Cmd help type fix
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "hash.h"
39 #include "smalloc.h"
40 #include "verify.h"
41 #include "diskutil.h"
42
43 unsigned long page_mask;
44 unsigned long page_size;
45 #define ALIGN(buf)      \
46         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
47
48 int groupid = 0;
49 int thread_number = 0;
50 int nr_process = 0;
51 int nr_thread = 0;
52 int shm_id = 0;
53 int temp_stall_ts;
54 unsigned long done_secs = 0;
55
56 static struct fio_mutex *startup_mutex;
57 static struct fio_mutex *writeout_mutex;
58 static volatile int fio_abort;
59 static int exit_value;
60 static struct itimerval itimer;
61 static pthread_t gtod_thread;
62
63 struct io_log *agg_io_log[2];
64
65 #define TERMINATE_ALL           (-1)
66 #define JOB_START_TIMEOUT       (5 * 1000)
67
68 void td_set_runstate(struct thread_data *td, int runstate)
69 {
70         if (td->runstate == runstate)
71                 return;
72
73         dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
74                                                 td->runstate, runstate);
75         td->runstate = runstate;
76 }
77
78 static void terminate_threads(int group_id)
79 {
80         struct thread_data *td;
81         int i;
82
83         dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
84
85         for_each_td(td, i) {
86                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
87                         dprint(FD_PROCESS, "setting terminate on %s/%d\n",
88                                                 td->o.name, (int) td->pid);
89                         td->terminate = 1;
90                         td->o.start_delay = 0;
91
92                         /*
93                          * if the thread is running, just let it exit
94                          */
95                         if (td->runstate < TD_RUNNING)
96                                 kill(td->pid, SIGQUIT);
97                         else {
98                                 struct ioengine_ops *ops = td->io_ops;
99
100                                 if (ops && (ops->flags & FIO_SIGQUIT))
101                                         kill(td->pid, SIGQUIT);
102                         }
103                 }
104         }
105 }
106
107 static void status_timer_arm(void)
108 {
109         itimer.it_value.tv_sec = 0;
110         itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
111         setitimer(ITIMER_REAL, &itimer, NULL);
112 }
113
114 static void sig_alrm(int fio_unused sig)
115 {
116         if (threads) {
117                 update_io_ticks();
118                 print_thread_status();
119                 status_timer_arm();
120         }
121 }
122
123 /*
124  * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
125  */
126 static void sig_quit(int sig)
127 {
128 }
129
130 static void sig_int(int sig)
131 {
132         if (threads) {
133                 printf("\nfio: terminating on signal %d\n", sig);
134                 fflush(stdout);
135                 terminate_threads(TERMINATE_ALL);
136         }
137 }
138
139 static void sig_ill(int fio_unused sig)
140 {
141         if (!threads)
142                 return;
143
144         log_err("fio: illegal instruction. your cpu does not support "
145                 "the sse4.2 instruction for crc32c\n");
146         terminate_threads(TERMINATE_ALL);
147         exit(4);
148 }
149
150 static void set_sig_handlers(void)
151 {
152         struct sigaction act;
153
154         memset(&act, 0, sizeof(act));
155         act.sa_handler = sig_alrm;
156         act.sa_flags = SA_RESTART;
157         sigaction(SIGALRM, &act, NULL);
158
159         memset(&act, 0, sizeof(act));
160         act.sa_handler = sig_int;
161         act.sa_flags = SA_RESTART;
162         sigaction(SIGINT, &act, NULL);
163
164         memset(&act, 0, sizeof(act));
165         act.sa_handler = sig_ill;
166         act.sa_flags = SA_RESTART;
167         sigaction(SIGILL, &act, NULL);
168
169         memset(&act, 0, sizeof(act));
170         act.sa_handler = sig_quit;
171         act.sa_flags = SA_RESTART;
172         sigaction(SIGQUIT, &act, NULL);
173 }
174
175 /*
176  * Check if we are above the minimum rate given.
177  */
178 static int __check_min_rate(struct thread_data *td, struct timeval *now,
179                             enum td_ddir ddir)
180 {
181         unsigned long long bytes = 0;
182         unsigned long iops = 0;
183         unsigned long spent;
184         unsigned long rate;
185         unsigned int ratemin = 0;
186         unsigned int rate_iops = 0;
187         unsigned int rate_iops_min = 0;
188
189         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
190                 return 0;
191
192         /*
193          * allow a 2 second settle period in the beginning
194          */
195         if (mtime_since(&td->start, now) < 2000)
196                 return 0;
197
198         iops += td->io_blocks[ddir];
199         bytes += td->this_io_bytes[ddir];
200         ratemin += td->o.ratemin[ddir];
201         rate_iops += td->o.rate_iops[ddir];
202         rate_iops_min += td->o.rate_iops_min[ddir];
203
204         /*
205          * if rate blocks is set, sample is running
206          */
207         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
208                 spent = mtime_since(&td->lastrate[ddir], now);
209                 if (spent < td->o.ratecycle)
210                         return 0;
211
212                 if (td->o.rate[ddir]) {
213                         /*
214                          * check bandwidth specified rate
215                          */
216                         if (bytes < td->rate_bytes[ddir]) {
217                                 log_err("%s: min rate %u not met\n", td->o.name,
218                                                                 ratemin);
219                                 return 1;
220                         } else {
221                                 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
222                                 if (rate < ratemin ||
223                                     bytes < td->rate_bytes[ddir]) {
224                                         log_err("%s: min rate %u not met, got"
225                                                 " %luKiB/sec\n", td->o.name,
226                                                         ratemin, rate);
227                                         return 1;
228                                 }
229                         }
230                 } else {
231                         /*
232                          * checks iops specified rate
233                          */
234                         if (iops < rate_iops) {
235                                 log_err("%s: min iops rate %u not met\n",
236                                                 td->o.name, rate_iops);
237                                 return 1;
238                         } else {
239                                 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
240                                 if (rate < rate_iops_min ||
241                                     iops < td->rate_blocks[ddir]) {
242                                         log_err("%s: min iops rate %u not met,"
243                                                 " got %lu\n", td->o.name,
244                                                         rate_iops_min, rate);
245                                 }
246                         }
247                 }
248         }
249
250         td->rate_bytes[ddir] = bytes;
251         td->rate_blocks[ddir] = iops;
252         memcpy(&td->lastrate[ddir], now, sizeof(*now));
253         return 0;
254 }
255
256 static int check_min_rate(struct thread_data *td, struct timeval *now,
257                           unsigned long *bytes_done)
258 {
259         int ret = 0;
260
261         if (bytes_done[0])
262                 ret |= __check_min_rate(td, now, 0);
263         if (bytes_done[1])
264                 ret |= __check_min_rate(td, now, 1);
265
266         return ret;
267 }
268
269 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
270 {
271         if (!td->o.timeout)
272                 return 0;
273         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
274                 return 1;
275
276         return 0;
277 }
278
279 /*
280  * When job exits, we can cancel the in-flight IO if we are using async
281  * io. Attempt to do so.
