_int(root, "error", ts->error);
1186
1187         /* ETA Info */
1188         je = get_jobs_eta(true, &size);
1189         if (je) {
1190                 json_object_add_value_int(root, "eta", je->eta_sec);
1191                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1192         }
1193
1194         if (opt_list)
1195                 json_add_job_opts(root, "job options", opt_list, true);
1196
1197         add_ddir_status_json(ts, rs, DDIR_READ, root);
1198         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1199         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1200
1201         /* CPU Usage */
1202         if (ts->total_run_time) {
1203                 double runt = (double) ts->total_run_time;
1204
1205                 usr_cpu = (double) ts->usr_time * 100 / runt;
1206                 sys_cpu = (double) ts->sys_time * 100 / runt;
1207         } else {
1208                 usr_cpu = 0;
1209                 sys_cpu = 0;
1210         }
1211         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1212         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1213         json_object_add_value_int(root, "ctx", ts->ctx);
1214         json_object_add_value_int(root, "majf", ts->majf);
1215         json_object_add_value_int(root, "minf", ts->minf);
1216
1217
1218         /* Calc % distribution of IO depths, usecond, msecond latency */
1219         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1220         stat_calc_lat_u(ts, io_u_lat_u);
1221         stat_calc_lat_m(ts, io_u_lat_m);
1222
1223         tmp = json_create_object();
1224         json_object_add_value_object(root, "iodepth_level", tmp);
1225         /* Only show fixed 7 I/O depth levels*/
1226         for (i = 0; i < 7; i++) {
1227                 char name[20];
1228                 if (i < 6)
1229                         snprintf(name, 20, "%d", 1 << i);
1230                 else
1231                         snprintf(name, 20, ">=%d", 1 << i);
1232                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1233         }
1234
1235         tmp = json_create_object();
1236         json_object_add_value_object(root, "latency_us", tmp);
1237         /* Microsecond latency */
1238         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1239                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1240                                  "250", "500", "750", "1000", };
1241                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1242         }
1243         /* Millisecond latency */
1244         tmp = json_create_object();
1245         json_object_add_value_object(root, "latency_ms", tmp);
1246         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1247                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1248                                  "250", "500", "750", "1000", "2000",
1249                                  ">=2000", };
1250                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1251         }
1252
1253         /* Additional output if continue_on_error set - default off*/
1254         if (ts->continue_on_error) {
1255                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1256                 json_object_add_value_int(root, "first_error", ts->first_error);
1257         }
1258
1259         if (ts->latency_depth) {
1260                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1261                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1262                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1263                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1264         }
1265
1266         /* Additional output if description is set */
1267         if (strlen(ts->description))
1268                 json_object_add_value_string(root, "desc", ts->description);
1269
1270         if (ts->nr_block_infos) {
1271                 /* Block error histogram and types */
1272                 int len;
1273                 unsigned int *percentiles = NULL;
1274                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1275
1276                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1277                                              ts->percentile_list,
1278                                              &percentiles, block_state_counts);
1279
1280                 if (len) {
1281                         struct json_object *block, *percentile_object, *states;
1282                         int state;
1283                         block = json_create_object();
1284                         json_object_add_value_object(root, "block", block);
1285
1286                         percentile_object = json_create_object();
1287                         json_object_add_value_object(block, "percentiles",
1288                                                      percentile_object);
1289                         for (i = 0; i < len; i++) {
1290                                 char buf[20];
1291                                 snprintf(buf, sizeof(buf), "%f",
1292                                          ts->percentile_list[i].u.f);
1293                                 json_object_add_value_int(percentile_object,
1294                                                           (const char *)buf,
1295                                                           percentiles[i]);
1296                         }
1297
1298                         states = json_create_object();
1299                         json_object_add_value_object(block, "states", states);
1300                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1301                                 json_object_add_value_int(states,
1302                                         block_state_names[state],
1303                                         block_state_counts[state]);
1304                         }
1305                         free(percentiles);
1306                 }
1307         }
1308
1309         if (ts->ss_dur) {
1310                 struct json_object *data;
1311                 struct json_array *iops, *bw;
1312                 int i, j, k;
1313                 char ss_buf[64];
1314
1315                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1316                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1317                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1318                         (float) ts->ss_limit.u.f,
1319                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1320
1321                 tmp = json_create_object();
1322                 json_object_add_value_object(root, "steadystate", tmp);
1323                 json_object_add_value_string(tmp, "ss", ss_buf);
1324                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1325                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1326
1327                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1328                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1329                 json_object_add_value_string(tmp, "criterion", ss_buf);
1330                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1331                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1332
1333                 data = json_create_object();
1334                 json_object_add_value_object(tmp, "data", data);
1335                 bw = json_create_array();
1336                 iops = json_create_array();
1337
1338                 /*
1339                 ** if ss was attained or the buffer is not full,
1340                 ** ss->head points to the first element in the list.
