Remove comment wrt sigaction() usage, it's deprecated
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "hash.h"
39 #include "smalloc.h"
40
41 unsigned long page_mask;
42 unsigned long page_size;
43 #define ALIGN(buf)      \
44         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46 int groupid = 0;
47 int thread_number = 0;
48 int nr_process = 0;
49 int nr_thread = 0;
50 int shm_id = 0;
51 int temp_stall_ts;
52 unsigned long done_secs = 0;
53
54 static struct fio_mutex *startup_mutex;
55 static volatile int fio_abort;
56 static int exit_value;
57 static struct itimerval itimer;
58
59 struct io_log *agg_io_log[2];
60
61 #define TERMINATE_ALL           (-1)
62 #define JOB_START_TIMEOUT       (5 * 1000)
63
64 static inline void td_set_runstate(struct thread_data *td, int runstate)
65 {
66         if (td->runstate == runstate)
67                 return;
68
69         dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70                                                 td->runstate, runstate);
71         td->runstate = runstate;
72 }
73
74 static void terminate_threads(int group_id)
75 {
76         struct thread_data *td;
77         int i;
78
79         dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81         for_each_td(td, i) {
82                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83                         dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84                                                 td->o.name, (int) td->pid);
85                         td->terminate = 1;
86                         td->o.start_delay = 0;
87
88                         /*
89                          * if the thread is running, just let it exit
90                          */
91                         if (td->runstate < TD_RUNNING)
92                                 kill(td->pid, SIGQUIT);
93                         else {
94                                 struct ioengine_ops *ops = td->io_ops;
95
96                                 if (ops && (ops->flags & FIO_SIGQUIT))
97                                         kill(td->pid, SIGQUIT);
98                         }
99                 }
100         }
101 }
102
103 static void status_timer_arm(void)
104 {
105         itimer.it_value.tv_sec = 0;
106         itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107         setitimer(ITIMER_REAL, &itimer, NULL);
108 }
109
110 static void sig_alrm(int sig)
111 {
112         if (threads) {
113                 update_io_ticks();
114                 print_thread_status();
115                 status_timer_arm();
116         }
117 }
118
119 static void sig_int(int sig)
120 {
121         if (threads) {
122                 printf("\nfio: terminating on signal %d\n", sig);
123                 fflush(stdout);
124                 terminate_threads(TERMINATE_ALL);
125         }
126 }
127
128 static void set_sig_handlers(void)
129 {
130         struct sigaction act;
131
132         memset(&act, 0, sizeof(act));
133         act.sa_handler = sig_alrm;
134         act.sa_flags = SA_RESTART;
135         sigaction(SIGALRM, &act, NULL);
136
137         memset(&act, 0, sizeof(act));
138         act.sa_handler = sig_int;
139         act.sa_flags = SA_RESTART;
140         sigaction(SIGINT, &act, NULL);
141 }
142
143 /*
144  * Check if we are above the minimum rate given.
145  */
146 static int check_min_rate(struct thread_data *td, struct timeval *now)
147 {
148         unsigned long long bytes = 0;
149         unsigned long iops = 0;
150         unsigned long spent;
151         unsigned long rate;
152
153         /*
154          * No minimum rate set, always ok
155          */
156         if (!td->o.ratemin && !td->o.rate_iops_min)
157                 return 0;
158
159         /*
160          * allow a 2 second settle period in the beginning
161          */
162         if (mtime_since(&td->start, now) < 2000)
163                 return 0;
164
165         if (td_read(td)) {
166                 iops += td->io_blocks[DDIR_READ];
167                 bytes += td->this_io_bytes[DDIR_READ];
168         }
169         if (td_write(td)) {
170                 iops += td->io_blocks[DDIR_WRITE];
171                 bytes += td->this_io_bytes[DDIR_WRITE];
172         }
173
174         /*
175          * if rate blocks is set, sample is running
176          */
177         if (td->rate_bytes || td->rate_blocks) {
178                 spent = mtime_since(&td->lastrate, now);
179                 if (spent < td->o.ratecycle)
180                         return 0;
181
182                 if (td->o.rate) {
183                         /*
184                          * check bandwidth specified rate
185                          */
186                         if (bytes < td->rate_bytes) {
187                                 log_err("%s: min rate %u not met\n", td->o.name,
188                                                                 td->o.ratemin);
189                                 return 1;
190                         } else {
191                                 rate = (bytes - td->rate_bytes) / spent;
192                                 if (rate < td->o.ratemin ||
193                                     bytes < td->rate_bytes) {
194                                         log_err("%s: min rate %u not met, got"
195                                                 " %luKiB/sec\n", td->o.name,
196                                                         td->o.ratemin, rate);
197                                         return 1;
198                                 }
199                         }
200                 } else {
201                         /*
202                          * checks iops specified rate
203                          */
204                         if (iops < td->o.rate_iops) {
205                                 log_err("%s: min iops rate %u not met\n",
206                                                 td->o.name, td->o.rate_iops);
207                                 return 1;
208                         } else {
209                                 rate = (iops - td->rate_blocks) / spent;
210                                 if (rate < td->o.rate_iops_min ||
211                                     iops < td->rate_blocks) {
212                                         log_err("%s: min iops rate %u not met,"
213                                                 " got %lu\n", td->o.name,
214                                                         td->o.rate_iops_min,
215                                                         rate);
216                                 }
217                         }
218                 }
219         }
220
221         td->rate_bytes = bytes;
222         td->rate_blocks = iops;
223         memcpy(&td->lastrate, now, sizeof(*now));
224         return 0;
225 }
226
227 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
228 {
229         if (!td->o.timeout)
230                 return 0;
231         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
232                 return 1;
233
234         return 0;
235 }
236
237 /*
238  * When job exits, we can cancel the in-flight IO if we are using async
239  * io. Attempt to do so.