282  */
283 static void cleanup_pending_aio(struct thread_data *td)
284 {
285         struct flist_head *entry, *n;
286         struct io_u *io_u;
287         int r;
288
289         /*
290          * get immediately available events, if any
291          */
292         r = io_u_queued_complete(td, 0, NULL);
293         if (r < 0)
294                 return;
295
296         /*
297          * now cancel remaining active events
298          */
299         if (td->io_ops->cancel) {
300                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
301                         io_u = flist_entry(entry, struct io_u, list);
302
303                         /*
304                          * if the io_u isn't in flight, then that generally
305                          * means someone leaked an io_u. complain but fix
306                          * it up, so we don't stall here.
307                          */
308                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
309                                 log_err("fio: non-busy IO on busy list\n");
310                                 put_io_u(td, io_u);
311                         } else {
312                                 r = td->io_ops->cancel(td, io_u);
313                                 if (!r)
314                                         put_io_u(td, io_u);
315                         }
316                 }
317         }
318
319         if (td->cur_depth)
320                 r = io_u_queued_complete(td, td->cur_depth, NULL);
321 }
322
323 /*
324  * Helper to handle the final sync of a file. Works just like the normal
325  * io path, just does everything sync.
326  */
327 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
328 {
329         struct io_u *io_u = __get_io_u(td);
330         int ret;
331
332         if (!io_u)
333                 return 1;
334
335         io_u->ddir = DDIR_SYNC;
336         io_u->file = f;
337
338         if (td_io_prep(td, io_u)) {
339                 put_io_u(td, io_u);
340                 return 1;
341         }
342
343 requeue:
344         ret = td_io_queue(td, io_u);
345         if (ret < 0) {
346                 td_verror(td, io_u->error, "td_io_queue");
347                 put_io_u(td, io_u);
348                 return 1;
349         } else if (ret == FIO_Q_QUEUED) {
350                 if (io_u_queued_complete(td, 1, NULL) < 0)
351                         return 1;
352         } else if (ret == FIO_Q_COMPLETED) {
353                 if (io_u->error) {
354                         td_verror(td, io_u->error, "td_io_queue");
355                         return 1;
356                 }
357
358                 if (io_u_sync_complete(td, io_u, NULL) < 0)
359                         return 1;
360         } else if (ret == FIO_Q_BUSY) {
361                 if (td_io_commit(td))
362                         return 1;
363                 goto requeue;
364         }
365
366         return 0;
367 }
368
369 static inline void update_tv_cache(struct thread_data *td)
370 {
371         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
372                 fio_gettime(&td->tv_cache, NULL);
373 }
374
375 static int break_on_this_error(struct thread_data *td, int *retptr)
376 {
377         int ret = *retptr;
378
379         if (ret < 0 || td->error) {
380                 int err;
381
382                 if (!td->o.continue_on_error)
383                         return 1;
384
385                 if (ret < 0)
386                         err = -ret;
387                 else
388                         err = td->error;
389
390                 update_error_count(td, err);
391
392                 if (td_non_fatal_error(err)) {
393                         /*
394                          * Continue with the I/Os in case of
395                          * a non fatal error.
396                          */
397                         td_clear_error(td);
398                         *retptr = 0;
399                         return 0;
400                 } else {
401                         /*
402                          * Stop the I/O in case of a fatal
403                          * error.
404                          */
405                         return 1;
406                 }
407         }
408
409         return 0;
410 }
411
412 /*
413  * The main verify engine. Runs over the writes we previously submitted,
414  * reads the blocks back in, and checks the crc/md5 of the data.
415  */
416 static void do_verify(struct thread_data *td)
417 {
418         struct fio_file *f;
419         struct io_u *io_u;
420         int ret, min_events;
421         unsigned int i;
422
423         /*
424          * sync io first and invalidate cache, to make sure we really
425          * read from disk.