1341                 ** otherwise it actually points to the second element
1342                 ** in the list
1343                 */
1344                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1345                         j = ts->ss_head;
1346                 else
1347                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1348                 for (i = 0; i < ts->ss_dur; i++) {
1349                         k = (j + i) % ts->ss_dur;
1350                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1351                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1352                 }
1353                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1354                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1355                 json_object_add_value_array(data, "iops", iops);
1356                 json_object_add_value_array(data, "bw", bw);
1357         }
1358
1359         return root;
1360 }
1361
1362 static void show_thread_status_terse(struct thread_stat *ts,
1363                                      struct group_run_stats *rs,
1364                                      struct buf_output *out)
1365 {
1366         if (terse_version == 2)
1367                 show_thread_status_terse_v2(ts, rs, out);
1368         else if (terse_version == 3 || terse_version == 4)
1369                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1370         else
1371                 log_err("fio: bad terse version!? %d\n", terse_version);
1372 }
1373
1374 struct json_object *show_thread_status(struct thread_stat *ts,
1375                                        struct group_run_stats *rs,
1376                                        struct flist_head *opt_list,
1377                                        struct buf_output *out)
1378 {
1379         struct json_object *ret = NULL;
1380
1381         if (output_format & FIO_OUTPUT_TERSE)
1382                 show_thread_status_terse(ts, rs,  out);
1383         if (output_format & FIO_OUTPUT_JSON)
1384                 ret = show_thread_status_json(ts, rs, opt_list);
1385         if (output_format & FIO_OUTPUT_NORMAL)
1386                 show_thread_status_normal(ts, rs,  out);
1387
1388         return ret;
1389 }
1390
1391 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1392 {
1393         double mean, S;
1394
1395         if (src->samples == 0)
1396                 return;
1397
1398         dst->min_val = min(dst->min_val, src->min_val);
1399         dst->max_val = max(dst->max_val, src->max_val);
1400
1401         /*
1402          * Compute new mean and S after the merge
1403          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1404          *  #Parallel_algorithm>
1405          */
1406         if (first) {
1407                 mean = src->mean.u.f;
1408                 S = src->S.u.f;
1409         } else {
1410                 double delta = src->mean.u.f - dst->mean.u.f;
1411
1412                 mean = ((src->mean.u.f * src->samples) +
1413                         (dst->mean.u.f * dst->samples)) /
1414                         (dst->samples + src->samples);
1415
1416                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1417                         (dst->samples * src->samples) /
1418                         (dst->samples + src->samples);
1419         }
1420
1421         dst->samples += src->samples;
1422         dst->mean.u.f = mean;
1423         dst->S.u.f = S;
1424 }
1425
1426 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1427 {
1428         int i;
1429
1430         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1431                 if (dst->max_run[i] < src->max_run[i])
1432                         dst->max_run[i] = src->max_run[i];
1433                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1434                         dst->min_run[i] = src->min_run[i];
1435                 if (dst->max_bw[i] < src->max_bw[i])
1436                         dst->max_bw[i] = src->max_bw[i];
1437                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1438                         dst->min_bw[i] = src->min_bw[i];
1439
1440                 dst->iobytes[i] += src->iobytes[i];
1441                 dst->agg[i] += src->agg[i];
1442         }
1443
1444         if (!dst->kb_base)
1445                 dst->kb_base = src->kb_base;
1446         if (!dst->unit_base)
1447                 dst->unit_base = src->unit_base;
1448 }
1449
1450 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1451                       bool first)
1452 {
1453         int l, k;
1454
1455         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1456                 if (!dst->unified_rw_rep) {
1457                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1458                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1459                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1460                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1461
1462                         dst->io_bytes[l] += src->io_bytes[l];
1463
1464                         if (dst->runtime[l] < src->runtime[l])
1465                                 dst->runtime[l] = src->runtime[l];
1466                 } else {
1467                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1468                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1469                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1470                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1471
1472                         dst->io_bytes[0] += src->io_bytes[l];
1473
1474                         if (dst->runtime[0] < src->runtime[l])
1475                                 dst->runtime[0] = src->runtime[l];
1476
1477                         /*
1478                          * We're summing to the same destination, so override
1479                          * 'first' after the first iteration of the loop
1480                          */
1481                         first = false;
1482                 }
1483         }
1484
1485         dst->usr_time += src->usr_time;
1486         dst->sys_time += src->sys_time;
1487         dst->ctx += src->ctx;
1488         dst->majf += src->majf;
1489         dst->minf += src->minf;
1490
1491         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1492                 dst->io_u_map[k] += src->io_u_map[k];
1493         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1494                 dst->io_u_submit[k] += src->io_u_submit[k];
1495         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1496                 dst->io_u_complete[k] += src->io_u_complete[k];
1497         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1498                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1499         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1500                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1501
1502         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1503                 if (!dst->unified_rw_rep) {
1504                         dst->total_io_u[k] += src->total_io_u[k];
1505                         dst->short_io_u[k] += src->short_io_u[k];
1506                         dst->drop_io_u[k] += src->drop_io_u[k];
1507                 } else {
1508                         dst->total_io_u[0] += src->total_io_u[k];
1509                         dst->short_io_u[0] += src->short_io_u[k];
1510                         dst->drop_io_u[0] += src->drop_io_u[k];
1511                 }
1512         }
1513
1514         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1515                 int m;
1516
1517                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1518                         if (!dst->unified_rw_rep)
1519                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1520                         else
1521                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1522                 }
1523         }
1524
1525         dst->total_run_time += src->total_run_time;
1526         dst->total_submit += src->total_submit;
1527         dst->total_complete += src->total_complete;
1528 }
1529
1530 void init_group_run_stat(struct group_run_stats *gs)
1531 {
1532         int i;
1533         memset(gs, 0, sizeof(*gs));
1534
1535         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1536                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1537 }
1538
1539 void init_thread_stat(struct thread_stat *ts)
1540 {
1541         int j;
1542
1543         memset(ts, 0, sizeof(*ts));
1544
1545         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1546                 ts->lat_stat[j].min_val = -1UL;
1547                 ts->clat_stat[j].min_val = -1UL;
1548                 ts->slat_stat[j].min_val = -1UL;
1549                 ts->bw_stat[j].min_val = -1UL;
1550         }
1551         ts->groupid = -1;
1552 }
1553
1554 void __show_run_stats(void)
1555 {
1556         struct group_run_stats *runstats, *rs;
1557         struct thread_data *td;
1558         struct thread_stat *threadstats, *ts;
1559         int i, j, k, nr_ts, last_ts, idx;
1560         int kb_base_warned = 0;
1561         int unit_base_warned = 0;
1562         struct json_object *root = NULL;
1563         struct json_array *array = NULL;
1564         struct buf_output output[FIO_OUTPUT_NR];
1565         struct flist_head **opt_lists;
1566
1567         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1568
1569         for (i = 0; i < groupid + 1; i++)
1570                 init_group_run_stat(&runstats[i]);
1571
1572         /*
1573          * find out how many threads stats we need. if group reporting isn't
1574          * enabled, it's one-per-td.
