fio: make gauss a duplicate of normal for file_service_type
[fio.git] / gettime.c
1 /*
2  * Clock functions
3  */
4
5 #include <unistd.h>
6 #include <math.h>
7 #include <sys/time.h>
8 #include <time.h>
9
10 #include "fio.h"
11 #include "smalloc.h"
12
13 #include "hash.h"
14 #include "os/os.h"
15
16 #if defined(ARCH_HAVE_CPU_CLOCK)
17 #ifndef ARCH_CPU_CLOCK_CYCLES_PER_USEC
18 static unsigned long cycles_per_msec;
19 static unsigned long long cycles_start;
20 static unsigned long long clock_mult;
21 static unsigned long long max_cycles_mask;
22 static unsigned long long nsecs_for_max_cycles;
23 static unsigned int clock_shift;
24 static unsigned int max_cycles_shift;
25 #define MAX_CLOCK_SEC 60*60
26 #endif
27 #ifdef ARCH_CPU_CLOCK_WRAPS
28 static unsigned int cycles_wrap;
29 #endif
30 #endif
31 bool tsc_reliable = false;
32
33 struct tv_valid {
34         int warned;
35 };
36 #ifdef ARCH_HAVE_CPU_CLOCK
37 #ifdef CONFIG_TLS_THREAD
38 static __thread struct tv_valid static_tv_valid;
39 #else
40 static pthread_key_t tv_tls_key;
41 #endif
42 #endif
43
44 enum fio_cs fio_clock_source = FIO_PREFERRED_CLOCK_SOURCE;
45 int fio_clock_source_set = 0;
46 static enum fio_cs fio_clock_source_inited = CS_INVAL;
47
48 #ifdef FIO_DEBUG_TIME
49
50 #define HASH_BITS       8
51 #define HASH_SIZE       (1 << HASH_BITS)
52
53 static struct flist_head hash[HASH_SIZE];
54 static int gtod_inited;
55
56 struct gtod_log {
57         struct flist_head list;
58         void *caller;
59         unsigned long calls;
60 };
61
62 static struct gtod_log *find_hash(void *caller)
63 {
64         unsigned long h = hash_ptr(caller, HASH_BITS);
65         struct flist_head *entry;
66
67         flist_for_each(entry, &hash[h]) {
68                 struct gtod_log *log = flist_entry(entry, struct gtod_log,
69                                                                         list);
70
71                 if (log->caller == caller)
72                         return log;
73         }
74
75         return NULL;
76 }
77
78 static void inc_caller(void *caller)
79 {
80         struct gtod_log *log = find_hash(caller);
81
82         if (!log) {
83                 unsigned long h;
84
85                 log = malloc(sizeof(*log));
86                 INIT_FLIST_HEAD(&log->list);
87                 log->caller = caller;
88                 log->calls = 0;
89
90                 h = hash_ptr(caller, HASH_BITS);
91                 flist_add_tail(&log->list, &hash[h]);
92         }
93
94         log->calls++;
95 }
96
97 static void gtod_log_caller(void *caller)
98 {
99         if (gtod_inited)
100                 inc_caller(caller);
101 }
102
103 static void fio_exit fio_dump_gtod(void)
104 {
105         unsigned long total_calls = 0;
106         int i;
107
108         for (i = 0; i < HASH_SIZE; i++) {
109                 struct flist_head *entry;
110                 struct gtod_log *log;
111
112                 flist_for_each(entry, &hash[i]) {
113                         log = flist_entry(entry, struct gtod_log, list);
114
115                         printf("function %p, calls %lu\n", log->caller,
116                                                                 log->calls);
117                         total_calls += log->calls;
118                 }
119         }
120
121         printf("Total %lu gettimeofday\n", total_calls);
122 }
123
124 static void fio_init gtod_init(void)
125 {
126         int i;
127
128         for (i = 0; i < HASH_SIZE; i++)
129                 INIT_FLIST_HEAD(&hash[i]);
130
131         gtod_inited = 1;
132 }
133
134 #endif /* FIO_DEBUG_TIME */
135
136 #ifdef CONFIG_CLOCK_GETTIME
137 static int fill_clock_gettime(struct timespec *ts)
138 {
139 #if defined(CONFIG_CLOCK_MONOTONIC_RAW)
140         return clock_gettime(CLOCK_MONOTONIC_RAW, ts);
141 #elif defined(CONFIG_CLOCK_MONOTONIC)
142         return clock_gettime(CLOCK_MONOTONIC, ts);
143 #else
144         return clock_gettime(CLOCK_REALTIME, ts);
145 #endif
146 }
147 #endif
148
149 static void __fio_gettime(struct timespec *tp)
150 {
151         switch (fio_clock_source) {
152 #ifdef CONFIG_GETTIMEOFDAY
153         case CS_GTOD: {