426          */
427         for_each_file(td, f, i) {
428                 if (!fio_file_open(f))
429                         continue;
430                 if (fio_io_sync(td, f))
431                         break;
432                 if (file_invalidate_cache(td, f))
433                         break;
434         }
435
436         if (td->error)
437                 return;
438
439         td_set_runstate(td, TD_VERIFYING);
440
441         io_u = NULL;
442         while (!td->terminate) {
443                 int ret2, full;
444
445                 io_u = __get_io_u(td);
446                 if (!io_u)
447                         break;
448
449                 update_tv_cache(td);
450
451                 if (runtime_exceeded(td, &td->tv_cache)) {
452                         put_io_u(td, io_u);
453                         td->terminate = 1;
454                         break;
455                 }
456
457                 if (get_next_verify(td, io_u)) {
458                         put_io_u(td, io_u);
459                         break;
460                 }
461
462                 if (td_io_prep(td, io_u)) {
463                         put_io_u(td, io_u);
464                         break;
465                 }
466
467                 io_u->end_io = verify_io_u;
468
469                 ret = td_io_queue(td, io_u);
470                 switch (ret) {
471                 case FIO_Q_COMPLETED:
472                         if (io_u->error) {
473                                 ret = -io_u->error;
474                                 clear_io_u(td, io_u);
475                         } else if (io_u->resid) {
476                                 int bytes = io_u->xfer_buflen - io_u->resid;
477                                 struct fio_file *f = io_u->file;
478
479                                 /*
480                                  * zero read, fail
481                                  */
482                                 if (!bytes) {
483                                         td_verror(td, EIO, "full resid");
484                                         put_io_u(td, io_u);
485                                         break;
486                                 }
487
488                                 io_u->xfer_buflen = io_u->resid;
489                                 io_u->xfer_buf += bytes;
490                                 io_u->offset += bytes;
491
492                                 td->ts.short_io_u[io_u->ddir]++;
493
494                                 if (io_u->offset == f->real_file_size)
495                                         goto sync_done;
496
497                                 requeue_io_u(td, &io_u);
498                         } else {
499 sync_done:
500                                 ret = io_u_sync_complete(td, io_u, NULL);
501                                 if (ret < 0)
502                                         break;
503                         }
504                         continue;
505                 case FIO_Q_QUEUED:
506                         break;
507                 case FIO_Q_BUSY:
508                         requeue_io_u(td, &io_u);
509                         ret2 = td_io_commit(td);
510                         if (ret2 < 0)
511                                 ret = ret2;
512                         break;
513                 default:
514                         assert(ret < 0);
515                         td_verror(td, -ret, "td_io_queue");
516                         break;
517                 }
518
519                 if (break_on_this_error(td, &ret))
520                         break;
521
522                 /*
523                  * if we can queue more, do so. but check if there are
524                  * completed io_u's first.
525                  */
526                 full = queue_full(td) || ret == FIO_Q_BUSY;
527                 if (full || !td->o.iodepth_batch_complete) {
528                         min_events = td->o.iodepth_batch_complete;
529                         if (full && !min_events)
530                                 min_events = 1;
531
532                         do {
533                                 /*
534                                  * Reap required number of io units, if any,
535                                  * and do the verification on them through
536                                  * the callback handler
537                                  */
538                                 if (io_u_queued_complete(td, min_events, NULL) < 0) {
539                                         ret = -1;
540                                         break;
541                                 }
542                         } while (full && (td->cur_depth > td->o.iodepth_low));
543                 }
544                 if (ret < 0)
545                         break;
546         }
547
548         if (!td->error) {
549                 min_events = td->cur_depth;
550
551                 if (min_events)
552                         ret = io_u_queued_complete(td, min_events, NULL);
553         } else
554                 cleanup_pending_aio(td);
555
556         td_set_runstate(td, TD_RUNNING);
557 }
558
559 /*
560  * Main IO worker function. It retrieves io_u's to process and queues
561  * and reaps them, checking for rate and errors along the way.
562  */
563 static void do_io(struct thread_data *td)
564 {
565         unsigned int i;
566         int ret = 0;
567
568         if (in_ramp_time(td))
569                 td_set_runstate(td, TD_RAMP);
570         else
571                 td_set_runstate(td, TD_RUNNING);
572
573         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
574                 struct timeval comp_time;
575                 unsigned long bytes_done[2] = { 0, 0 };
576                 int min_evts = 0;
577                 struct io_u *io_u;
578                 int ret2, full;
579
580                 if (td->terminate)
581                         break;
582
583                 io_u = get_io_u(td);
584                 if (!io_u)
585                         break;
586
587                 update_tv_cache(td);
588
589                 if (runtime_exceeded(td, &td->tv_cache)) {
590                         put_io_u(td, io_u);
591                         td->terminate = 1;
592                         break;
593                 }
594
595                 /*
596                  * Add verification end_io handler, if asked to verify
597                  * a previously written file.
598                  */
599                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
600                         io_u->end_io = verify_io_u;
601                         td_set_runstate(td, TD_VERIFYING);
602                 } else if (in_ramp_time(td))
603                         td_set_runstate(td, TD_RAMP);
604                 else
605                         td_set_runstate(td, TD_RUNNING);
606
607                 ret = td_io_queue(td, io_u);
608                 switch (ret) {
609                 case FIO_Q_COMPLETED:
610                         if (io_u->error) {
611                                 ret = -io_u->error;
612                                 clear_io_u(td, io_u);
613                         } else if (io_u->resid) {
614                                 int bytes = io_u->xfer_buflen - io_u->resid;
615                                 struct fio_file *f = io_u->file;
616
617                                 /*
618                                  * zero read, fail
619                                  */
620                                 if (!bytes) {
621                                         td_verror(td, EIO, "full resid");
622                                         put_io_u(td, io_u);
623                                         break;
624                                 }
625
626                                 io_u->xfer_buflen = io_u->resid;
627                                 io_u->xfer_buf += bytes;
628                                 io_u->offset += bytes;
629
630                                 td->ts.short_io_u[io_u->ddir]++;
631
632                                 if (io_u->offset == f->real_file_size)
633                                         goto sync_done;
634
635                                 requeue_io_u(td, &io_u);
636                         } else {
637 sync_done:
638                                 if (__should_check_rate(td, 0) ||
639                                     __should_check_rate(td, 1))
640                                         fio_gettime(&comp_time, NULL);
641
642                                 ret = io_u_sync_complete(td, io_u, bytes_done);
643                                 if (ret < 0)
644                                         break;
645                         }
646                         break;
647                 case FIO_Q_QUEUED:
648                         /*
649                          * if the engine doesn't have a commit hook,
650                          * the io_u is really queued. if it does have such
651                          * a hook, it has to call io_u_queued() itself.