1575          */
1576         nr_ts = 0;
1577         last_ts = -1;
1578         for_each_td(td, i) {
1579                 if (!td->o.group_reporting) {
1580                         nr_ts++;
1581                         continue;
1582                 }
1583                 if (last_ts == td->groupid)
1584                         continue;
1585
1586                 last_ts = td->groupid;
1587                 nr_ts++;
1588         }
1589
1590         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1591         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1592
1593         for (i = 0; i < nr_ts; i++) {
1594                 init_thread_stat(&threadstats[i]);
1595                 opt_lists[i] = NULL;
1596         }
1597
1598         j = 0;
1599         last_ts = -1;
1600         idx = 0;
1601         for_each_td(td, i) {
1602                 if (idx && (!td->o.group_reporting ||
1603                     (td->o.group_reporting && last_ts != td->groupid))) {
1604                         idx = 0;
1605                         j++;
1606                 }
1607
1608                 last_ts = td->groupid;
1609
1610                 ts = &threadstats[j];
1611
1612                 ts->clat_percentiles = td->o.clat_percentiles;
1613                 ts->percentile_precision = td->o.percentile_precision;
1614                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1615                 opt_lists[j] = &td->opt_list;
1616
1617                 idx++;
1618                 ts->members++;
1619
1620                 if (ts->groupid == -1) {
1621                         /*
1622                          * These are per-group shared already
1623                          */
1624                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1625                         if (td->o.description)
1626                                 strncpy(ts->description, td->o.description,
1627                                                 FIO_JOBDESC_SIZE - 1);
1628                         else
1629                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1630
1631                         /*
1632                          * If multiple entries in this group, this is
1633                          * the first member.
1634                          */
1635                         ts->thread_number = td->thread_number;
1636                         ts->groupid = td->groupid;
1637
1638                         /*
1639                          * first pid in group, not very useful...
1640                          */
1641                         ts->pid = td->pid;
1642
1643                         ts->kb_base = td->o.kb_base;
1644                         ts->unit_base = td->o.unit_base;
1645                         ts->unified_rw_rep = td->o.unified_rw_rep;
1646                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1647                         log_info("fio: kb_base differs for jobs in group, using"
1648                                  " %u as the base\n", ts->kb_base);
1649                         kb_base_warned = 1;
1650                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1651                         log_info("fio: unit_base differs for jobs in group, using"
1652                                  " %u as the base\n", ts->unit_base);
1653                         unit_base_warned = 1;
1654                 }
1655
1656                 ts->continue_on_error = td->o.continue_on_error;
1657                 ts->total_err_count += td->total_err_count;
1658                 ts->first_error = td->first_error;
1659                 if (!ts->error) {
1660                         if (!td->error && td->o.continue_on_error &&
1661                             td->first_error) {
1662                                 ts->error = td->first_error;
1663                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1664                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1665                         } else  if (td->error) {
1666                                 ts->error = td->error;
1667                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1668                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1669                         }
1670                 }
1671
1672                 ts->latency_depth = td->latency_qd;
1673                 ts->latency_target = td->o.latency_target;
1674                 ts->latency_percentile = td->o.latency_percentile;
1675                 ts->latency_window = td->o.latency_window;
1676
1677                 ts->nr_block_infos = td->ts.nr_block_infos;
1678                 for (k = 0; k < ts->nr_block_infos; k++)
1679                         ts->block_infos[k] = td->ts.block_infos[k];
1680
1681                 sum_thread_stats(ts, &td->ts, idx == 1);
1682
1683                 if (td->o.ss_dur) {
1684                         ts->ss_state = td->ss.state;
1685                         ts->ss_dur = td->ss.dur;
1686                         ts->ss_head = td->ss.head;
1687                         ts->ss_bw_data = td->ss.bw_data;
1688                         ts->ss_iops_data = td->ss.iops_data;
1689                         ts->ss_limit.u.f = td->ss.limit;
1690                         ts->ss_slope.u.f = td->ss.slope;
1691                         ts->ss_deviation.u.f = td->ss.deviation;
1692                         ts->ss_criterion.u.f = td->ss.criterion;
1693                 }
1694                 else
1695                         ts->ss_dur = ts->ss_state = 0;
1696         }
1697
1698         for (i = 0; i < nr_ts; i++) {
1699                 unsigned long long bw;
1700
1701                 ts = &threadstats[i];
1702                 if (ts->groupid == -1)
1703                         continue;
1704                 rs = &runstats[ts->groupid];
1705                 rs->kb_base = ts->kb_base;
1706                 rs->unit_base = ts->unit_base;
1707                 rs->unified_rw_rep += ts->unified_rw_rep;
1708
1709                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1710                         if (!ts->runtime[j])
1711                                 continue;
1712                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1713                                 rs->min_run[j] = ts->runtime[j];
1714                         if (ts->runtime[j] > rs->max_run[j])
1715                                 rs->max_run[j] = ts->runtime[j];
1716
1717                         bw = 0;
1718                         if (ts->runtime[j])
1719                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1720                         if (bw < rs->min_bw[j])
1721                                 rs->min_bw[j] = bw;
1722                         if (bw > rs->max_bw[j])
1723                                 rs->max_bw[j] = bw;
1724
1725                         rs->iobytes[j] += ts->io_bytes[j];
1726                 }
1727         }
1728
1729         for (i = 0; i < groupid + 1; i++) {
1730                 int ddir;
1731