154                 struct timeval tv;
155                 gettimeofday(&tv, NULL);
156
157                 tp->tv_sec = tv.tv_sec;
158                 tp->tv_nsec = tv.tv_usec * 1000;
159                 break;
160                 }
161 #endif
162 #ifdef CONFIG_CLOCK_GETTIME
163         case CS_CGETTIME: {
164                 if (fill_clock_gettime(tp) < 0) {
165                         log_err("fio: clock_gettime fails\n");
166                         assert(0);
167                 }
168                 break;
169                 }
170 #endif
171 #ifdef ARCH_HAVE_CPU_CLOCK
172         case CS_CPUCLOCK: {
173                 uint64_t nsecs, t, multiples;
174                 struct tv_valid *tv;
175
176 #ifdef CONFIG_TLS_THREAD
177                 tv = &static_tv_valid;
178 #else
179                 tv = pthread_getspecific(tv_tls_key);
180 #endif
181
182                 t = get_cpu_clock();
183 #ifdef ARCH_CPU_CLOCK_WRAPS
184                 if (t < cycles_start && !cycles_wrap)
185                         cycles_wrap = 1;
186                 else if (cycles_wrap && t >= cycles_start && !tv->warned) {
187                         log_err("fio: double CPU clock wrap\n");
188                         tv->warned = 1;
189                 }
190 #endif
191 #ifdef ARCH_CPU_CLOCK_CYCLES_PER_USEC
192                 nsecs = t / ARCH_CPU_CLOCK_CYCLES_PER_USEC * 1000;
193 #else
194                 t -= cycles_start;
195                 multiples = t >> max_cycles_shift;
196                 nsecs = multiples * nsecs_for_max_cycles;
197                 nsecs += ((t & max_cycles_mask) * clock_mult) >> clock_shift;
198 #endif
199                 tp->tv_sec = nsecs / 1000000000ULL;
200                 tp->tv_nsec = nsecs % 1000000000ULL;
201                 break;
202                 }
203 #endif
204         default:
205                 log_err("fio: invalid clock source %d\n", fio_clock_source);
206                 break;
207         }
208 }
209
210 #ifdef FIO_DEBUG_TIME
211 void fio_gettime(struct timespec *tp, void *caller)
212 #else
213 void fio_gettime(struct timespec *tp, void fio_unused *caller)
214 #endif
215 {
216 #ifdef FIO_DEBUG_TIME
217         if (!caller)
218                 caller = __builtin_return_address(0);
219
220         gtod_log_caller(caller);
221 #endif
222         if (fio_unlikely(fio_gettime_offload(tp)))
223                 return;
224
225         __fio_gettime(tp);
226 }
227
228 #if defined(ARCH_HAVE_CPU_CLOCK) && !defined(ARCH_CPU_CLOCK_CYCLES_PER_USEC)
229 static unsigned long get_cycles_per_msec(void)
230 {
231         struct timespec s, e;
232         uint64_t c_s, c_e;
233         enum fio_cs old_cs = fio_clock_source;
234         uint64_t elapsed;
235
236 #ifdef CONFIG_CLOCK_GETTIME
237         fio_clock_source = CS_CGETTIME;
238 #else
239         fio_clock_source = CS_GTOD;
240 #endif
241         __fio_gettime(&s);
242
243         c_s = get_cpu_clock();
244         do {
245                 __fio_gettime(&e);
246
247                 elapsed = utime_since(&s, &e);
248                 if (elapsed >= 1280) {
249                         c_e = get_cpu_clock();
250                         break;
251                 }
252         } while (1);
253
254         fio_clock_source = old_cs;
255         return (c_e - c_s) * 1000 / elapsed;
256 }
257
258 #define NR_TIME_ITERS   50
259
260 static int calibrate_cpu_clock(void)
261 {
262         double delta, mean, S;
263         uint64_t minc, maxc, avg, cycles[NR_TIME_ITERS];
264         int i, samples, sft = 0;
265         unsigned long long tmp, max_ticks, max_mult;
266
267         cycles[0] = get_cycles_per_msec();
268         S = delta = mean = 0.0;
269         for (i = 0; i < NR_TIME_ITERS; i++) {
270                 cycles[i] = get_cycles_per_msec();
271                 delta = cycles[i] - mean;
272                 if (delta) {
273                         mean += delta / (i + 1.0);
274                         S += delta * (cycles[i] - mean);
275                 }
276         }
277
278         /*
279          * The most common platform clock breakage is returning zero
280          * indefinitely. Check for that and return failure.