652                          */
653                         if (td->io_ops->commit == NULL)
654                                 io_u_queued(td, io_u);
655                         break;
656                 case FIO_Q_BUSY:
657                         requeue_io_u(td, &io_u);
658                         ret2 = td_io_commit(td);
659                         if (ret2 < 0)
660                                 ret = ret2;
661                         break;
662                 default:
663                         assert(ret < 0);
664                         put_io_u(td, io_u);
665                         break;
666                 }
667
668                 if (break_on_this_error(td, &ret))
669                         break;
670
671                 /*
672                  * See if we need to complete some commands
673                  */
674                 full = queue_full(td) || ret == FIO_Q_BUSY;
675                 if (full || !td->o.iodepth_batch_complete) {
676                         min_evts = td->o.iodepth_batch_complete;
677                         if (full && !min_evts)
678                                 min_evts = 1;
679
680                         if (__should_check_rate(td, 0) ||
681                             __should_check_rate(td, 1))
682                                 fio_gettime(&comp_time, NULL);
683
684                         do {
685                                 ret = io_u_queued_complete(td, min_evts, bytes_done);
686                                 if (ret < 0)
687                                         break;
688
689                         } while (full && (td->cur_depth > td->o.iodepth_low));
690                 }
691
692                 if (ret < 0)
693                         break;
694                 if (!(bytes_done[0] + bytes_done[1]))
695                         continue;
696
697                 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
698                         if (check_min_rate(td, &comp_time, bytes_done)) {
699                                 if (exitall_on_terminate)
700                                         terminate_threads(td->groupid);
701                                 td_verror(td, EIO, "check_min_rate");
702                                 break;
703                         }
704                 }
705
706                 if (td->o.thinktime) {
707                         unsigned long long b;
708
709                         b = td->io_blocks[0] + td->io_blocks[1];
710                         if (!(b % td->o.thinktime_blocks)) {
711                                 int left;
712
713                                 if (td->o.thinktime_spin)
714                                         usec_spin(td->o.thinktime_spin);
715
716                                 left = td->o.thinktime - td->o.thinktime_spin;
717                                 if (left)
718                                         usec_sleep(td, left);
719                         }
720                 }
721         }
722
723         if (td->o.fill_device && td->error == ENOSPC) {
724                 td->error = 0;
725                 td->terminate = 1;
726         }
727         if (!td->error) {
728                 struct fio_file *f;
729
730                 i = td->cur_depth;
731                 if (i)
732                         ret = io_u_queued_complete(td, i, NULL);
733
734                 if (should_fsync(td) && td->o.end_fsync) {
735                         td_set_runstate(td, TD_FSYNCING);
736
737                         for_each_file(td, f, i) {
738                                 if (!fio_file_open(f))
739                                         continue;
740                                 fio_io_sync(td, f);
741                         }
742                 }
743         } else
744                 cleanup_pending_aio(td);
745
746         /*
747          * stop job if we failed doing any IO
748          */
749         if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
750                 td->done = 1;
751 }
752
753 static void cleanup_io_u(struct thread_data *td)
754 {
755         struct flist_head *entry, *n;
756         struct io_u *io_u;
757
758         flist_for_each_safe(entry, n, &td->io_u_freelist) {
759                 io_u = flist_entry(entry, struct io_u, list);
760
761                 flist_del(&io_u->list);
762                 free(io_u);
763         }
764
765         free_io_mem(td);
766 }
767
768 static int init_io_u(struct thread_data *td)
769 {
770         struct io_u *io_u;
771         unsigned int max_bs;
772         int cl_align, i, max_units;
773         char *p;
774
775         max_units = td->o.iodepth;
776         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
777         td->orig_buffer_size = (unsigned long long) max_bs
778                                         * (unsigned long long) max_units;
779
780         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
781                 unsigned long bs;
782
783                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
784                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
785         }
786
787         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
788                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
789                 return 1;
790         }
791
792         if (allocate_io_mem(td))
793                 return 1;
794
795         if (td->o.odirect)
796                 p = ALIGN(td->orig_buffer);
797         else
798                 p = td->orig_buffer;
799
800         cl_align = os_cache_line_size();
801
802         for (i = 0; i < max_units; i++) {
803                 void *ptr;
804
805                 if (td->terminate)
806                         return 1;
807
808                 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
809                         log_err("fio: posix_memalign=%s\n", strerror(errno));
810                         break;
811                 }
812
813                 io_u = ptr;
814                 memset(io_u, 0, sizeof(*io_u));
815                 INIT_FLIST_HEAD(&io_u->list);
816
817                 if (!(td->io_ops->flags & FIO_NOIO)) {
818                         io_u->buf = p + max_bs * i;
819
820                         if (td_write(td) && !td->o.refill_buffers)
821                                 io_u_fill_buffer(td, io_u, max_bs);
822                 }
823
824                 io_u->index = i;
825                 io_u->flags = IO_U_F_FREE;
826                 flist_add(&io_u->list, &td->io_u_freelist);
827         }
828
829         return 0;
830 }
831
832 static int switch_ioscheduler(struct thread_data *td)
833 {
834         char tmp[256], tmp2[128];
835         FILE *f;
836         int ret;
837
838         if (td->io_ops->flags & FIO_DISKLESSIO)
839                 return 0;
840
841         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
842
843         f = fopen(tmp, "r+");
844         if (!f) {
845                 if (errno == ENOENT) {
846                         log_err("fio: os or kernel doesn't support IO scheduler"
847                                 " switching\n");
848                         return 0;
849                 }
850                 td_verror(td, errno, "fopen iosched");
851                 return 1;
852         }
853
854         /*
855          * Set io scheduler.