1732                 rs = &runstats[i];
1733
1734                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1735                         if (rs->max_run[ddir])
1736                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1737                                                 rs->max_run[ddir];
1738                 }
1739         }
1740
1741         for (i = 0; i < FIO_OUTPUT_NR; i++)
1742                 buf_output_init(&output[i]);
1743
1744         /*
1745          * don't overwrite last signal output
1746          */
1747         if (output_format & FIO_OUTPUT_NORMAL)
1748                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1749         if (output_format & FIO_OUTPUT_JSON) {
1750                 struct thread_data *global;
1751                 char time_buf[32];
1752                 struct timeval now;
1753                 unsigned long long ms_since_epoch;
1754
1755                 gettimeofday(&now, NULL);
1756                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1757                                  (unsigned long long)(now.tv_usec) / 1000;
1758
1759                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1760                                 sizeof(time_buf));
1761                 if (time_buf[strlen(time_buf) - 1] == '\n')
1762                         time_buf[strlen(time_buf) - 1] = '\0';
1763
1764                 root = json_create_object();
1765                 json_object_add_value_string(root, "fio version", fio_version_string);
1766                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1767                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1768                 json_object_add_value_string(root, "time", time_buf);
1769                 global = get_global_options();
1770                 json_add_job_opts(root, "global options", &global->opt_list, false);
1771                 array = json_create_array();
1772                 json_object_add_value_array(root, "jobs", array);
1773         }
1774
1775         if (is_backend)
1776                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1777
1778         for (i = 0; i < nr_ts; i++) {
1779                 ts = &threadstats[i];
1780                 rs = &runstats[ts->groupid];
1781
1782                 if (is_backend) {
1783                         fio_server_send_job_options(opt_lists[i], i);
1784                         fio_server_send_ts(ts, rs);
1785                 } else {
1786                         if (output_format & FIO_OUTPUT_TERSE)
1787                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1788                         if (output_format & FIO_OUTPUT_JSON) {
1789                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1790                                 json_array_add_value_object(array, tmp);
1791                         }
1792                         if (output_format & FIO_OUTPUT_NORMAL)
1793                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1794                 }
1795         }
1796         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1797                 /* disk util stats, if any */
1798                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1799
1800                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1801
1802                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1803                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1804                 json_free_object(root);
1805         }
1806
1807         for (i = 0; i < groupid + 1; i++) {
1808                 rs = &runstats[i];
1809
1810                 rs->groupid = i;
1811                 if (is_backend)
1812                         fio_server_send_gs(rs);
1813                 else if (output_format & FIO_OUTPUT_NORMAL)
1814                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1815         }
1816
1817         if (is_backend)
1818                 fio_server_send_du();
1819         else if (output_format & FIO_OUTPUT_NORMAL) {
1820                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1821                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1822         }
1823
1824         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1825                 buf_output_flush(&output[i]);
1826                 buf_output_free(&output[i]);
1827         }
1828
1829         log_info_flush();
1830         free(runstats);
1831         free(threadstats);
1832         free(opt_lists);
1833 }
1834
1835 void show_run_stats(void)
1836 {
1837         fio_mutex_down(stat_mutex);
1838         __show_run_stats();
1839         fio_mutex_up(stat_mutex);
1840 }
1841
1842 void __show_running_run_stats(void)
1843 {
1844         struct thread_data *td;
1845         unsigned long long *rt;
1846         struct timeval tv;
1847         int i;
1848
1849         fio_mutex_down(stat_mutex);
1850
1851         rt = malloc(thread_number * sizeof(unsigned long long));
1852         fio_gettime(&tv, NULL);
1853
1854         for_each_td(td, i) {
1855                 td->update_rusage = 1;
1856                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1857                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1858                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1859                 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1860
1861                 rt[i] = mtime_since(&td->start, &tv);
1862                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1863                         td->ts.runtime[DDIR_READ] += rt[i];
1864                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1865                         td->ts.runtime[DDIR_WRITE] += rt[i];
1866                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1867                         td->ts.runtime[DDIR_TRIM] += rt[i];
1868         }
1869
1870         for_each_td(td, i) {
1871                 if (td->runstate >= TD_EXITED)
1872                         continue;
1873                 if (td->rusage_sem) {
1874                         td->update_rusage = 1;
1875                         fio_mutex_down(td->rusage_sem);
1876                 }
1877                 td->update_rusage = 0;
1878         }
1879
1880         __show_run_stats();
1881
1882         for_each_td(td, i) {
1883                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1884                         td->ts.runtime[DDIR_READ] -= rt[i];
1885                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1886                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1887                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1888                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1889         }
1890
1891         free(rt);
1892         fio_mutex_up(stat_mutex);
1893 }
1894
1895 static int status_interval_init;
1896 static struct timeval status_time;
1897 static int status_file_disabled;
1898
1899 #define FIO_STATUS_FILE         "fio-dump-status"