281          */
282         if (!cycles[0] && !cycles[NR_TIME_ITERS - 1])
283                 return 1;
284
285         S = sqrt(S / (NR_TIME_ITERS - 1.0));
286
287         minc = -1ULL;
288         maxc = samples = avg = 0;
289         for (i = 0; i < NR_TIME_ITERS; i++) {
290                 double this = cycles[i];
291
292                 minc = min(cycles[i], minc);
293                 maxc = max(cycles[i], maxc);
294
295                 if ((fmax(this, mean) - fmin(this, mean)) > S)
296                         continue;
297                 samples++;
298                 avg += this;
299         }
300
301         S /= (double) NR_TIME_ITERS;
302
303         for (i = 0; i < NR_TIME_ITERS; i++)
304                 dprint(FD_TIME, "cycles[%d]=%llu\n", i, (unsigned long long) cycles[i]);
305
306         avg /= samples;
307         cycles_per_msec = avg;
308         dprint(FD_TIME, "avg: %llu\n", (unsigned long long) avg);
309         dprint(FD_TIME, "min=%llu, max=%llu, mean=%f, S=%f\n",
310                         (unsigned long long) minc,
311                         (unsigned long long) maxc, mean, S);
312
313         max_ticks = MAX_CLOCK_SEC * cycles_per_msec * 1000ULL;
314         max_mult = ULLONG_MAX / max_ticks;
315         dprint(FD_TIME, "\n\nmax_ticks=%llu, __builtin_clzll=%d, "
316                         "max_mult=%llu\n", max_ticks,
317                         __builtin_clzll(max_ticks), max_mult);
318
319         /*
320          * Find the largest shift count that will produce
321          * a multiplier that does not exceed max_mult
322          */
323         tmp = max_mult * cycles_per_msec / 1000000;
324         while (tmp > 1) {
325                 tmp >>= 1;
326                 sft++;
327                 dprint(FD_TIME, "tmp=%llu, sft=%u\n", tmp, sft);
328         }
329
330         clock_shift = sft;
331         clock_mult = (1ULL << sft) * 1000000 / cycles_per_msec;
332         dprint(FD_TIME, "clock_shift=%u, clock_mult=%llu\n", clock_shift,
333                                                         clock_mult);
334
335         /*
336          * Find the greatest power of 2 clock ticks that is less than the
337          * ticks in MAX_CLOCK_SEC_2STAGE
338          */
339         max_cycles_shift = max_cycles_mask = 0;
340         tmp = MAX_CLOCK_SEC * 1000ULL * cycles_per_msec;
341         dprint(FD_TIME, "tmp=%llu, max_cycles_shift=%u\n", tmp,
342                                                         max_cycles_shift);
343         while (tmp > 1) {
344                 tmp >>= 1;
345                 max_cycles_shift++;
346                 dprint(FD_TIME, "tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
347         }
348         /*
349          * if use use (1ULL << max_cycles_shift) * 1000 / cycles_per_msec
350          * here we will have a discontinuity every
351          * (1ULL << max_cycles_shift) cycles
352          */
353         nsecs_for_max_cycles = ((1ULL << max_cycles_shift) * clock_mult)
354                                         >> clock_shift;
355
356         /* Use a bitmask to calculate ticks % (1ULL << max_cycles_shift) */
357         for (tmp = 0; tmp < max_cycles_shift; tmp++)