240  */
241 static void cleanup_pending_aio(struct thread_data *td)
242 {
243         struct flist_head *entry, *n;
244         struct io_u *io_u;
245         int r;
246
247         /*
248          * get immediately available events, if any
249          */
250         r = io_u_queued_complete(td, 0);
251         if (r < 0)
252                 return;
253
254         /*
255          * now cancel remaining active events
256          */
257         if (td->io_ops->cancel) {
258                 flist_for_each_safe(entry, n, &td->io_u_busylist) {
259                         io_u = flist_entry(entry, struct io_u, list);
260
261                         /*
262                          * if the io_u isn't in flight, then that generally
263                          * means someone leaked an io_u. complain but fix
264                          * it up, so we don't stall here.
265                          */
266                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
267                                 log_err("fio: non-busy IO on busy list\n");
268                                 put_io_u(td, io_u);
269                         } else {
270                                 r = td->io_ops->cancel(td, io_u);
271                                 if (!r)
272                                         put_io_u(td, io_u);
273                         }
274                 }
275         }
276
277         if (td->cur_depth)
278                 r = io_u_queued_complete(td, td->cur_depth);
279 }
280
281 /*
282  * Helper to handle the final sync of a file. Works just like the normal
283  * io path, just does everything sync.
284  */
285 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
286 {
287         struct io_u *io_u = __get_io_u(td);
288         int ret;
289
290         if (!io_u)
291                 return 1;
292
293         io_u->ddir = DDIR_SYNC;
294         io_u->file = f;
295
296         if (td_io_prep(td, io_u)) {
297                 put_io_u(td, io_u);
298                 return 1;
299         }
300
301 requeue:
302         ret = td_io_queue(td, io_u);
303         if (ret < 0) {
304                 td_verror(td, io_u->error, "td_io_queue");
305                 put_io_u(td, io_u);
306                 return 1;
307         } else if (ret == FIO_Q_QUEUED) {
308                 if (io_u_queued_complete(td, 1) < 0)
309                         return 1;
310         } else if (ret == FIO_Q_COMPLETED) {
311                 if (io_u->error) {
312                         td_verror(td, io_u->error, "td_io_queue");
313                         return 1;
314                 }
315
316                 if (io_u_sync_complete(td, io_u) < 0)
317                         return 1;
318         } else if (ret == FIO_Q_BUSY) {
319                 if (td_io_commit(td))
320                         return 1;
321                 goto requeue;
322         }
323
324         return 0;
325 }
326
327 /*
328  * The main verify engine. Runs over the writes we previously submitted,
329  * reads the blocks back in, and checks the crc/md5 of the data.
330  */
331 static void do_verify(struct thread_data *td)
332 {
333         struct fio_file *f;
334         struct io_u *io_u;
335         int ret, min_events;
336         unsigned int i;
337
338         /*
339          * sync io first and invalidate cache, to make sure we really
340          * read from disk.
