Add device_is_mounted() support for NetBSD
[fio.git] / lib / prio_tree.c
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004    Initial version
12  */
13
14 #include <stdlib.h>
15 #include <limits.h>
16 #include "../fio.h"
17 #include "prio_tree.h"
18
19 /*
20  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
21  * which is useful for storing intervals, e.g, we can consider a vma as a closed
22  * interval of file pages [offset_begin, offset_end], and store all vmas that
23  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
24  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
25  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
26  * time where 'log n' is the height of the PST, and 'm' is the number of stored
27  * intervals (vmas) that overlap (map) with the input interval X (the set of
28  * consecutive file pages).
29  *
30  * In our implementation, we store closed intervals of the form [radix_index,
31  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
32  * is designed for storing intervals with unique radix indices, i.e., each
33  * interval have different radix_index. However, this limitation can be easily
34  * overcome by using the size, i.e., heap_index - radix_index, as part of the
35  * index, so we index the tree using [(radix_index,size), heap_index].
36  *
37  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
38  * machine, the maximum height of a PST can be 64. We can use a balanced version
39  * of the priority search tree to optimize the tree height, but the balanced
40  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
41  */
42
43 static void get_index(const struct prio_tree_node *node,
44                       unsigned long *radix, unsigned long *heap)
45 {
46         *radix = node->start;
47         *heap = node->last;
48 }
49
50 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
51
52 static void fio_init prio_tree_init(void)
53 {
54         unsigned int i;
55
56         for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
57                 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
58         index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
59 }
60
61 /*
62  * Maximum heap_index that can be stored in a PST with index_bits bits
63  */
64 static inline unsigned long prio_tree_maxindex(unsigned int bits)
65 {
66         return index_bits_to_maxindex[bits - 1];
67 }
68
69 /*
70  * Extend a priority search tree so that it can store a node with heap_index
71  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
72  * However, this function is used rarely and the common case performance is
73  * not bad.
74  */
75 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
76                 struct prio_tree_node *node, unsigned long max_heap_index)
77 {
78         struct prio_tree_node *first = NULL, *prev, *last = NULL;
79
80         if (max_heap_index > prio_tree_maxindex(root->index_bits))
81                 root->index_bits++;
82
83         while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
84                 root->index_bits++;
85
86                 if (prio_tree_empty(root))
87                         continue;
88
89                 if (first == NULL) {
90                         first = root->prio_tree_node;
91                         prio_tree_remove(root, root->prio_tree_node);
92                         INIT_PRIO_TREE_NODE(first);
93                         last = first;
94                 } else {
95                         prev = last;
96                         last = root->prio_tree_node;
97                         prio_tree_remove(root, root->prio_tree_node);
98                         INIT_PRIO_TREE_NODE(last);
99                         prev->left = last;
100                         last->parent = prev;
101                 }
102         }
103
104         INIT_PRIO_TREE_NODE(node);
105
106         if (first) {
107                 node->left = first;
108                 first->parent = node;
109         } else
110                 last = node;
111
112         if (!prio_tree_empty(root)) {
113                 last->left = root->prio_tree_node;
114                 last->left->parent = last;
115         }
116
117         root->prio_tree_node = node;
118         return node;
119 }
120
121 /*
122  * Replace a prio_tree_node with a new node and return the old node
123  */
124 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
125                 struct prio_tree_node *old, struct prio_tree_node *node)
126 {
127         INIT_PRIO_TREE_NODE(node);
128
129         if (prio_tree_root(old)) {
130                 assert(root->prio_tree_node == old);
131                 /*
132                  * We can reduce root->index_bits here. However, it is complex
133                  * and does not help much to improve performance (IMO).
134                  */
135                 node->parent = node;
136                 root->prio_tree_node = node;
137         } else {
138                 node->parent = old->parent;
139                 if (old->parent->left == old)
140                         old->parent->left = node;
141                 else
142                         old->parent->right = node;
143         }
144
145         if (!prio_tree_left_empty(old)) {
146                 node->left = old->left;
147                 old->left->parent = node;
148         }
149
150         if (!prio_tree_right_empty(old)) {
151                 node->right = old->right;
152                 old->right->parent = node;
153         }
154
155         return old;
156 }
157
158 /*
159  * Insert a prio_tree_node @node into a radix priority search tree @root. The
160  * algorithm typically takes O(log n) time where 'log n' is the number of bits
161  * required to represent the maximum heap_index. In the worst case, the algo
162  * can take O((log n)^2) - check prio_tree_expand.