358                 max_cycles_mask |= 1ULL << tmp;
359
360         dprint(FD_TIME, "max_cycles_shift=%u, 2^max_cycles_shift=%llu, "
361                         "nsecs_for_max_cycles=%llu, "
362                         "max_cycles_mask=%016llx\n",
363                         max_cycles_shift, (1ULL << max_cycles_shift),
364                         nsecs_for_max_cycles, max_cycles_mask);
365
366         cycles_start = get_cpu_clock();
367         dprint(FD_TIME, "cycles_start=%llu\n", cycles_start);
368         return 0;
369 }
370 #else
371 static int calibrate_cpu_clock(void)
372 {
373 #ifdef ARCH_CPU_CLOCK_CYCLES_PER_USEC
374         return 0;
375 #else
376         return 1;
377 #endif
378 }
379 #endif // ARCH_HAVE_CPU_CLOCK
380
381 #ifndef CONFIG_TLS_THREAD
382 void fio_local_clock_init(int is_thread)
383 {
384         struct tv_valid *t;
385
386         t = calloc(1, sizeof(*t));
387         if (pthread_setspecific(tv_tls_key, t)) {
388                 log_err("fio: can't set TLS key\n");
389                 assert(0);
390         }
391 }
392
393 static void kill_tv_tls_key(void *data)
394 {
395         free(data);
396 }
397 #else
398 void fio_local_clock_init(int is_thread)
399 {
400 }
401 #endif
402
403 void fio_clock_init(void)
404 {
405         if (fio_clock_source == fio_clock_source_inited)
406                 return;
407
408 #ifndef CONFIG_TLS_THREAD
409         if (pthread_key_create(&tv_tls_key, kill_tv_tls_key))
410                 log_err("fio: can't create TLS key\n");
411 #endif
412
413         fio_clock_source_inited = fio_clock_source;
414
415         if (calibrate_cpu_clock())
416                 tsc_reliable = false;
417
418         /*
419          * If the arch sets tsc_reliable != 0, then it must be good enough
420          * to use as THE clock source. For x86 CPUs, this means the TSC
421          * runs at a constant rate and is synced across CPU cores.
422          */
423         if (tsc_reliable) {
424                 if (!fio_clock_source_set && !fio_monotonic_clocktest(0))
425                         fio_clock_source = CS_CPUCLOCK;
426         } else if (fio_clock_source == CS_CPUCLOCK)
427                 log_info("fio: clocksource=cpu may not be reliable\n");
428 }
429
430 uint64_t ntime_since(const struct timespec *s, const struct timespec *e)
431 {
432        int64_t sec, nsec;
433
434        sec = e->tv_sec - s->tv_sec;
435        nsec = e->tv_nsec - s->tv_nsec;
436        if (sec > 0 && nsec < 0) {
437                sec--;
438                nsec += 1000000000LL;
439        }
440
441        /*
442         * time warp bug on some kernels?
443         */
444        if (sec < 0 || (sec == 0 && nsec < 0))
445                return 0;
446
447        return nsec + (sec * 1000000000LL);
448 }
449
450 uint64_t utime_since(const struct timespec *s, const struct timespec *e)
451 {
452         int64_t sec, usec;
453
454         sec = e->tv_sec - s->tv_sec;
455         usec = (e->tv_nsec - s->tv_nsec) / 1000;
456         if (sec > 0 && usec < 0) {
457                 sec--;
458                 usec += 1000000;
459         }
460
461         /*
462          * time warp bug on some kernels?