341          */
342         for_each_file(td, f, i) {
343                 if (!(f->flags & FIO_FILE_OPEN))
344                         continue;
345                 if (fio_io_sync(td, f))
346                         break;
347                 if (file_invalidate_cache(td, f))
348                         break;
349         }
350
351         if (td->error)
352                 return;
353
354         td_set_runstate(td, TD_VERIFYING);
355
356         io_u = NULL;
357         while (!td->terminate) {
358                 int ret2;
359
360                 io_u = __get_io_u(td);
361                 if (!io_u)
362                         break;
363
364                 if (runtime_exceeded(td, &io_u->start_time)) {
365                         put_io_u(td, io_u);
366                         td->terminate = 1;
367                         break;
368                 }
369
370                 if (get_next_verify(td, io_u)) {
371                         put_io_u(td, io_u);
372                         break;
373                 }
374
375                 if (td_io_prep(td, io_u)) {
376                         put_io_u(td, io_u);
377                         break;
378                 }
379
380                 io_u->end_io = verify_io_u;
381
382                 ret = td_io_queue(td, io_u);
383                 switch (ret) {
384                 case FIO_Q_COMPLETED:
385                         if (io_u->error)
386                                 ret = -io_u->error;
387                         else if (io_u->resid) {
388                                 int bytes = io_u->xfer_buflen - io_u->resid;
389                                 struct fio_file *f = io_u->file;
390
391                                 /*
392                                  * zero read, fail
393                                  */
394                                 if (!bytes) {
395                                         td_verror(td, EIO, "full resid");
396                                         put_io_u(td, io_u);
397                                         break;
398                                 }
399
400                                 io_u->xfer_buflen = io_u->resid;
401                                 io_u->xfer_buf += bytes;
402                                 io_u->offset += bytes;
403
404                                 td->ts.short_io_u[io_u->ddir]++;
405
406                                 if (io_u->offset == f->real_file_size)
407                                         goto sync_done;
408
409                                 requeue_io_u(td, &io_u);
410                         } else {
411 sync_done:
412                                 ret = io_u_sync_complete(td, io_u);
413                                 if (ret < 0)
414                                         break;
415                         }
416                         continue;
417                 case FIO_Q_QUEUED:
418                         break;
419                 case FIO_Q_BUSY:
420                         requeue_io_u(td, &io_u);
421                         ret2 = td_io_commit(td);
422                         if (ret2 < 0)
423                                 ret = ret2;
424                         break;
425                 default:
426                         assert(ret < 0);
427                         td_verror(td, -ret, "td_io_queue");
428                         break;
429                 }
430
431                 if (ret < 0 || td->error)
432                         break;
433
434                 /*
435                  * if we can queue more, do so. but check if there are
436                  * completed io_u's first.
437                  */
438                 min_events = 0;
439                 if (queue_full(td) || ret == FIO_Q_BUSY) {
440                         if (td->cur_depth >= td->o.iodepth_low)
441                                 min_events = td->cur_depth - td->o.iodepth_low;
442                         if (!min_events)
443                                 min_events = 1;
444                 }
445
446                 /*
447                  * Reap required number of io units, if any, and do the
448                  * verification on them through the callback handler
449                  */
450                 if (io_u_queued_complete(td, min_events) < 0)
451                         break;
452         }
453
454         if (!td->error) {
455                 min_events = td->cur_depth;
456
457                 if (min_events)
458                         ret = io_u_queued_complete(td, min_events);
459         } else
460                 cleanup_pending_aio(td);
461
462         td_set_runstate(td, TD_RUNNING);
463 }
464
465 /*
466  * Main IO worker function. It retrieves io_u's to process and queues
467  * and reaps them, checking for rate and errors along the way.
468  */
469 static void do_io(struct thread_data *td)
470 {
471         struct timeval s;
472         unsigned long usec;
473         unsigned int i;
474         int ret = 0;
475
476         td_set_runstate(td, TD_RUNNING);
477
478         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
479                 struct timeval comp_time;
480                 long bytes_done = 0;
481                 int min_evts = 0;
482                 struct io_u *io_u;
483                 int ret2;
484
485                 if (td->terminate)
486                         break;
487
488                 io_u = get_io_u(td);
489                 if (!io_u)
490                         break;
491
492                 memcpy(&s, &io_u->start_time, sizeof(s));
493
494                 if (runtime_exceeded(td, &s)) {
495                         put_io_u(td, io_u);
496                         td->terminate = 1;
497                         break;
498                 }
499
500                 /*
501                  * Add verification end_io handler, if asked to verify
502                  * a previously written file.
503                  */
504                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
505                         io_u->end_io = verify_io_u;
506                         td_set_runstate(td, TD_VERIFYING);
507                 } else
508                         td_set_runstate(td, TD_RUNNING);
509
510                 ret = td_io_queue(td, io_u);
511                 switch (ret) {
512                 case FIO_Q_COMPLETED:
513                         if (io_u->error)
514                                 ret = -io_u->error;
515                         else if (io_u->resid) {
516                                 int bytes = io_u->xfer_buflen - io_u->resid;
517                                 struct fio_file *f = io_u->file;
518
519                                 /*
520                                  * zero read, fail
521                                  */
522                                 if (!bytes) {
523                                         td_verror(td, EIO, "full resid");
524                                         put_io_u(td, io_u);
525                                         break;
526                                 }
527
528                                 io_u->xfer_buflen = io_u->resid;
529                                 io_u->xfer_buf += bytes;
530                                 io_u->offset += bytes;
531
532                                 td->ts.short_io_u[io_u->ddir]++;
533
534                                 if (io_u->offset == f->real_file_size)
535                                         goto sync_done;
536
537                                 requeue_io_u(td, &io_u);
538                         } else {
539 sync_done:
540                                 fio_gettime(&comp_time, NULL);
541                                 bytes_done = io_u_sync_complete(td, io_u);
542                                 if (bytes_done < 0)
543                                         ret = bytes_done;
544                         }
545                         break;
546                 case FIO_Q_QUEUED:
547                         /*
548                          * if the engine doesn't have a commit hook,
549                          * the io_u is really queued. if it does have such
550                          * a hook, it has to call io_u_queued() itself.
