1 #ifndef _LINUX_HASH_H
2 #define _LINUX_HASH_H
3 /* Fast hashing routine for a long.
4    (C) 2002 William Lee Irwin III, IBM */
6 /*
7  * Knuth recommends primes in approximately golden ratio to the maximum
8  * integer representable by a machine word for multiplicative hashing.
9  * Chuck Lever verified the effectiveness of this technique:
10  * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
11  *
12  * These primes are chosen to be bit-sparse, that is operations on
13  * them can use shifts and additions instead of multiplications for
14  * machines where multiplications are slow.
15  */
16 #if BITS_PER_LONG == 32
17 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
18 #define GOLDEN_RATIO_PRIME 0x9e370001UL
19 #elif BITS_PER_LONG == 64
20 /*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
21 #define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
22 #else
23 #error Define GOLDEN_RATIO_PRIME for your wordsize.
24 #endif
26 static inline unsigned long hash_long(unsigned long val, unsigned int bits)
27 {
28         unsigned long hash = val;
30 #if BITS_PER_LONG == 64
31         /*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
32         unsigned long n = hash;
33         n <<= 18;
34         hash -= n;
35         n <<= 33;
36         hash -= n;
37         n <<= 3;
38         hash += n;
39         n <<= 3;
40         hash -= n;
41         n <<= 4;
42         hash += n;
43         n <<= 2;
44         hash += n;
45 #else
46         /* On some cpus multiply is faster, on others gcc will do shifts */
47         hash *= GOLDEN_RATIO_PRIME;
48 #endif
50         /* High bits are more random, so use them. */
51         return hash >> (BITS_PER_LONG - bits);
52 }
54 static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
55 {
56         return hash_long((unsigned long)ptr, bits);
57 }
58 #endif /* _LINUX_HASH_H */