463          */
464         if (sec < 0 || (sec == 0 && usec < 0))
465                 return 0;
466
467         return usec + (sec * 1000000);
468 }
469
470 uint64_t utime_since_now(const struct timespec *s)
471 {
472         struct timespec t;
473 #ifdef FIO_DEBUG_TIME
474         void *p = __builtin_return_address(0);
475
476         fio_gettime(&t, p);
477 #else
478         fio_gettime(&t, NULL);
479 #endif
480
481         return utime_since(s, &t);
482 }
483
484 uint64_t mtime_since_tv(const struct timeval *s, const struct timeval *e)
485 {
486         int64_t sec, usec;
487
488         sec = e->tv_sec - s->tv_sec;
489         usec = (e->tv_usec - s->tv_usec);
490         if (sec > 0 && usec < 0) {
491                 sec--;
492                 usec += 1000000;
493         }
494
495         if (sec < 0 || (sec == 0 && usec < 0))
496                 return 0;
497
498         sec *= 1000;
499         usec /= 1000;
500         return sec + usec;
501 }
502
503 uint64_t mtime_since_now(const struct timespec *s)
504 {
505         struct timespec t;
506 #ifdef FIO_DEBUG_TIME
507         void *p = __builtin_return_address(0);
508
509         fio_gettime(&t, p);
510 #else
511         fio_gettime(&t, NULL);
512 #endif
513
514         return mtime_since(s, &t);
515 }
516
517 uint64_t mtime_since(const struct timespec *s, const struct timespec *e)
518 {
519         int64_t sec, usec;
520
521         sec = e->tv_sec - s->tv_sec;
522         usec = (e->tv_nsec - s->tv_nsec) / 1000;
523         if (sec > 0 && usec < 0) {
524                 sec--;
525                 usec += 1000000;
526         }
527
528         if (sec < 0 || (sec == 0 && usec < 0))
529                 return 0;
530
531         sec *= 1000;
532         usec /= 1000;
533         return sec + usec;
534 }
535
536 uint64_t time_since_now(const struct timespec *s)
537 {
538         return mtime_since_now(s) / 1000;
539 }
540
541 #if defined(FIO_HAVE_CPU_AFFINITY) && defined(ARCH_HAVE_CPU_CLOCK)  && \
542     defined(CONFIG_SFAA)
543
544 #define CLOCK_ENTRIES_DEBUG     100000
545 #define CLOCK_ENTRIES_TEST      10000
546
547 struct clock_entry {
548         uint32_t seq;
549         uint32_t cpu;
550         uint64_t tsc;
551 };
552
553 struct clock_thread {
554         pthread_t thread;
555         int cpu;
556         int debug;
557         pthread_mutex_t lock;
558         pthread_mutex_t started;
559         unsigned long nr_entries;
560         uint32_t *seq;
561         struct clock_entry *entries;
562 };
563
564 static inline uint32_t atomic32_inc_return(uint32_t *seq)
565 {
566         return 1 + __sync_fetch_and_add(seq, 1);
567 }
568
569 static void *clock_thread_fn(void *data)
570 {
571         struct clock_thread *t = data;
572         struct clock_entry *c;
573         os_cpu_mask_t cpu_mask;
574         uint32_t last_seq;
575         unsigned long long first;
576         int i;
577
578         if (fio_cpuset_init(&cpu_mask)) {
579                 int __err = errno;
580
581                 log_err("clock cpuset init failed: %s\n", strerror(__err));
582                 goto err_out;
583         }
584
585         fio_cpu_set(&cpu_mask, t->cpu);
586
587         if (fio_setaffinity(gettid(), cpu_mask) == -1) {
588                 int __err = errno;
589
590                 log_err("clock setaffinity failed: %s\n", strerror(__err));
591                 goto err;
592         }
593
594         pthread_mutex_lock(&t->lock);
595         pthread_mutex_unlock(&t->started);
596
597         first = get_cpu_clock();
598         last_seq = 0;
599         c = &t->entries[0];
600         for (i = 0; i < t->nr_entries; i++, c++) {
601                 uint32_t seq;
602                 uint64_t tsc;
603
604                 c->cpu = t->cpu;
605                 do {
606                         seq = atomic32_inc_return(t->seq);
607                         if (seq < last_seq)
608                                 break;
609                         tsc = get_cpu_clock();
610                 } while (seq != *t->seq);
611
612                 c->seq = seq;
613                 c->tsc = tsc;
614         }
615
616         if (t->debug) {
617                 unsigned long long clocks;
618
619                 clocks = t->entries[i - 1].tsc - t->entries[0].tsc;
620                 log_info("cs: cpu%3d: %llu clocks seen, first %llu\n", t->cpu,
621                                                         clocks, first);
622         }
623
624         /*
625          * The most common platform clock breakage is returning zero
626          * indefinitely. Check for that and return failure.