551                          */
552                         if (td->io_ops->commit == NULL)
553                                 io_u_queued(td, io_u);
554                         break;
555                 case FIO_Q_BUSY:
556                         requeue_io_u(td, &io_u);
557                         ret2 = td_io_commit(td);
558                         if (ret2 < 0)
559                                 ret = ret2;
560                         break;
561                 default:
562                         assert(ret < 0);
563                         put_io_u(td, io_u);
564                         break;
565                 }
566
567                 if (ret < 0 || td->error)
568                         break;
569
570                 /*
571                  * See if we need to complete some commands
572                  */
573                 if (queue_full(td) || ret == FIO_Q_BUSY) {
574                         min_evts = 0;
575                         if (td->cur_depth >= td->o.iodepth_low)
576                                 min_evts = td->cur_depth - td->o.iodepth_low;
577                         if (!min_evts)
578                                 min_evts = 1;
579                         fio_gettime(&comp_time, NULL);
580                         bytes_done = io_u_queued_complete(td, min_evts);
581                         if (bytes_done < 0)
582                                 break;
583                 }
584
585                 if (!bytes_done)
586                         continue;
587
588                 /*
589                  * the rate is batched for now, it should work for batches
590                  * of completions except the very first one which may look
591                  * a little bursty
592                  */
593                 usec = utime_since(&s, &comp_time);
594
595                 rate_throttle(td, usec, bytes_done);
596
597                 if (check_min_rate(td, &comp_time)) {
598                         if (exitall_on_terminate)
599                                 terminate_threads(td->groupid);
600                         td_verror(td, EIO, "check_min_rate");
601                         break;
602                 }
603
604                 if (td->o.thinktime) {
605                         unsigned long long b;
606
607                         b = td->io_blocks[0] + td->io_blocks[1];
608                         if (!(b % td->o.thinktime_blocks)) {
609                                 int left;
610
611                                 if (td->o.thinktime_spin)
612                                         __usec_sleep(td->o.thinktime_spin);
613
614                                 left = td->o.thinktime - td->o.thinktime_spin;
615                                 if (left)
616                                         usec_sleep(td, left);
617                         }
618                 }
619         }
620
621         if (td->o.fill_device && td->error == ENOSPC) {
622                 td->error = 0;
623                 td->terminate = 1;
624         }
625         if (!td->error) {
626                 struct fio_file *f;
627
628                 i = td->cur_depth;
629                 if (i)
630                         ret = io_u_queued_complete(td, i);
631
632                 if (should_fsync(td) && td->o.end_fsync) {
633                         td_set_runstate(td, TD_FSYNCING);
634
635                         for_each_file(td, f, i) {
636                                 if (!(f->flags & FIO_FILE_OPEN))
637                                         continue;
638                                 fio_io_sync(td, f);
639                         }
640                 }
641         } else
642                 cleanup_pending_aio(td);
643
644         /*
645          * stop job if we failed doing any IO
646          */
647         if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
648                 td->done = 1;
649 }
650
651 static void cleanup_io_u(struct thread_data *td)
652 {
653         struct flist_head *entry, *n;
654         struct io_u *io_u;
655
656         flist_for_each_safe(entry, n, &td->io_u_freelist) {
657                 io_u = flist_entry(entry, struct io_u, list);
658
659                 flist_del(&io_u->list);
660                 free(io_u);
661         }
662
663         free_io_mem(td);
664 }
665
666 static int init_io_u(struct thread_data *td)
667 {
668         struct io_u *io_u;
669         unsigned int max_bs;
670         int i, max_units;
671         char *p;
672
673         max_units = td->o.iodepth;
674         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
675         td->orig_buffer_size = (unsigned long long) max_bs
676                                         * (unsigned long long) max_units;
677
678         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
679                 unsigned long bs;
680
681                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
682                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
683         }
684
685         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
686                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
687                 return 1;
688         }
689
690         if (allocate_io_mem(td))
691                 return 1;
692
693         if (td->o.odirect)
694                 p = ALIGN(td->orig_buffer);
695         else
696                 p = td->orig_buffer;
697
698         for (i = 0; i < max_units; i++) {
699                 if (td->terminate)
700                         return 1;
701                 io_u = malloc(sizeof(*io_u));
702                 memset(io_u, 0, sizeof(*io_u));
703                 INIT_FLIST_HEAD(&io_u->list);
704
705                 if (!(td->io_ops->flags & FIO_NOIO)) {
706                         io_u->buf = p + max_bs * i;
707
708                         if (td_write(td) && !td->o.refill_buffers)
709                                 io_u_fill_buffer(td, io_u, max_bs);
710                 }
711
712                 io_u->index = i;
713                 io_u->flags = IO_U_F_FREE;
714                 flist_add(&io_u->list, &td->io_u_freelist);
715         }
716
717         io_u_init_timeout();
718
719         return 0;
720 }
721
722 static int switch_ioscheduler(struct thread_data *td)
723 {
724         char tmp[256], tmp2[128];
725         FILE *f;
726         int ret;
727
728         if (td->io_ops->flags & FIO_DISKLESSIO)
729                 return 0;
730
731         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
732
733         f = fopen(tmp, "r+");
734         if (!f) {
735                 if (errno == ENOENT) {
736                         log_err("fio: os or kernel doesn't support IO scheduler"
737                                 " switching\n");
738                         return 0;
739                 }
740                 td_verror(td, errno, "fopen iosched");
741                 return 1;
742         }
743
744         /*
745          * Set io scheduler.