1900
1901 static int check_status_file(void)
1902 {
1903         struct stat sb;
1904         const char *temp_dir;
1905         char fio_status_file_path[PATH_MAX];
1906
1907         if (status_file_disabled)
1908                 return 0;
1909
1910         temp_dir = getenv("TMPDIR");
1911         if (temp_dir == NULL) {
1912                 temp_dir = getenv("TEMP");
1913                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1914                         temp_dir = NULL;
1915         }
1916         if (temp_dir == NULL)
1917                 temp_dir = "/tmp";
1918
1919         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1920
1921         if (stat(fio_status_file_path, &sb))
1922                 return 0;
1923
1924         if (unlink(fio_status_file_path) < 0) {
1925                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1926                                                         strerror(errno));
1927                 log_err("fio: disabling status file updates\n");
1928                 status_file_disabled = 1;
1929         }
1930
1931         return 1;
1932 }
1933
1934 void check_for_running_stats(void)
1935 {
1936         if (status_interval) {
1937                 if (!status_interval_init) {
1938                         fio_gettime(&status_time, NULL);
1939                         status_interval_init = 1;
1940                 } else if (mtime_since_now(&status_time) >= status_interval) {
1941                         show_running_run_stats();
1942                         fio_gettime(&status_time, NULL);
1943                         return;
1944                 }
1945         }
1946         if (check_status_file()) {
1947                 show_running_run_stats();
1948                 return;
1949         }
1950 }
1951
1952 static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1953 {
1954         double val = data;
1955         double delta;
1956
1957         if (data > is->max_val)
1958                 is->max_val = data;
1959         if (data < is->min_val)
1960                 is->min_val = data;
1961
1962         delta = val - is->mean.u.f;
1963         if (delta) {
1964                 is->mean.u.f += delta / (is->samples + 1.0);
1965                 is->S.u.f += delta * (val - is->mean.u.f);
1966         }
1967
1968         is->samples++;
1969 }
1970
1971 /*
1972  * Return a struct io_logs, which is added to the tail of the log
1973  * list for 'iolog'.
1974  */
1975 static struct io_logs *get_new_log(struct io_log *iolog)
1976 {
1977         size_t new_size, new_samples;
1978         struct io_logs *cur_log;
1979
1980         /*
1981          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1982          * forever
1983          */
1984         if (!iolog->cur_log_max)
1985                 new_samples = DEF_LOG_ENTRIES;
1986         else {
1987                 new_samples = iolog->cur_log_max * 2;
1988                 if (new_samples > MAX_LOG_ENTRIES)
1989                         new_samples = MAX_LOG_ENTRIES;
1990         }
1991
1992         new_size = new_samples * log_entry_sz(iolog);
1993
1994         cur_log = smalloc(sizeof(*cur_log));
1995         if (cur_log) {
1996                 INIT_FLIST_HEAD(&cur_log->list);
1997                 cur_log->log = malloc(new_size);
1998                 if (cur_log->log) {
1999                         cur_log->nr_samples = 0;
2000                         cur_log->max_samples = new_samples;
2001                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2002                         iolog->cur_log_max = new_samples;
2003                         return cur_log;
2004                 }
2005                 sfree(cur_log);
2006         }
2007
2008         return NULL;
2009 }
2010
2011 /*
2012  * Add and return a new log chunk, or return current log if big enough
2013  */
2014 static struct io_logs *regrow_log(struct io_log *iolog)
2015 {
2016         struct io_logs *cur_log;
2017         int i;
2018
2019         if (!iolog || iolog->disabled)
2020                 goto disable;
2021
2022         cur_log = iolog_cur_log(iolog);
2023         if (!cur_log) {
2024                 cur_log = get_new_log(iolog);
2025                 if (!cur_log)
2026                         return NULL;
2027         }
2028
2029         if (cur_log->nr_samples < cur_log->max_samples)
2030                 return cur_log;
2031
2032         /*
2033          * No room for a new sample. If we're compressing on the fly, flush
2034          * out the current chunk
2035          */
2036         if (iolog->log_gz) {
2037                 if (iolog_cur_flush(iolog, cur_log)) {
2038                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2039                         return NULL;
2040                 }
2041         }
2042
2043         /*
2044          * Get a new log array, and add to our list
2045          */
2046         cur_log = get_new_log(iolog);
2047         if (!cur_log) {
2048                 log_err("fio: failed extending iolog! Will stop logging.\n");
2049                 return NULL;
2050         }
2051
2052         if (!iolog->pending || !iolog->pending->nr_samples)
2053                 return cur_log;
2054
2055         /*
2056          * Flush pending items to new log
2057          */
2058         for (i = 0; i < iolog->pending->nr_samples; i++) {
2059                 struct io_sample *src, *dst;
2060
2061                 src = get_sample(iolog, iolog->pending, i);
2062                 dst = get_sample(iolog, cur_log, i);
2063                 memcpy(dst, src, log_entry_sz(iolog));
2064         }
2065         cur_log->nr_samples = iolog->pending->nr_samples;
2066
2067         iolog->pending->nr_samples = 0;
2068         return cur_log;
2069 disable:
2070         if (iolog)
2071                 iolog->disabled = true;
2072         return NULL;
2073 }
2074
2075 void regrow_logs(struct thread_data *td)
2076 {
2077         regrow_log(td->slat_log);
2078         regrow_log(td->clat_log);
2079         regrow_log(td->clat_hist_log);
2080         regrow_log(td->lat_log);
2081         regrow_log(td->bw_log);
2082         regrow_log(td->iops_log);
2083         td->flags &= ~TD_F_REGROW_LOGS;
2084 }
2085
2086 static struct io_logs *get_cur_log(struct io_log *iolog)
2087 {
2088         struct io_logs *cur_log;
2089
2090         cur_log = iolog_cur_log(iolog);
2091         if (!cur_log) {
2092                 cur_log = get_new_log(iolog);
2093                 if (!cur_log)
2094                         return NULL;
2095         }
2096
2097         if (cur_log->nr_samples < cur_log->max_samples)
2098                 return cur_log;
2099
2100         /*
2101          * Out of space. If we're in IO offload mode, or we're not doing
2102          * per unit logging (hence logging happens outside of the IO thread
2103          * as well), add a new log chunk inline. If we're doing inline
2104          * submissions, flag 'td' as needing a log regrow and we'll take
2105          * care of it on the submission side.
