memcpy: add hybrid
[fio.git] / lib / prio_tree.c
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004    Initial version
12  */
13
14 #include <stdlib.h>
15 #include <limits.h>
16
17 #include "../compiler/compiler.h"
18 #include "prio_tree.h"
19
20 #define ARRAY_SIZE(x)    (sizeof((x)) / (sizeof((x)[0])))
21
22 /*
23  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
24  * which is useful for storing intervals, e.g, we can consider a vma as a closed
25  * interval of file pages [offset_begin, offset_end], and store all vmas that
26  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
27  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
28  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
29  * time where 'log n' is the height of the PST, and 'm' is the number of stored
30  * intervals (vmas) that overlap (map) with the input interval X (the set of
31  * consecutive file pages).
32  *
33  * In our implementation, we store closed intervals of the form [radix_index,
34  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
35  * is designed for storing intervals with unique radix indices, i.e., each
36  * interval have different radix_index. However, this limitation can be easily
37  * overcome by using the size, i.e., heap_index - radix_index, as part of the
38  * index, so we index the tree using [(radix_index,size), heap_index].
39  *
40  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
41  * machine, the maximum height of a PST can be 64. We can use a balanced version
42  * of the priority search tree to optimize the tree height, but the balanced
43  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
44  */
45
46 static void get_index(const struct prio_tree_node *node,
47                       unsigned long *radix, unsigned long *heap)
48 {
49         *radix = node->start;
50         *heap = node->last;
51 }
52
53 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
54
55 static void fio_init prio_tree_init(void)
56 {
57         unsigned int i;
58
59         for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
60                 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
61         index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
62 }
63
64 /*
65  * Maximum heap_index that can be stored in a PST with index_bits bits
66  */
67 static inline unsigned long prio_tree_maxindex(unsigned int bits)
68 {
69         return index_bits_to_maxindex[bits - 1];
70 }
71
72 /*
73  * Extend a priority search tree so that it can store a node with heap_index
74  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
75  * However, this function is used rarely and the common case performance is
76  * not bad.
77  */
78 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
79                 struct prio_tree_node *node, unsigned long max_heap_index)
80 {
81         struct prio_tree_node *first = NULL, *prev, *last = NULL;
82
83         if (max_heap_index > prio_tree_maxindex(root->index_bits))
84                 root->index_bits++;
85
86         while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
87                 root->index_bits++;
88
89                 if (prio_tree_empty(root))
90                         continue;
91
92                 if (first == NULL) {
93                         first = root->prio_tree_node;
94                         prio_tree_remove(root, root->prio_tree_node);
95                         INIT_PRIO_TREE_NODE(first);
96                         last = first;
97                 } else {
98                         prev = last;
99                         last = root->prio_tree_node;
100                         prio_tree_remove(root, root->prio_tree_node);
101                         INIT_PRIO_TREE_NODE(last);
102                         prev->left = last;
103                         last->parent = prev;
104                 }
105         }
106
107         INIT_PRIO_TREE_NODE(node);
108
109         if (first) {
110                 node->left = first;
111                 first->parent = node;
112         } else
113                 last = node;
114
115         if (!prio_tree_empty(root)) {
116                 last->left = root->prio_tree_node;
117                 last->left->parent = last;
118         }
119
120         root->prio_tree_node = node;
121         return node;
122 }
123
124 /*
125  * Replace a prio_tree_node with a new node and return the old node
126  */
127 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
128                 struct prio_tree_node *old, struct prio_tree_node *node)
129 {
130         INIT_PRIO_TREE_NODE(node);
131
132         if (prio_tree_root(old)) {
133                 assert(root->prio_tree_node == old);
134                 /*
135                  * We can reduce root->index_bits here. However, it is complex
136                  * and does not help much to improve performance (IMO).
137                  */
138                 node->parent = node;
139                 root->prio_tree_node = node;
140         } else {
141                 node->parent = old->parent;
142                 if (old->parent->left == old)
143                         old->parent->left = node;
144                 else
145                         old->parent->right = node;
146         }
147
148         if (!prio_tree_left_empty(old)) {
149                 node->left = old->left;
150                 old->left->parent = node;
151         }
152
153         if (!prio_tree_right_empty(old)) {
154                 node->right = old->right;
155                 old->right->parent = node;
156         }
157
158         return old;
159 }
160
161 /*
162  * Insert a prio_tree_node @node into a radix priority search tree @root. The
163  * algorithm typically takes O(log n) time where 'log n' is the number of bits
164  * required to represent the maximum heap_index. In the worst case, the algo
165  * can take O((log n)^2) - check prio_tree_expand.