746          */
747         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
748         if (ferror(f) || ret != 1) {
749                 td_verror(td, errno, "fwrite");
750                 fclose(f);
751                 return 1;
752         }
753
754         rewind(f);
755
756         /*
757          * Read back and check that the selected scheduler is now the default.
758          */
759         ret = fread(tmp, 1, sizeof(tmp), f);
760         if (ferror(f) || ret < 0) {
761                 td_verror(td, errno, "fread");
762                 fclose(f);
763                 return 1;
764         }
765
766         sprintf(tmp2, "[%s]", td->o.ioscheduler);
767         if (!strstr(tmp, tmp2)) {
768                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
769                 td_verror(td, EINVAL, "iosched_switch");
770                 fclose(f);
771                 return 1;
772         }
773
774         fclose(f);
775         return 0;
776 }
777
778 static int keep_running(struct thread_data *td)
779 {
780         unsigned long long io_done;
781
782         if (td->done)
783                 return 0;
784         if (td->o.time_based)
785                 return 1;
786         if (td->o.loops) {
787                 td->o.loops--;
788                 return 1;
789         }
790
791         io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
792                         + td->io_skip_bytes;
793         if (io_done < td->o.size)
794                 return 1;
795
796         return 0;
797 }
798
799 static int clear_io_state(struct thread_data *td)
800 {
801         struct fio_file *f;
802         unsigned int i;
803         int ret;
804
805         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
806         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
807         td->zone_bytes = 0;
808         td->rate_bytes = 0;
809         td->rate_blocks = 0;
810         td->rw_end_set[0] = td->rw_end_set[1] = 0;
811
812         td->last_was_sync = 0;
813
814         /*
815          * reset file done count if we are to start over
816          */
817         if (td->o.time_based || td->o.loops)
818                 td->nr_done_files = 0;
819
820         close_files(td);
821
822         ret = 0;
823         for_each_file(td, f, i) {
824                 f->flags &= ~FIO_FILE_DONE;
825                 ret = td_io_open_file(td, f);
826                 if (ret)
827                         break;
828         }
829
830         return ret;
831 }
832
833 /*
834  * Entry point for the thread based jobs. The process based jobs end up
835  * here as well, after a little setup.
836  */
837 static void *thread_main(void *data)
838 {
839         unsigned long long runtime[2], elapsed;
840         struct thread_data *td = data;
841         int clear_state;
842
843         if (!td->o.use_thread)
844                 setsid();
845
846         td->pid = getpid();
847
848         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
849
850         INIT_FLIST_HEAD(&td->io_u_freelist);
851         INIT_FLIST_HEAD(&td->io_u_busylist);
852         INIT_FLIST_HEAD(&td->io_u_requeues);
853         INIT_FLIST_HEAD(&td->io_log_list);
854         INIT_FLIST_HEAD(&td->io_hist_list);
855         td->io_hist_tree = RB_ROOT;
856
857         td_set_runstate(td, TD_INITIALIZED);
858         fio_mutex_up(startup_mutex);
859         fio_mutex_down(td->mutex);
860
861         /*
862          * the ->mutex mutex is now no longer used, close it to avoid
863          * eating a file descriptor
864          */
865         fio_mutex_remove(td->mutex);
866
867         /*
868          * May alter parameters that init_io_u() will use, so we need to
869          * do this first.