856          */
857         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
858         if (ferror(f) || ret != 1) {
859                 td_verror(td, errno, "fwrite");
860                 fclose(f);
861                 return 1;
862         }
863
864         rewind(f);
865
866         /*
867          * Read back and check that the selected scheduler is now the default.
868          */
869         ret = fread(tmp, 1, sizeof(tmp), f);
870         if (ferror(f) || ret < 0) {
871                 td_verror(td, errno, "fread");
872                 fclose(f);
873                 return 1;
874         }
875
876         sprintf(tmp2, "[%s]", td->o.ioscheduler);
877         if (!strstr(tmp, tmp2)) {
878                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
879                 td_verror(td, EINVAL, "iosched_switch");
880                 fclose(f);
881                 return 1;
882         }
883
884         fclose(f);
885         return 0;
886 }
887
888 static int keep_running(struct thread_data *td)
889 {
890         unsigned long long io_done;
891
892         if (td->done)
893                 return 0;
894         if (td->o.time_based)
895                 return 1;
896         if (td->o.loops) {
897                 td->o.loops--;
898                 return 1;
899         }
900
901         io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
902                         + td->io_skip_bytes;
903         if (io_done < td->o.size)
904                 return 1;
905
906         return 0;
907 }
908
909 static void reset_io_counters(struct thread_data *td)
910 {
911         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
912         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
913         td->zone_bytes = 0;
914         td->rate_bytes[0] = td->rate_bytes[1] = 0;
915         td->rate_blocks[0] = td->rate_blocks[1] = 0;
916
917         td->last_was_sync = 0;
918
919         /*
920          * reset file done count if we are to start over
921          */
922         if (td->o.time_based || td->o.loops)
923                 td->nr_done_files = 0;
924
925         /*
926          * Set the same seed to get repeatable runs
927          */
928         td_fill_rand_seeds(td);
929 }
930
931 void reset_all_stats(struct thread_data *td)
932 {
933         struct timeval tv;
934         int i;
935
936         reset_io_counters(td);
937
938         for (i = 0; i < 2; i++) {
939                 td->io_bytes[i] = 0;
940                 td->io_blocks[i] = 0;
941                 td->io_issues[i] = 0;
942                 td->ts.total_io_u[i] = 0;
943         }
944         
945         fio_gettime(&tv, NULL);
946         memcpy(&td->epoch, &tv, sizeof(tv));
947         memcpy(&td->start, &tv, sizeof(tv));
948 }
949
950 static void clear_io_state(struct thread_data *td)
951 {
952         struct fio_file *f;
953         unsigned int i;
954
955         reset_io_counters(td);
956
957         close_files(td);
958         for_each_file(td, f, i)
959                 fio_file_clear_done(f);
960 }
961
962 static int exec_string(const char *string)
963 {
964         int ret, newlen = strlen(string) + 1 + 8;
965         char *str;
966
967         str = malloc(newlen);
968         sprintf(str, "sh -c %s", string);
969
970         ret = system(str);
971         if (ret == -1)
972                 log_err("fio: exec of cmd <%s> failed\n", str);
973
974         free(str);
975         return ret;
976 }
977
978 /*
979  * Entry point for the thread based jobs. The process based jobs end up
980  * here as well, after a little setup.
981  */
982 static void *thread_main(void *data)
983 {
984         unsigned long long runtime[2], elapsed;
985         struct thread_data *td = data;
986         int clear_state;
987
988         if (!td->o.use_thread)
989                 setsid();
990
991         td->pid = getpid();
992
993         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
994
995         INIT_FLIST_HEAD(&td->io_u_freelist);
996         INIT_FLIST_HEAD(&td->io_u_busylist);
997         INIT_FLIST_HEAD(&td->io_u_requeues);
998         INIT_FLIST_HEAD(&td->io_log_list);
999         INIT_FLIST_HEAD(&td->io_hist_list);
1000         td->io_hist_tree = RB_ROOT;
1001
1002         td_set_runstate(td, TD_INITIALIZED);
1003         dprint(FD_MUTEX, "up startup_mutex\n");
1004         fio_mutex_up(startup_mutex);
1005         dprint(FD_MUTEX, "wait on td->mutex\n");
1006         fio_mutex_down(td->mutex);
1007         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1008
1009         /*
1010          * the ->mutex mutex is now no longer used, close it to avoid
1011          * eating a file descriptor
1012          */
1013         fio_mutex_remove(td->mutex);
1014
1015         /*
1016          * May alter parameters that init_io_u() will use, so we need to
1017          * do this first.