166  *
167  * If a prior node with same radix_index and heap_index is already found in
168  * the tree, then returns the address of the prior node. Otherwise, inserts
169  * @node into the tree and returns @node.
170  */
171 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
172                 struct prio_tree_node *node)
173 {
174         struct prio_tree_node *cur, *res = node;
175         unsigned long radix_index, heap_index;
176         unsigned long r_index, h_index, index, mask;
177         int size_flag = 0;
178
179         get_index(node, &radix_index, &heap_index);
180
181         if (prio_tree_empty(root) ||
182                         heap_index > prio_tree_maxindex(root->index_bits))
183                 return prio_tree_expand(root, node, heap_index);
184
185         cur = root->prio_tree_node;
186         mask = 1UL << (root->index_bits - 1);
187
188         while (mask) {
189                 get_index(cur, &r_index, &h_index);
190
191                 if (r_index == radix_index && h_index == heap_index)
192                         return cur;
193
194                 if (h_index < heap_index ||
195                     (h_index == heap_index && r_index > radix_index)) {
196                         struct prio_tree_node *tmp = node;
197                         node = prio_tree_replace(root, cur, node);
198                         cur = tmp;
199                         /* swap indices */
200                         index = r_index;
201                         r_index = radix_index;
202                         radix_index = index;
203                         index = h_index;
204                         h_index = heap_index;
205                         heap_index = index;
206                 }
207
208                 if (size_flag)
209                         index = heap_index - radix_index;
210                 else
211                         index = radix_index;
212
213                 if (index & mask) {
214                         if (prio_tree_right_empty(cur)) {
215                                 INIT_PRIO_TREE_NODE(node);
216                                 cur->right = node;
217                                 node->parent = cur;
218                                 return res;
219                         } else
220                                 cur = cur->right;
221                 } else {
222                         if (prio_tree_left_empty(cur)) {
223                                 INIT_PRIO_TREE_NODE(node);
224                                 cur->left = node;
225                                 node->parent = cur;
226                                 return res;
227                         } else
228                                 cur = cur->left;
229                 }
230
231                 mask >>= 1;
232
233                 if (!mask) {
234                         mask = 1UL << (BITS_PER_LONG - 1);
235                         size_flag = 1;
236                 }
237         }
238         /* Should not reach here */
239         assert(0);
240         return NULL;
241 }
242
243 /*
244  * Remove a prio_tree_node @node from a radix priority search tree @root. The
245  * algorithm takes O(log n) time where 'log n' is the number of bits required
246  * to represent the maximum heap_index.
247  */
248 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
249 {
250         struct prio_tree_node *cur;
251         unsigned long r_index, h_index_right, h_index_left;
252
253         cur = node;
254
255         while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
256                 if (!prio_tree_left_empty(cur))
257                         get_index(cur->left, &r_index, &h_index_left);
258                 else {
259                         cur = cur->right;
260                         continue;
261                 }
262
263                 if (!prio_tree_right_empty(cur))
264                         get_index(cur->right, &r_index, &h_index_right);
265                 else {
266                         cur = cur->left;
267                         continue;
268                 }
269
270                 /* both h_index_left and h_index_right cannot be 0 */
271                 if (h_index_left >= h_index_right)
272                         cur = cur->left;
273                 else
274                         cur = cur->right;
275         }
276
277         if (prio_tree_root(cur)) {
278                 assert(root->prio_tree_node == cur);
279                 INIT_PRIO_TREE_ROOT(root);
280                 return;
281         }
282
283         if (cur->parent->right == cur)
284                 cur->parent->right = cur->parent;
285         else
286                 cur->parent->left = cur->parent;
287
288         while (cur != node)
289                 cur = prio_tree_replace(root, cur->parent, cur);
290 }
291
292 /*
293  * Following functions help to enumerate all prio_tree_nodes in the tree that
294  * overlap with the input interval X [radix_index, heap_index]. The enumeration
295  * takes O(log n + m) time where 'log n' is the height of the tree (which is
296  * proportional to # of bits required to represent the maximum heap_index) and
297  * 'm' is the number of prio_tree_nodes that overlap the interval X.