870          */
871         if (init_iolog(td))
872                 goto err;
873
874         if (init_io_u(td))
875                 goto err;
876
877         if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
878                 td_verror(td, errno, "cpu_set_affinity");
879                 goto err;
880         }
881
882         if (td->ioprio_set) {
883                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
884                         td_verror(td, errno, "ioprio_set");
885                         goto err;
886                 }
887         }
888
889         if (nice(td->o.nice) == -1) {
890                 td_verror(td, errno, "nice");
891                 goto err;
892         }
893
894         if (td->o.ioscheduler && switch_ioscheduler(td))
895                 goto err;
896
897         if (!td->o.create_serialize && setup_files(td))
898                 goto err;
899
900         if (td_io_init(td))
901                 goto err;
902
903         if (open_files(td))
904                 goto err;
905
906         if (init_random_map(td))
907                 goto err;
908
909         if (td->o.exec_prerun) {
910                 if (system(td->o.exec_prerun) < 0)
911                         goto err;
912         }
913
914         fio_gettime(&td->epoch, NULL);
915         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
916         getrusage(RUSAGE_SELF, &td->ts.ru_start);
917
918         runtime[0] = runtime[1] = 0;
919         clear_state = 0;
920         while (keep_running(td)) {
921                 fio_gettime(&td->start, NULL);
922                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
923
924                 if (td->o.ratemin)
925                         memcpy(&td->lastrate, &td->ts.stat_sample_time,
926                                                         sizeof(td->lastrate));
927
928                 if (clear_state && clear_io_state(td))
929                         break;
930
931                 prune_io_piece_log(td);
932
933                 do_io(td);
934
935                 clear_state = 1;
936
937                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
938                         if (td->rw_end_set[DDIR_READ])
939                                 elapsed = utime_since(&td->start,
940                                                       &td->rw_end[DDIR_READ]);
941                         else
942                                 elapsed = utime_since_now(&td->start);
943
944                         runtime[DDIR_READ] += elapsed;
945                 }
946                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
947                         if (td->rw_end_set[DDIR_WRITE])
948                                 elapsed = utime_since(&td->start,
949                                                       &td->rw_end[DDIR_WRITE]);
950                         else
951                                 elapsed = utime_since_now(&td->start);
952
953                         runtime[DDIR_WRITE] += elapsed;
954                 }
955
956                 if (td->error || td->terminate)
957                         break;
958
959                 if (!td->o.do_verify ||
960                     td->o.verify == VERIFY_NONE ||
961                     (td->io_ops->flags & FIO_UNIDIR))
962                         continue;
963
964                 if (clear_io_state(td))
965                         break;
966
967                 fio_gettime(&td->start, NULL);
968
969                 do_verify(td);
970
971                 runtime[DDIR_READ] += utime_since_now(&td->start);
972
973                 if (td->error || td->terminate)
974                         break;
975         }
976
977         update_rusage_stat(td);
978         td->ts.runtime[0] = (runtime[0] + 999) / 1000;
979         td->ts.runtime[1] = (runtime[1] + 999) / 1000;
980         td->ts.total_run_time = mtime_since_now(&td->epoch);
981         td->ts.io_bytes[0] = td->io_bytes[0];
982         td->ts.io_bytes[1] = td->io_bytes[1];
983
984         if (td->ts.bw_log)
985                 finish_log(td, td->ts.bw_log, "bw");
986         if (td->ts.slat_log)
987                 finish_log(td, td->ts.slat_log, "slat");
988         if (td->ts.clat_log)
989                 finish_log(td, td->ts.clat_log, "clat");
990         if (td->o.exec_postrun) {
991                 if (system(td->o.exec_postrun) < 0)
992                         log_err("fio: postrun %s failed\n", td->o.exec_postrun);
993         }
994
995         if (exitall_on_terminate)
996                 terminate_threads(td->groupid);
997
998 err:
999         if (td->error)
1000                 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1001                                                         td->verror);
1002         close_and_free_files(td);
1003         close_ioengine(td);
1004         cleanup_io_u(td);
1005
1006         /*
1007          * do this very late, it will log file closing as well
1008          */
1009         if (td->o.write_iolog_file)
1010                 write_iolog_close(td);
1011
1012         options_mem_free(td);
1013         td_set_runstate(td, TD_EXITED);
1014         return (void *) (unsigned long) td->error;
1015 }
1016
1017 /*
1018  * We cannot pass the td data into a forked process, so attach the td and
1019  * pass it to the thread worker.
1020  */
1021 static int fork_main(int shmid, int offset)
1022 {
1023         struct thread_data *td;
1024         void *data, *ret;
1025
1026         data = shmat(shmid, NULL, 0);
1027         if (data == (void *) -1) {
1028                 int __err = errno;
1029
1030                 perror("shmat");
1031                 return __err;
1032         }
1033
1034         td = data + offset * sizeof(struct thread_data);
1035         ret = thread_main(td);
1036         shmdt(data);
1037         return (int) (unsigned long) ret;
1038 }
1039
1040 /*
1041  * Run over the job map and reap the threads that have exited, if any.