163  *
164  * If a prior node with same radix_index and heap_index is already found in
165  * the tree, then returns the address of the prior node. Otherwise, inserts
166  * @node into the tree and returns @node.
167  */
168 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
169                 struct prio_tree_node *node)
170 {
171         struct prio_tree_node *cur, *res = node;
172         unsigned long radix_index, heap_index;
173         unsigned long r_index, h_index, index, mask;
174         int size_flag = 0;
175
176         get_index(node, &radix_index, &heap_index);
177
178         if (prio_tree_empty(root) ||
179                         heap_index > prio_tree_maxindex(root->index_bits))
180                 return prio_tree_expand(root, node, heap_index);
181
182         cur = root->prio_tree_node;
183         mask = 1UL << (root->index_bits - 1);
184
185         while (mask) {
186                 get_index(cur, &r_index, &h_index);
187
188                 if (r_index == radix_index && h_index == heap_index)
189                         return cur;
190
191                 if (h_index < heap_index ||
192                     (h_index == heap_index && r_index > radix_index)) {
193                         struct prio_tree_node *tmp = node;
194                         node = prio_tree_replace(root, cur, node);
195                         cur = tmp;
196                         /* swap indices */
197                         index = r_index;
198                         r_index = radix_index;
199                         radix_index = index;
200                         index = h_index;
201                         h_index = heap_index;
202                         heap_index = index;
203                 }
204
205                 if (size_flag)
206                         index = heap_index - radix_index;
207                 else
208                         index = radix_index;
209
210                 if (index & mask) {
211                         if (prio_tree_right_empty(cur)) {
212                                 INIT_PRIO_TREE_NODE(node);
213                                 cur->right = node;
214                                 node->parent = cur;
215                                 return res;
216                         } else
217                                 cur = cur->right;
218                 } else {
219                         if (prio_tree_left_empty(cur)) {
220                                 INIT_PRIO_TREE_NODE(node);
221                                 cur->left = node;
222                                 node->parent = cur;
223                                 return res;
224                         } else
225                                 cur = cur->left;
226                 }
227
228                 mask >>= 1;
229
230                 if (!mask) {
231                         mask = 1UL << (BITS_PER_LONG - 1);
232                         size_flag = 1;
233                 }
234         }
235         /* Should not reach here */
236         assert(0);
237         return NULL;
238 }
239
240 /*
241  * Remove a prio_tree_node @node from a radix priority search tree @root. The
242  * algorithm takes O(log n) time where 'log n' is the number of bits required
243  * to represent the maximum heap_index.
244  */
245 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
246 {
247         struct prio_tree_node *cur;
248         unsigned long r_index, h_index_right, h_index_left;
249
250         cur = node;
251
252         while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
253                 if (!prio_tree_left_empty(cur))
254                         get_index(cur->left, &r_index, &h_index_left);
255                 else {
256                         cur = cur->right;
257                         continue;
258                 }
259
260                 if (!prio_tree_right_empty(cur))
261                         get_index(cur->right, &r_index, &h_index_right);
262                 else {
263                         cur = cur->left;
264                         continue;
265                 }
266
267                 /* both h_index_left and h_index_right cannot be 0 */
268                 if (h_index_left >= h_index_right)
269                         cur = cur->left;
270                 else
271                         cur = cur->right;
272         }
273
274         if (prio_tree_root(cur)) {
275                 assert(root->prio_tree_node == cur);
276                 INIT_PRIO_TREE_ROOT(root);
277                 return;
278         }
279
280         if (cur->parent->right == cur)
281                 cur->parent->right = cur->parent;
282         else
283                 cur->parent->left = cur->parent;
284
285         while (cur != node)
286                 cur = prio_tree_replace(root, cur->parent, cur);
287 }
288
289 /*
290  * Following functions help to enumerate all prio_tree_nodes in the tree that
291  * overlap with the input interval X [radix_index, heap_index]. The enumeration
292  * takes O(log n + m) time where 'log n' is the height of the tree (which is
293  * proportional to # of bits required to represent the maximum heap_index) and
294  * 'm' is the number of prio_tree_nodes that overlap the interval X.