2106          */
2107         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2108             !per_unit_log(iolog))
2109                 return regrow_log(iolog);
2110
2111         iolog->td->flags |= TD_F_REGROW_LOGS;
2112         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2113         return iolog->pending;
2114 }
2115
2116 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2117                              enum fio_ddir ddir, unsigned int bs,
2118                              unsigned long t, uint64_t offset)
2119 {
2120         struct io_logs *cur_log;
2121
2122         if (iolog->disabled)
2123                 return;
2124         if (flist_empty(&iolog->io_logs))
2125                 iolog->avg_last = t;
2126
2127         cur_log = get_cur_log(iolog);
2128         if (cur_log) {
2129                 struct io_sample *s;
2130
2131                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2132
2133                 s->data = data;
2134                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2135                 io_sample_set_ddir(iolog, s, ddir);
2136                 s->bs = bs;
2137
2138                 if (iolog->log_offset) {
2139                         struct io_sample_offset *so = (void *) s;
2140
2141                         so->offset = offset;
2142                 }
2143
2144                 cur_log->nr_samples++;
2145                 return;
2146         }
2147
2148         iolog->disabled = true;
2149 }
2150
2151 static inline void reset_io_stat(struct io_stat *ios)
2152 {
2153         ios->max_val = ios->min_val = ios->samples = 0;
2154         ios->mean.u.f = ios->S.u.f = 0;
2155 }
2156
2157 void reset_io_stats(struct thread_data *td)
2158 {
2159         struct thread_stat *ts = &td->ts;
2160         int i, j;
2161
2162         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2163                 reset_io_stat(&ts->clat_stat[i]);
2164                 reset_io_stat(&ts->slat_stat[i]);
2165                 reset_io_stat(&ts->lat_stat[i]);
2166                 reset_io_stat(&ts->bw_stat[i]);
2167                 reset_io_stat(&ts->iops_stat[i]);
2168
2169                 ts->io_bytes[i] = 0;
2170                 ts->runtime[i] = 0;
2171
2172                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2173                         ts->io_u_plat[i][j] = 0;
2174         }
2175
2176         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2177                 ts->io_u_map[i] = 0;
2178                 ts->io_u_submit[i] = 0;
2179                 ts->io_u_complete[i] = 0;
2180                 ts->io_u_lat_u[i] = 0;
2181                 ts->io_u_lat_m[i] = 0;
2182                 ts->total_submit = 0;
2183                 ts->total_complete = 0;
2184         }
2185
2186         for (i = 0; i < 3; i++) {
2187                 ts->total_io_u[i] = 0;
2188                 ts->short_io_u[i] = 0;
2189                 ts->drop_io_u[i] = 0;
2190         }
2191 }
2192
2193 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2194                               unsigned long elapsed, bool log_max)
2195 {
2196         /*
2197          * Note an entry in the log. Use the mean from the logged samples,
2198          * making sure to properly round up. Only write a log entry if we
2199          * had actual samples done.
2200          */
2201         if (iolog->avg_window[ddir].samples) {
2202                 union io_sample_data data;
2203
2204                 if (log_max)
2205                         data.val = iolog->avg_window[ddir].max_val;
2206                 else
2207                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2208
2209                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2210         }
2211
2212         reset_io_stat(&iolog->avg_window[ddir]);
2213 }
2214
2215 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2216                              bool log_max)
2217 {
2218         int ddir;
2219
2220         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2221                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2222 }
2223
2224 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2225                            union io_sample_data data, enum fio_ddir ddir,
2226                            unsigned int bs, uint64_t offset)
2227 {
2228         unsigned long elapsed, this_window;
2229
2230         if (!ddir_rw(ddir))
2231                 return 0;
2232
2233         elapsed = mtime_since_now(&td->epoch);
2234
2235         /*
2236          * If no time averaging, just add the log sample.