1018          */
1019         if (init_iolog(td))
1020                 goto err;
1021
1022         if (init_io_u(td))
1023                 goto err;
1024
1025         if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
1026                 td_verror(td, errno, "cpu_set_affinity");
1027                 goto err;
1028         }
1029
1030         /*
1031          * If we have a gettimeofday() thread, make sure we exclude that
1032          * thread from this job
1033          */
1034         if (td->o.gtod_cpu) {
1035                 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1036                 if (fio_setaffinity(td) == -1) {
1037                         td_verror(td, errno, "cpu_set_affinity");
1038                         goto err;
1039                 }
1040         }
1041
1042         if (td->ioprio_set) {
1043                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1044                         td_verror(td, errno, "ioprio_set");
1045                         goto err;
1046                 }
1047         }
1048
1049         if (nice(td->o.nice) == -1) {
1050                 td_verror(td, errno, "nice");
1051                 goto err;
1052         }
1053
1054         if (td->o.ioscheduler && switch_ioscheduler(td))
1055                 goto err;
1056
1057         if (!td->o.create_serialize && setup_files(td))
1058                 goto err;
1059
1060         if (td_io_init(td))
1061                 goto err;
1062
1063         if (init_random_map(td))
1064                 goto err;
1065
1066         if (td->o.exec_prerun) {
1067                 if (exec_string(td->o.exec_prerun))
1068                         goto err;
1069         }
1070
1071         if (td->o.pre_read) {
1072                 if (pre_read_files(td) < 0)
1073                         goto err;
1074         }
1075
1076         fio_gettime(&td->epoch, NULL);
1077         getrusage(RUSAGE_SELF, &td->ts.ru_start);
1078
1079         runtime[0] = runtime[1] = 0;
1080         clear_state = 0;
1081         while (keep_running(td)) {
1082                 fio_gettime(&td->start, NULL);
1083                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1084                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1085
1086                 if (td->o.ratemin[0] || td->o.ratemin[1])
1087                         memcpy(&td->lastrate, &td->ts.stat_sample_time,
1088                                                         sizeof(td->lastrate));
1089
1090                 if (clear_state)
1091                         clear_io_state(td);
1092
1093                 prune_io_piece_log(td);
1094
1095                 do_io(td);
1096
1097                 clear_state = 1;
1098
1099                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1100                         elapsed = utime_since_now(&td->start);
1101                         runtime[DDIR_READ] += elapsed;
1102                 }
1103                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1104                         elapsed = utime_since_now(&td->start);
1105                         runtime[DDIR_WRITE] += elapsed;
1106                 }
1107
1108                 if (td->error || td->terminate)
1109                         break;
1110
1111                 if (!td->o.do_verify ||
1112                     td->o.verify == VERIFY_NONE ||
1113                     (td->io_ops->flags & FIO_UNIDIR))
1114                         continue;
1115
1116                 clear_io_state(td);
1117
1118                 fio_gettime(&td->start, NULL);
1119
1120                 do_verify(td);
1121
1122                 runtime[DDIR_READ] += utime_since_now(&td->start);
1123
1124                 if (td->error || td->terminate)
1125                         break;
1126         }
1127
1128         update_rusage_stat(td);
1129         td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1130         td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1131         td->ts.total_run_time = mtime_since_now(&td->epoch);
1132         td->ts.io_bytes[0] = td->io_bytes[0];
1133         td->ts.io_bytes[1] = td->io_bytes[1];
1134
1135         fio_mutex_down(writeout_mutex);
1136         if (td->ts.bw_log) {
1137                 if (td->o.bw_log_file) {
1138                         finish_log_named(td, td->ts.bw_log,
1139                                                 td->o.bw_log_file, "bw");
1140                 } else
1141                         finish_log(td, td->ts.bw_log, "bw");
1142         }
1143         if (td->ts.slat_log) {
1144                 if (td->o.lat_log_file) {
1145                         finish_log_named(td, td->ts.slat_log,
1146                                                 td->o.lat_log_file, "slat");
1147                 } else
1148                         finish_log(td, td->ts.slat_log, "slat");
1149         }
1150         if (td->ts.clat_log) {
1151                 if (td->o.lat_log_file) {
1152                         finish_log_named(td, td->ts.clat_log,
1153                                                 td->o.lat_log_file, "clat");
1154                 } else
1155                         finish_log(td, td->ts.clat_log, "clat");
1156         }
1157         fio_mutex_up(writeout_mutex);
1158         if (td->o.exec_postrun)
1159                 exec_string(td->o.exec_postrun);
1160
1161         if (exitall_on_terminate)
1162                 terminate_threads(td->groupid);
1163
1164 err:
1165         if (td->error)
1166                 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1167                                                         td->verror);
1168         close_and_free_files(td);
1169         close_ioengine(td);
1170         cleanup_io_u(td);
1171
1172         if (td->o.cpumask_set) {
1173                 int ret = fio_cpuset_exit(&td->o.cpumask);
1174
1175                 td_verror(td, ret, "fio_cpuset_exit");
1176         }
1177
1178         /*
1179          * do this very late, it will log file closing as well
1180          */
1181         if (td->o.write_iolog_file)
1182                 write_iolog_close(td);
1183
1184         options_mem_free(td);
1185         td_set_runstate(td, TD_EXITED);
1186         return (void *) (unsigned long) td->error;
1187 }
1188
1189 /*
1190  * We cannot pass the td data into a forked process, so attach the td and
1191  * pass it to the thread worker.
1192  */
1193 static int fork_main(int shmid, int offset)
1194 {
1195         struct thread_data *td;
1196         void *data, *ret;
1197
1198         data = shmat(shmid, NULL, 0);
1199         if (data == (void *) -1) {
1200                 int __err = errno;
1201
1202                 perror("shmat");
1203                 return __err;
1204         }
1205
1206         td = data + offset * sizeof(struct thread_data);
1207         ret = thread_main(td);
1208         shmdt(data);
1209         return (int) (unsigned long) ret;
1210 }
1211
1212 /*
1213  * Run over the job map and reap the threads that have exited, if any.