298  */
299
300 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
301                 unsigned long *r_index, unsigned long *h_index)
302 {
303         if (prio_tree_left_empty(iter->cur))
304                 return NULL;
305
306         get_index(iter->cur->left, r_index, h_index);
307
308         if (iter->r_index <= *h_index) {
309                 iter->cur = iter->cur->left;
310                 iter->mask >>= 1;
311                 if (iter->mask) {
312                         if (iter->size_level)
313                                 iter->size_level++;
314                 } else {
315                         if (iter->size_level) {
316                                 assert(prio_tree_left_empty(iter->cur));
317                                 assert(prio_tree_right_empty(iter->cur));
318                                 iter->size_level++;
319                                 iter->mask = ULONG_MAX;
320                         } else {
321                                 iter->size_level = 1;
322                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
323                         }
324                 }
325                 return iter->cur;
326         }
327
328         return NULL;
329 }
330
331 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
332                 unsigned long *r_index, unsigned long *h_index)
333 {
334         unsigned long value;
335
336         if (prio_tree_right_empty(iter->cur))
337                 return NULL;
338
339         if (iter->size_level)
340                 value = iter->value;
341         else
342                 value = iter->value | iter->mask;
343
344         if (iter->h_index < value)
345                 return NULL;
346
347         get_index(iter->cur->right, r_index, h_index);
348
349         if (iter->r_index <= *h_index) {
350                 iter->cur = iter->cur->right;
351                 iter->mask >>= 1;
352                 iter->value = value;
353                 if (iter->mask) {
354                         if (iter->size_level)
355                                 iter->size_level++;
356                 } else {
357                         if (iter->size_level) {
358                                 assert(prio_tree_left_empty(iter->cur));
359                                 assert(prio_tree_right_empty(iter->cur));
360                                 iter->size_level++;
361                                 iter->mask = ULONG_MAX;
362                         } else {
363                                 iter->size_level = 1;
364                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
365                         }
366                 }
367                 return iter->cur;
368         }
369
370         return NULL;
371 }
372
373 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
374 {
375         iter->cur = iter->cur->parent;
376         if (iter->mask == ULONG_MAX)
377                 iter->mask = 1UL;
378         else if (iter->size_level == 1)
379                 iter->mask = 1UL;
380         else
381                 iter->mask <<= 1;
382         if (iter->size_level)
383                 iter->size_level--;
384         if (!iter->size_level && (iter->value & iter->mask))
385                 iter->value ^= iter->mask;
386         return iter->cur;
387 }
388
389 static inline int overlap(struct prio_tree_iter *iter,
390                 unsigned long r_index, unsigned long h_index)
391 {
392         return iter->h_index >= r_index && iter->r_index <= h_index;
393 }
394
395 /*
396  * prio_tree_first:
397  *
398  * Get the first prio_tree_node that overlaps with the interval [radix_index,
399  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
400  * traversal of the tree.
401  */
402 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
403 {
404         struct prio_tree_root *root;
405         unsigned long r_index, h_index;
406
407         INIT_PRIO_TREE_ITER(iter);
408
409         root = iter->root;
410         if (prio_tree_empty(root))
411                 return NULL;
412
413         get_index(root->prio_tree_node, &r_index, &h_index);
414
415         if (iter->r_index > h_index)
416                 return NULL;
417
418         iter->mask = 1UL << (root->index_bits - 1);
419         iter->cur = root->prio_tree_node;
420
421         while (1) {
422                 if (overlap(iter, r_index, h_index))
423                         return iter->cur;
424
425                 if (prio_tree_left(iter, &r_index, &h_index))
426                         continue;
427
428                 if (prio_tree_right(iter, &r_index, &h_index))
429                         continue;
430
431                 break;
432         }
433         return NULL;
434 }
435
436 /*
437  * prio_tree_next:
438  *
439  * Get the next prio_tree_node that overlaps with the input interval in iter
440  */
441 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
442 {
443         unsigned long r_index, h_index;
444
445         if (iter->cur == NULL)
446                 return prio_tree_first(iter);
447
448 repeat:
449         while (prio_tree_left(iter, &r_index, &h_index))
450                 if (overlap(iter, r_index, h_index))
451                         return iter->cur;
452
453         while (!prio_tree_right(iter, &r_index, &h_index)) {
454                 while (!prio_tree_root(iter->cur) &&
455                                 iter->cur->parent->right == iter->cur)
456                         prio_tree_parent(iter);
457
458                 if (prio_tree_root(iter->cur))
459                         return NULL;
460
461                 prio_tree_parent(iter);
462         }
463
464         if (overlap(iter, r_index, h_index))
465                 return iter->cur;
466
467         goto repeat;
468 }