2237          */
2238         if (!iolog->avg_msec) {
2239                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2240                 return 0;
2241         }
2242
2243         /*
2244          * Add the sample. If the time period has passed, then
2245          * add that entry to the log and clear.
2246          */
2247         add_stat_sample(&iolog->avg_window[ddir], data.val);
2248
2249         /*
2250          * If period hasn't passed, adding the above sample is all we
2251          * need to do.
2252          */
2253         this_window = elapsed - iolog->avg_last;
2254         if (elapsed < iolog->avg_last)
2255                 return iolog->avg_last - elapsed;
2256         else if (this_window < iolog->avg_msec) {
2257                 int diff = iolog->avg_msec - this_window;
2258
2259                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2260                         return diff;
2261         }
2262
2263         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2264
2265         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2266         return iolog->avg_msec;
2267 }
2268
2269 void finalize_logs(struct thread_data *td, bool unit_logs)
2270 {
2271         unsigned long elapsed;
2272
2273         elapsed = mtime_since_now(&td->epoch);
2274
2275         if (td->clat_log && unit_logs)
2276                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2277         if (td->slat_log && unit_logs)
2278                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2279         if (td->lat_log && unit_logs)
2280                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2281         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2282                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2283         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2284                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2285 }
2286
2287 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2288 {
2289         struct io_log *iolog;
2290
2291         if (!ddir_rw(ddir))
2292                 return;
2293
2294         iolog = agg_io_log[ddir];
2295         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2296 }
2297
2298 static void add_clat_percentile_sample(struct thread_stat *ts,
2299                                 unsigned long usec, enum fio_ddir ddir)
2300 {
2301         unsigned int idx = plat_val_to_idx(usec);
2302         assert(idx < FIO_IO_U_PLAT_NR);
2303
2304         ts->io_u_plat[ddir][idx]++;
2305 }
2306
2307 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2308                      unsigned long usec, unsigned int bs, uint64_t offset)
2309 {
2310         unsigned long elapsed, this_window;
2311         struct thread_stat *ts = &td->ts;
2312         struct io_log *iolog = td->clat_hist_log;
2313
2314         td_io_u_lock(td);
2315
2316         add_stat_sample(&ts->clat_stat[ddir], usec);
2317
2318         if (td->clat_log)
2319                 add_log_sample(td, td->clat_log, sample_val(usec), ddir, bs,
2320                                offset);
2321
2322         if (ts->clat_percentiles)
2323                 add_clat_percentile_sample(ts, usec, ddir);
2324
2325         if (iolog && iolog->hist_msec) {
2326                 struct io_hist *hw = &iolog->hist_window[ddir];
2327
2328                 hw->samples++;
2329                 elapsed = mtime_since_now(&td->epoch);
2330                 if (!hw->hist_last)
2331                         hw->hist_last = elapsed;
2332                 this_window = elapsed - hw->hist_last;
2333                 
2334                 if (this_window >= iolog->hist_msec) {
2335                         unsigned int *io_u_plat;
2336                         struct io_u_plat_entry *dst;
2337
2338                         /*
2339                          * Make a byte-for-byte copy of the latency histogram
2340                          * stored in td->ts.io_u_plat[ddir], recording it in a
2341                          * log sample. Note that the matching call to free() is
2342                          * located in iolog.c after printing this sample to the
2343                          * log file.
2344                          */
2345                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2346                         dst = malloc(sizeof(struct io_u_plat_entry));
2347                         memcpy(&(dst->io_u_plat), io_u_plat,
2348                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2349                         flist_add(&dst->list, &hw->list);
2350                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2351                                                 elapsed, offset);
2352
2353                         /*
2354                          * Update the last time we recorded as being now, minus
2355                          * any drift in time we encountered before actually
2356                          * making the record.
2357                          */
2358                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2359                         hw->samples = 0;
2360                 }
2361         }
2362
2363         td_io_u_unlock(td);
2364 }
2365
2366 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2367                      unsigned long usec, unsigned int bs, uint64_t offset)
2368 {
2369         struct thread_stat *ts = &td->ts;
2370
2371         if (!ddir_rw(ddir))
2372                 return;
2373
2374         td_io_u_lock(td);
2375
2376         add_stat_sample(&ts->slat_stat[ddir], usec);
2377
2378         if (td->slat_log)
2379                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2380
2381         td_io_u_unlock(td);
2382 }
2383
2384 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2385                     unsigned long usec, unsigned int bs, uint64_t offset)
2386 {
2387         struct thread_stat *ts = &td->ts;
2388
2389         if (!ddir_rw(ddir))
2390                 return;
2391
2392         td_io_u_lock(td);
2393
2394         add_stat_sample(&ts->lat_stat[ddir], usec);
2395
2396         if (td->lat_log)
2397                 add_log_sample(td, td->lat_log, sample_val(usec), ddir, bs,
2398                                offset);
2399
2400         td_io_u_unlock(td);
2401 }
2402
2403 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2404                    unsigned int bytes, unsigned long spent)
2405 {
2406         struct thread_stat *ts = &td->ts;
2407         unsigned long rate;
2408
2409         if (spent)
2410                 rate = bytes * 1000 / spent;
2411         else
2412                 rate = 0;
2413
2414         td_io_u_lock(td);
2415
2416         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2417
2418         if (td->bw_log)
2419                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2420                                bytes, io_u->offset);
2421
2422         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2423         td_io_u_unlock(td);
2424 }
2425
2426 static int add_bw_samples(struct thread_data *td, struct timeval *t)
2427 {
2428         struct thread_stat *ts = &td->ts;
2429         unsigned long spent, rate;
2430         enum fio_ddir ddir;
2431         unsigned int next, next_log;
2432
2433         next_log = td->o.bw_avg_time;
2434
2435         spent = mtime_since(&td->bw_sample_time, t);
2436         if (spent < td->o.bw_avg_time &&
2437             td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2438                 return td->o.bw_avg_time - spent;
2439
2440         td_io_u_lock(td);
2441
2442         /*
2443          * Compute both read and write rates for the interval.