1214  */
1215 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1216 {
1217         struct thread_data *td;
1218         int i, cputhreads, realthreads, pending, status, ret;
1219
1220         /*
1221          * reap exited threads (TD_EXITED -> TD_REAPED)
1222          */
1223         realthreads = pending = cputhreads = 0;
1224         for_each_td(td, i) {
1225                 int flags = 0;
1226
1227                 /*
1228                  * ->io_ops is NULL for a thread that has closed its
1229                  * io engine
1230                  */
1231                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1232                         cputhreads++;
1233                 else
1234                         realthreads++;
1235
1236                 if (!td->pid) {
1237                         pending++;
1238                         continue;
1239                 }
1240                 if (td->runstate == TD_REAPED)
1241                         continue;
1242                 if (td->o.use_thread) {
1243                         if (td->runstate == TD_EXITED) {
1244                                 td_set_runstate(td, TD_REAPED);
1245                                 goto reaped;
1246                         }
1247                         continue;
1248                 }
1249
1250                 flags = WNOHANG;
1251                 if (td->runstate == TD_EXITED)
1252                         flags = 0;
1253
1254                 /*
1255                  * check if someone quit or got killed in an unusual way
1256                  */
1257                 ret = waitpid(td->pid, &status, flags);
1258                 if (ret < 0) {
1259                         if (errno == ECHILD) {
1260                                 log_err("fio: pid=%d disappeared %d\n",
1261                                                 (int) td->pid, td->runstate);
1262                                 td_set_runstate(td, TD_REAPED);
1263                                 goto reaped;
1264                         }
1265                         perror("waitpid");
1266                 } else if (ret == td->pid) {
1267                         if (WIFSIGNALED(status)) {
1268                                 int sig = WTERMSIG(status);
1269
1270                                 if (sig != SIGQUIT)
1271                                         log_err("fio: pid=%d, got signal=%d\n",
1272                                                         (int) td->pid, sig);
1273                                 td_set_runstate(td, TD_REAPED);
1274                                 goto reaped;
1275                         }
1276                         if (WIFEXITED(status)) {
1277                                 if (WEXITSTATUS(status) && !td->error)
1278                                         td->error = WEXITSTATUS(status);
1279
1280                                 td_set_runstate(td, TD_REAPED);
1281                                 goto reaped;
1282                         }
1283                 }
1284
1285                 /*
1286                  * thread is not dead, continue
1287                  */
1288                 pending++;
1289                 continue;
1290 reaped:
1291                 (*nr_running)--;
1292                 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1293                 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1294                 if (!td->pid)
1295                         pending--;
1296
1297                 if (td->error)
1298                         exit_value++;
1299
1300                 done_secs += mtime_since_now(&td->epoch) / 1000;
1301         }
1302
1303         if (*nr_running == cputhreads && !pending && realthreads)
1304                 terminate_threads(TERMINATE_ALL);
1305 }
1306
1307 static void *gtod_thread_main(void *data)
1308 {
1309         fio_mutex_up(startup_mutex);
1310
1311         /*
1312          * As long as we have jobs around, update the clock. It would be nice
1313          * to have some way of NOT hammering that CPU with gettimeofday(),
1314          * but I'm not sure what to use outside of a simple CPU nop to relax
1315          * it - we don't want to lose precision.
1316          */
1317         while (threads) {
1318                 fio_gtod_update();
1319                 nop;
1320         }
1321
1322         return NULL;
1323 }
1324
1325 static int fio_start_gtod_thread(void)
1326 {
1327         int ret;
1328
1329         ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1330         if (ret) {
1331                 log_err("Can't create gtod thread: %s\n", strerror(ret));
1332                 return 1;
1333         }
1334
1335         ret = pthread_detach(gtod_thread);
1336         if (ret) {
1337                 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1338                 return 1;
1339         }
1340
1341         dprint(FD_MUTEX, "wait on startup_mutex\n");
1342         fio_mutex_down(startup_mutex);
1343         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1344         return 0;
1345 }
1346
1347 /*
1348  * Main function for kicking off and reaping jobs, as needed.
1349  */
1350 static void run_threads(void)
1351 {
1352         struct thread_data *td;
1353         unsigned long spent;
1354         int i, todo, nr_running, m_rate, t_rate, nr_started;
1355
1356         if (fio_pin_memory())
1357                 return;
1358
1359         if (fio_gtod_offload && fio_start_gtod_thread())
1360                 return;
1361
1362         if (!terse_output) {
1363                 printf("Starting ");
1364                 if (nr_thread)
1365                         printf("%d thread%s", nr_thread,
1366                                                 nr_thread > 1 ? "s" : "");
1367                 if (nr_process) {
1368                         if (nr_thread)
1369                                 printf(" and ");
1370                         printf("%d process%s", nr_process,
1371                                                 nr_process > 1 ? "es" : "");
1372                 }
1373                 printf("\n");
1374                 fflush(stdout);
1375         }
1376
1377         set_sig_handlers();
1378
1379         todo = thread_number;
1380         nr_running = 0;
1381         nr_started = 0;
1382         m_rate = t_rate = 0;
1383
1384         for_each_td(td, i) {
1385                 print_status_init(td->thread_number - 1);
1386
1387                 if (!td->o.create_serialize) {
1388                         init_disk_util(td);
1389                         continue;
1390                 }
1391
1392                 /*
1393                  * do file setup here so it happens sequentially,
1394                  * we don't want X number of threads getting their
1395                  * client data interspersed on disk
1396                  */
1397                 if (setup_files(td)) {
1398                         exit_value++;
1399                         if (td->error)
1400                                 log_err("fio: pid=%d, err=%d/%s\n",
1401                                         (int) td->pid, td->error, td->verror);
1402                         td_set_runstate(td, TD_REAPED);
1403                         todo--;
1404                 } else {
1405                         struct fio_file *f;
1406                         unsigned int i;
1407
1408                         /*
1409                          * for sharing to work, each job must always open
1410                          * its own files. so close them, if we opened them
1411                          * for creation
1412                          */
1413                         for_each_file(td, f, i) {
1414                                 if (fio_file_open(f))
1415                                         td_io_close_file(td, f);
1416                         }
1417                 }
1418
1419                 init_disk_util(td);
1420         }
1421
1422         set_genesis_time();
1423
1424         while (todo) {
1425                 struct thread_data *map[MAX_JOBS];
1426                 struct timeval this_start;
1427                 int this_jobs = 0, left;
1428
1429                 /*
1430                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1431                  */
1432                 for_each_td(td, i) {
1433                         if (td->runstate != TD_NOT_CREATED)
1434                                 continue;
1435
1436                         /*
1437                          * never got a chance to start, killed by other
1438                          * thread for some reason
1439                          */
1440                         if (td->terminate) {
1441                                 todo--;
1442                                 continue;
1443                         }
1444
1445                         if (td->o.start_delay) {
1446                                 spent = mtime_since_genesis();
1447
1448                                 if (td->o.start_delay * 1000 > spent)
1449                                         continue;
1450                         }
1451
1452                         if (td->o.stonewall && (nr_started || nr_running)) {
1453                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1454                                                         td->o.name);
1455                                 break;
1456                         }
1457
1458                         /*
1459                          * Set state to created. Thread will transition
1460                          * to TD_INITIALIZED when it's done setting up.