1042  */
1043 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1044 {
1045         struct thread_data *td;
1046         int i, cputhreads, realthreads, pending, status, ret;
1047
1048         /*
1049          * reap exited threads (TD_EXITED -> TD_REAPED)
1050          */
1051         realthreads = pending = cputhreads = 0;
1052         for_each_td(td, i) {
1053                 int flags = 0;
1054
1055                 /*
1056                  * ->io_ops is NULL for a thread that has closed its
1057                  * io engine
1058                  */
1059                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1060                         cputhreads++;
1061                 else
1062                         realthreads++;
1063
1064                 if (!td->pid) {
1065                         pending++;
1066                         continue;
1067                 }
1068                 if (td->runstate == TD_REAPED)
1069                         continue;
1070                 if (td->o.use_thread) {
1071                         if (td->runstate == TD_EXITED) {
1072                                 td_set_runstate(td, TD_REAPED);
1073                                 goto reaped;
1074                         }
1075                         continue;
1076                 }
1077
1078                 flags = WNOHANG;
1079                 if (td->runstate == TD_EXITED)
1080                         flags = 0;
1081
1082                 /*
1083                  * check if someone quit or got killed in an unusual way
1084                  */
1085                 ret = waitpid(td->pid, &status, flags);
1086                 if (ret < 0) {
1087                         if (errno == ECHILD) {
1088                                 log_err("fio: pid=%d disappeared %d\n",
1089                                                 (int) td->pid, td->runstate);
1090                                 td_set_runstate(td, TD_REAPED);
1091                                 goto reaped;
1092                         }
1093                         perror("waitpid");
1094                 } else if (ret == td->pid) {
1095                         if (WIFSIGNALED(status)) {
1096                                 int sig = WTERMSIG(status);
1097
1098                                 if (sig != SIGQUIT)
1099                                         log_err("fio: pid=%d, got signal=%d\n",
1100                                                         (int) td->pid, sig);
1101                                 td_set_runstate(td, TD_REAPED);
1102                                 goto reaped;
1103                         }
1104                         if (WIFEXITED(status)) {
1105                                 if (WEXITSTATUS(status) && !td->error)
1106                                         td->error = WEXITSTATUS(status);
1107
1108                                 td_set_runstate(td, TD_REAPED);
1109                                 goto reaped;
1110                         }
1111                 }
1112
1113                 /*
1114                  * thread is not dead, continue
1115                  */
1116                 pending++;
1117                 continue;
1118 reaped:
1119                 (*nr_running)--;
1120                 (*m_rate) -= td->o.ratemin;
1121                 (*t_rate) -= td->o.rate;
1122                 if (!td->pid)
1123                         pending--;
1124
1125                 if (td->error)
1126                         exit_value++;
1127
1128                 done_secs += mtime_since_now(&td->epoch) / 1000;
1129         }
1130
1131         if (*nr_running == cputhreads && !pending && realthreads)
1132                 terminate_threads(TERMINATE_ALL);
1133 }
1134
1135 /*
1136  * Main function for kicking off and reaping jobs, as needed.
1137  */
1138 static void run_threads(void)
1139 {
1140         struct thread_data *td;
1141         unsigned long spent;
1142         int i, todo, nr_running, m_rate, t_rate, nr_started;
1143
1144         if (fio_pin_memory())
1145                 return;
1146
1147         if (!terse_output) {
1148                 printf("Starting ");
1149                 if (nr_thread)
1150                         printf("%d thread%s", nr_thread,
1151                                                 nr_thread > 1 ? "s" : "");
1152                 if (nr_process) {
1153                         if (nr_thread)
1154                                 printf(" and ");
1155                         printf("%d process%s", nr_process,
1156                                                 nr_process > 1 ? "es" : "");
1157                 }
1158                 printf("\n");
1159                 fflush(stdout);
1160         }
1161
1162         set_sig_handlers();
1163
1164         todo = thread_number;
1165         nr_running = 0;
1166         nr_started = 0;
1167         m_rate = t_rate = 0;
1168
1169         for_each_td(td, i) {
1170                 print_status_init(td->thread_number - 1);
1171
1172                 if (!td->o.create_serialize) {
1173                         init_disk_util(td);
1174                         continue;
1175                 }
1176
1177                 /*
1178                  * do file setup here so it happens sequentially,
1179                  * we don't want X number of threads getting their
1180                  * client data interspersed on disk
1181                  */
1182                 if (setup_files(td)) {
1183                         exit_value++;
1184                         if (td->error)
1185                                 log_err("fio: pid=%d, err=%d/%s\n",
1186                                         (int) td->pid, td->error, td->verror);
1187                         td_set_runstate(td, TD_REAPED);
1188                         todo--;
1189                 } else {
1190                         struct fio_file *f;
1191                         unsigned int i;
1192
1193                         /*
1194                          * for sharing to work, each job must always open
1195                          * its own files. so close them, if we opened them
1196                          * for creation
1197                          */
1198                         for_each_file(td, f, i)
1199                                 td_io_close_file(td, f);
1200                 }
1201
1202                 init_disk_util(td);
1203         }
1204
1205         set_genesis_time();
1206
1207         while (todo) {
1208                 struct thread_data *map[MAX_JOBS];
1209                 struct timeval this_start;
1210                 int this_jobs = 0, left;
1211
1212                 /*
1213                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1214                  */
1215                 for_each_td(td, i) {
1216                         if (td->runstate != TD_NOT_CREATED)
1217                                 continue;
1218
1219                         /*
1220                          * never got a chance to start, killed by other
1221                          * thread for some reason
1222                          */
1223                         if (td->terminate) {
1224                                 todo--;
1225                                 continue;
1226                         }
1227
1228                         if (td->o.start_delay) {
1229                                 spent = mtime_since_genesis();
1230
1231                                 if (td->o.start_delay * 1000 > spent)
1232                                         continue;
1233                         }
1234
1235                         if (td->o.stonewall && (nr_started || nr_running)) {
1236                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1237                                                         td->o.name);
1238                                 break;
1239                         }
1240
1241                         /*
1242                          * Set state to created. Thread will transition
1243                          * to TD_INITIALIZED when it's done setting up.