295  */
296
297 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
298                 unsigned long *r_index, unsigned long *h_index)
299 {
300         if (prio_tree_left_empty(iter->cur))
301                 return NULL;
302
303         get_index(iter->cur->left, r_index, h_index);
304
305         if (iter->r_index <= *h_index) {
306                 iter->cur = iter->cur->left;
307                 iter->mask >>= 1;
308                 if (iter->mask) {
309                         if (iter->size_level)
310                                 iter->size_level++;
311                 } else {
312                         if (iter->size_level) {
313                                 assert(prio_tree_left_empty(iter->cur));
314                                 assert(prio_tree_right_empty(iter->cur));
315                                 iter->size_level++;
316                                 iter->mask = ULONG_MAX;
317                         } else {
318                                 iter->size_level = 1;
319                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
320                         }
321                 }
322                 return iter->cur;
323         }
324
325         return NULL;
326 }
327
328 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
329                 unsigned long *r_index, unsigned long *h_index)
330 {
331         unsigned long value;
332
333         if (prio_tree_right_empty(iter->cur))
334                 return NULL;
335
336         if (iter->size_level)
337                 value = iter->value;
338         else
339                 value = iter->value | iter->mask;
340
341         if (iter->h_index < value)
342                 return NULL;
343
344         get_index(iter->cur->right, r_index, h_index);
345
346         if (iter->r_index <= *h_index) {
347                 iter->cur = iter->cur->right;
348                 iter->mask >>= 1;
349                 iter->value = value;
350                 if (iter->mask) {
351                         if (iter->size_level)
352                                 iter->size_level++;
353                 } else {
354                         if (iter->size_level) {
355                                 assert(prio_tree_left_empty(iter->cur));
356                                 assert(prio_tree_right_empty(iter->cur));
357                                 iter->size_level++;
358                                 iter->mask = ULONG_MAX;
359                         } else {
360                                 iter->size_level = 1;
361                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
362                         }
363                 }
364                 return iter->cur;
365         }
366
367         return NULL;
368 }
369
370 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
371 {
372         iter->cur = iter->cur->parent;
373         if (iter->mask == ULONG_MAX)
374                 iter->mask = 1UL;
375         else if (iter->size_level == 1)
376                 iter->mask = 1UL;
377         else
378                 iter->mask <<= 1;
379         if (iter->size_level)
380                 iter->size_level--;
381         if (!iter->size_level && (iter->value & iter->mask))
382                 iter->value ^= iter->mask;
383         return iter->cur;
384 }
385
386 static inline int overlap(struct prio_tree_iter *iter,
387                 unsigned long r_index, unsigned long h_index)
388 {
389         return iter->h_index >= r_index && iter->r_index <= h_index;
390 }
391
392 /*
393  * prio_tree_first:
394  *
395  * Get the first prio_tree_node that overlaps with the interval [radix_index,
396  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
397  * traversal of the tree.
398  */
399 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
400 {
401         struct prio_tree_root *root;
402         unsigned long r_index, h_index;
403
404         INIT_PRIO_TREE_ITER(iter);
405
406         root = iter->root;
407         if (prio_tree_empty(root))
408                 return NULL;
409
410         get_index(root->prio_tree_node, &r_index, &h_index);
411
412         if (iter->r_index > h_index)
413                 return NULL;
414
415         iter->mask = 1UL << (root->index_bits - 1);
416         iter->cur = root->prio_tree_node;
417
418         while (1) {
419                 if (overlap(iter, r_index, h_index))
420                         return iter->cur;
421
422                 if (prio_tree_left(iter, &r_index, &h_index))
423                         continue;
424
425                 if (prio_tree_right(iter, &r_index, &h_index))
426                         continue;
427
428                 break;
429         }
430         return NULL;
431 }
432
433 /*
434  * prio_tree_next:
435  *
436  * Get the next prio_tree_node that overlaps with the input interval in iter
437  */
438 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
439 {
440         unsigned long r_index, h_index;
441
442         if (iter->cur == NULL)
443                 return prio_tree_first(iter);
444
445 repeat:
446         while (prio_tree_left(iter, &r_index, &h_index))
447                 if (overlap(iter, r_index, h_index))
448                         return iter->cur;
449
450         while (!prio_tree_right(iter, &r_index, &h_index)) {
451                 while (!prio_tree_root(iter->cur) &&
452                                 iter->cur->parent->right == iter->cur)
453                         prio_tree_parent(iter);
454
455                 if (prio_tree_root(iter->cur))
456                         return NULL;
457
458                 prio_tree_parent(iter);
459         }
460
461         if (overlap(iter, r_index, h_index))
462                 return iter->cur;
463
464         goto repeat;
465 }