1461                          */
1462                         td_set_runstate(td, TD_CREATED);
1463                         map[this_jobs++] = td;
1464                         nr_started++;
1465
1466                         if (td->o.use_thread) {
1467                                 int ret;
1468
1469                                 dprint(FD_PROCESS, "will pthread_create\n");
1470                                 ret = pthread_create(&td->thread, NULL,
1471                                                         thread_main, td);
1472                                 if (ret) {
1473                                         log_err("pthread_create: %s\n",
1474                                                         strerror(ret));
1475                                         nr_started--;
1476                                         break;
1477                                 }
1478                                 ret = pthread_detach(td->thread);
1479                                 if (ret)
1480                                         log_err("pthread_detach: %s",
1481                                                         strerror(ret));
1482                         } else {
1483                                 pid_t pid;
1484                                 dprint(FD_PROCESS, "will fork\n");
1485                                 pid = fork();
1486                                 if (!pid) {
1487                                         int ret = fork_main(shm_id, i);
1488
1489                                         _exit(ret);
1490                                 } else if (i == fio_debug_jobno)
1491                                         *fio_debug_jobp = pid;
1492                         }
1493                         dprint(FD_MUTEX, "wait on startup_mutex\n");
1494                         fio_mutex_down(startup_mutex);
1495                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1496                 }
1497
1498                 /*
1499                  * Wait for the started threads to transition to
1500                  * TD_INITIALIZED.
1501                  */
1502                 fio_gettime(&this_start, NULL);
1503                 left = this_jobs;
1504                 while (left && !fio_abort) {
1505                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1506                                 break;
1507
1508                         usleep(100000);
1509
1510                         for (i = 0; i < this_jobs; i++) {
1511                                 td = map[i];
1512                                 if (!td)
1513                                         continue;
1514                                 if (td->runstate == TD_INITIALIZED) {
1515                                         map[i] = NULL;
1516                                         left--;
1517                                 } else if (td->runstate >= TD_EXITED) {
1518                                         map[i] = NULL;
1519                                         left--;
1520                                         todo--;
1521                                         nr_running++; /* work-around... */
1522                                 }
1523                         }
1524                 }
1525
1526                 if (left) {
1527                         log_err("fio: %d jobs failed to start\n", left);
1528                         for (i = 0; i < this_jobs; i++) {
1529                                 td = map[i];
1530                                 if (!td)
1531                                         continue;
1532                                 kill(td->pid, SIGTERM);
1533                         }
1534                         break;
1535                 }
1536
1537                 /*
1538                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1539                  */
1540                 for_each_td(td, i) {
1541                         if (td->runstate != TD_INITIALIZED)
1542                                 continue;
1543
1544                         if (in_ramp_time(td))
1545                                 td_set_runstate(td, TD_RAMP);
1546                         else
1547                                 td_set_runstate(td, TD_RUNNING);
1548                         nr_running++;
1549                         nr_started--;
1550                         m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1551                         t_rate += td->o.rate[0] + td->o.rate[1];
1552                         todo--;
1553                         fio_mutex_up(td->mutex);
1554                 }
1555
1556                 reap_threads(&nr_running, &t_rate, &m_rate);
1557
1558                 if (todo)
1559                         usleep(100000);
1560         }
1561
1562         while (nr_running) {
1563                 reap_threads(&nr_running, &t_rate, &m_rate);
1564                 usleep(10000);
1565         }
1566
1567         update_io_ticks();
1568         fio_unpin_memory();
1569 }
1570
1571 int main(int argc, char *argv[])
1572 {
1573         long ps;
1574
1575         sinit();
1576
1577         /*
1578          * We need locale for number printing, if it isn't set then just
1579          * go with the US format.
1580          */
1581         if (!getenv("LC_NUMERIC"))
1582                 setlocale(LC_NUMERIC, "en_US");
1583
1584         if (parse_options(argc, argv))
1585                 return 1;
1586
1587         if (!thread_number)
1588                 return 0;
1589
1590         ps = sysconf(_SC_PAGESIZE);
1591         if (ps < 0) {
1592                 log_err("Failed to get page size\n");
1593                 return 1;
1594         }
1595
1596         page_size = ps;
1597         page_mask = ps - 1;
1598
1599         if (write_bw_log) {
1600                 setup_log(&agg_io_log[DDIR_READ]);
1601                 setup_log(&agg_io_log[DDIR_WRITE]);
1602         }
1603
1604         startup_mutex = fio_mutex_init(0);
1605         writeout_mutex = fio_mutex_init(1);
1606
1607         set_genesis_time();
1608
1609         status_timer_arm();
1610
1611         run_threads();
1612
1613         if (!fio_abort) {
1614                 show_run_stats();
1615                 if (write_bw_log) {
1616                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1617                         __finish_log(agg_io_log[DDIR_WRITE],
1618                                         "agg-write_bw.log");
1619                 }
1620         }
1621
1622         fio_mutex_remove(startup_mutex);
1623         fio_mutex_remove(writeout_mutex);
1624         return exit_value;
1625 }