627          */
628         if (!t->entries[i - 1].tsc && !t->entries[0].tsc)
629                 goto err;
630
631         fio_cpuset_exit(&cpu_mask);
632         return NULL;
633 err:
634         fio_cpuset_exit(&cpu_mask);
635 err_out:
636         return (void *) 1;
637 }
638
639 static int clock_cmp(const void *p1, const void *p2)
640 {
641         const struct clock_entry *c1 = p1;
642         const struct clock_entry *c2 = p2;
643
644         if (c1->seq == c2->seq)
645                 log_err("cs: bug in atomic sequence!\n");
646
647         return c1->seq - c2->seq;
648 }
649
650 int fio_monotonic_clocktest(int debug)
651 {
652         struct clock_thread *cthreads;
653         unsigned int nr_cpus = cpus_online();
654         struct clock_entry *entries;
655         unsigned long nr_entries, tentries, failed = 0;
656         struct clock_entry *prev, *this;
657         uint32_t seq = 0;
658         unsigned int i;
659
660         if (debug) {
661                 log_info("cs: reliable_tsc: %s\n", tsc_reliable ? "yes" : "no");
662
663 #ifdef FIO_INC_DEBUG
664                 fio_debug |= 1U << FD_TIME;
665 #endif
666                 nr_entries = CLOCK_ENTRIES_DEBUG;
667         } else
668                 nr_entries = CLOCK_ENTRIES_TEST;
669
670         calibrate_cpu_clock();
671
672         if (debug) {
673 #ifdef FIO_INC_DEBUG
674                 fio_debug &= ~(1U << FD_TIME);
675 #endif
676         }
677
678         cthreads = malloc(nr_cpus * sizeof(struct clock_thread));
679         tentries = nr_entries * nr_cpus;
680         entries = malloc(tentries * sizeof(struct clock_entry));
681
682         if (debug)
683                 log_info("cs: Testing %u CPUs\n", nr_cpus);
684
685         for (i = 0; i < nr_cpus; i++) {
686                 struct clock_thread *t = &cthreads[i];
687
688                 t->cpu = i;
689                 t->debug = debug;
690                 t->seq = &seq;
691                 t->nr_entries = nr_entries;
692                 t->entries = &entries[i * nr_entries];
693                 pthread_mutex_init(&t->lock, NULL);
694                 pthread_mutex_init(&t->started, NULL);
695                 pthread_mutex_lock(&t->lock);
696                 if (pthread_create(&t->thread, NULL, clock_thread_fn, t)) {
697                         failed++;
698                         nr_cpus = i;
699                         break;
700                 }
701         }
702
703         for (i = 0; i < nr_cpus; i++) {
704                 struct clock_thread *t = &cthreads[i];
705
706                 pthread_mutex_lock(&t->started);
707         }
708
709         for (i = 0; i < nr_cpus; i++) {
710                 struct clock_thread *t = &cthreads[i];
711
712                 pthread_mutex_unlock(&t->lock);
713         }
714
715         for (i = 0; i < nr_cpus; i++) {
716                 struct clock_thread *t = &cthreads[i];
717                 void *ret;
718
719                 pthread_join(t->thread, &ret);
720                 if (ret)
721                         failed++;
722         }
723         free(cthreads);
724
725         if (failed) {
726                 if (debug)
727                         log_err("Clocksource test: %lu threads failed\n", failed);
728                 goto err;
729         }
730
731         qsort(entries, tentries, sizeof(struct clock_entry), clock_cmp);
732
733         /* silence silly gcc */
734         prev = NULL;
735         for (failed = i = 0; i < tentries; i++) {
736                 this = &entries[i];
737
738                 if (!i) {
739                         prev = this;
740                         continue;
741                 }
742
743                 if (prev->tsc > this->tsc) {
744                         uint64_t diff = prev->tsc - this->tsc;
745
746                         if (!debug) {
747                                 failed++;
748                                 break;
749                         }
750
751                         log_info("cs: CPU clock mismatch (diff=%llu):\n",
752                                                 (unsigned long long) diff);
753                         log_info("\t CPU%3u: TSC=%llu, SEQ=%u\n", prev->cpu, (unsigned long long) prev->tsc, prev->seq);
754                         log_info("\t CPU%3u: TSC=%llu, SEQ=%u\n", this->cpu, (unsigned long long) this->tsc, this->seq);
755                         failed++;
756                 }
757
758                 prev = this;
759         }
760
761         if (debug) {
762                 if (failed)
763                         log_info("cs: Failed: %lu\n", failed);
764                 else
765                         log_info("cs: Pass!\n");
766         }
767 err:
768         free(entries);
769         return !!failed;
770 }
771
772 #else /* defined(FIO_HAVE_CPU_AFFINITY) && defined(ARCH_HAVE_CPU_CLOCK) */
773
774 int fio_monotonic_clocktest(int debug)
775 {
776         if (debug)
777                 log_info("cs: current platform does not support CPU clocks\n");
778         return 1;
779 }
780
781 #endif