2444          */
2445         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2446                 uint64_t delta;
2447
2448                 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2449                 if (!delta)
2450                         continue; /* No entries for interval */
2451
2452                 if (spent)
2453                         rate = delta * 1000 / spent / 1024; /* KiB/s */
2454                 else
2455                         rate = 0;
2456
2457                 add_stat_sample(&ts->bw_stat[ddir], rate);
2458
2459                 if (td->bw_log) {
2460                         unsigned int bs = 0;
2461
2462                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2463                                 bs = td->o.min_bs[ddir];
2464
2465                         next = add_log_sample(td, td->bw_log, sample_val(rate),
2466                                               ddir, bs, 0);
2467                         next_log = min(next_log, next);
2468                 }
2469
2470                 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2471         }
2472
2473         timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2474
2475         td_io_u_unlock(td);
2476
2477         if (spent <= td->o.bw_avg_time)
2478                 return min(next_log, td->o.bw_avg_time);
2479
2480         next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2481         return min(next, next_log);
2482 }
2483
2484 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2485                      unsigned int bytes)
2486 {
2487         struct thread_stat *ts = &td->ts;
2488
2489         td_io_u_lock(td);
2490
2491         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2492
2493         if (td->iops_log)
2494                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2495                                bytes, io_u->offset);
2496
2497         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2498         td_io_u_unlock(td);
2499 }
2500
2501 static int add_iops_samples(struct thread_data *td, struct timeval *t)
2502 {
2503         struct thread_stat *ts = &td->ts;
2504         unsigned long spent, iops;
2505         enum fio_ddir ddir;
2506         unsigned int next, next_log;
2507
2508         next_log = td->o.iops_avg_time;
2509
2510         spent = mtime_since(&td->iops_sample_time, t);
2511         if (spent < td->o.iops_avg_time &&
2512             td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2513                 return td->o.iops_avg_time - spent;
2514
2515         td_io_u_lock(td);
2516
2517         /*
2518          * Compute both read and write rates for the interval.
2519          */
2520         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2521                 uint64_t delta;
2522
2523                 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2524                 if (!delta)
2525                         continue; /* No entries for interval */
2526
2527                 if (spent)
2528                         iops = (delta * 1000) / spent;
2529                 else
2530                         iops = 0;
2531
2532                 add_stat_sample(&ts->iops_stat[ddir], iops);
2533
2534                 if (td->iops_log) {
2535                         unsigned int bs = 0;
2536
2537                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2538                                 bs = td->o.min_bs[ddir];
2539
2540                         next = add_log_sample(td, td->iops_log,
2541                                               sample_val(iops), ddir, bs, 0);
2542                         next_log = min(next_log, next);
2543                 }
2544
2545                 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2546         }
2547
2548         timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2549
2550         td_io_u_unlock(td);
2551
2552         if (spent <= td->o.iops_avg_time)
2553                 return min(next_log, td->o.iops_avg_time);
2554
2555         next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2556         return min(next, next_log);
2557 }
2558
2559 /*
2560  * Returns msecs to next event
2561  */
2562 int calc_log_samples(void)
2563 {
2564         struct thread_data *td;
2565         unsigned int next = ~0U, tmp;
2566         struct timeval now;
2567         int i;
2568
2569         fio_gettime(&now, NULL);
2570
2571         for_each_td(td, i) {
2572                 if (in_ramp_time(td) ||
2573                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2574                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2575                         continue;
2576                 }
2577                 if (td->bw_log && !per_unit_log(td->bw_log)) {
2578                         tmp = add_bw_samples(td, &now);
2579                         if (tmp < next)
2580                                 next = tmp;
2581                 }
2582                 if (td->iops_log && !per_unit_log(td->iops_log)) {
2583                         tmp = add_iops_samples(td, &now);
2584                         if (tmp < next)
2585                                 next = tmp;
2586                 }
2587         }
2588
2589         return next == ~0U ? 0 : next;
2590 }
2591
2592 void stat_init(void)
2593 {
2594         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2595 }
2596
2597 void stat_exit(void)
2598 {
2599         /*
2600          * When we have the mutex, we know out-of-band access to it
2601          * have ended.
2602          */
2603         fio_mutex_down(stat_mutex);
2604         fio_mutex_remove(stat_mutex);
2605 }
2606
2607 /*
2608  * Called from signal handler. Wake up status thread.
2609  */
2610 void show_running_run_stats(void)
2611 {
2612         helper_do_stat();
2613 }
2614
2615 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2616 {
2617         /* Ignore io_u's which span multiple blocks--they will just get
2618          * inaccurate counts. */
2619         int idx = (io_u->offset - io_u->file->file_offset)
2620                         / td->o.bs[DDIR_TRIM];
2621         uint32_t *info = &td->ts.block_infos[idx];
2622         assert(idx < td->ts.nr_block_infos);
2623         return info;
2624 }