1244                          */
1245                         td_set_runstate(td, TD_CREATED);
1246                         map[this_jobs++] = td;
1247                         nr_started++;
1248
1249                         if (td->o.use_thread) {
1250                                 dprint(FD_PROCESS, "will pthread_create\n");
1251                                 if (pthread_create(&td->thread, NULL,
1252                                                    thread_main, td)) {
1253                                         perror("pthread_create");
1254                                         nr_started--;
1255                                         break;
1256                                 }
1257                                 if (pthread_detach(td->thread) < 0)
1258                                         perror("pthread_detach");
1259                         } else {
1260                                 pid_t pid;
1261                                 dprint(FD_PROCESS, "will fork\n");
1262                                 pid = fork();
1263                                 if (!pid) {
1264                                         int ret = fork_main(shm_id, i);
1265
1266                                         _exit(ret);
1267                                 } else if (i == fio_debug_jobno)
1268                                         *fio_debug_jobp = pid;
1269                         }
1270                         fio_mutex_down(startup_mutex);
1271                 }
1272
1273                 /*
1274                  * Wait for the started threads to transition to
1275                  * TD_INITIALIZED.
1276                  */
1277                 fio_gettime(&this_start, NULL);
1278                 left = this_jobs;
1279                 while (left && !fio_abort) {
1280                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1281                                 break;
1282
1283                         usleep(100000);
1284
1285                         for (i = 0; i < this_jobs; i++) {
1286                                 td = map[i];
1287                                 if (!td)
1288                                         continue;
1289                                 if (td->runstate == TD_INITIALIZED) {
1290                                         map[i] = NULL;
1291                                         left--;
1292                                 } else if (td->runstate >= TD_EXITED) {
1293                                         map[i] = NULL;
1294                                         left--;
1295                                         todo--;
1296                                         nr_running++; /* work-around... */
1297                                 }
1298                         }
1299                 }
1300
1301                 if (left) {
1302                         log_err("fio: %d jobs failed to start\n", left);
1303                         for (i = 0; i < this_jobs; i++) {
1304                                 td = map[i];
1305                                 if (!td)
1306                                         continue;
1307                                 kill(td->pid, SIGTERM);
1308                         }
1309                         break;
1310                 }
1311
1312                 /*
1313                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1314                  */
1315                 for_each_td(td, i) {
1316                         if (td->runstate != TD_INITIALIZED)
1317                                 continue;
1318
1319                         td_set_runstate(td, TD_RUNNING);
1320                         nr_running++;
1321                         nr_started--;
1322                         m_rate += td->o.ratemin;
1323                         t_rate += td->o.rate;
1324                         todo--;
1325                         fio_mutex_up(td->mutex);
1326                 }
1327
1328                 reap_threads(&nr_running, &t_rate, &m_rate);
1329
1330                 if (todo)
1331                         usleep(100000);
1332         }
1333
1334         while (nr_running) {
1335                 reap_threads(&nr_running, &t_rate, &m_rate);
1336                 usleep(10000);
1337         }
1338
1339         update_io_ticks();
1340         fio_unpin_memory();
1341 }
1342
1343 int main(int argc, char *argv[])
1344 {
1345         long ps;
1346
1347         sinit();
1348
1349         /*
1350          * We need locale for number printing, if it isn't set then just
1351          * go with the US format.
1352          */
1353         if (!getenv("LC_NUMERIC"))
1354                 setlocale(LC_NUMERIC, "en_US");
1355
1356         if (parse_options(argc, argv))
1357                 return 1;
1358
1359         if (!thread_number)
1360                 return 0;
1361
1362         ps = sysconf(_SC_PAGESIZE);
1363         if (ps < 0) {
1364                 log_err("Failed to get page size\n");
1365                 return 1;
1366         }
1367
1368         page_size = ps;
1369         page_mask = ps - 1;
1370
1371         if (write_bw_log) {
1372                 setup_log(&agg_io_log[DDIR_READ]);
1373                 setup_log(&agg_io_log[DDIR_WRITE]);
1374         }
1375
1376         startup_mutex = fio_mutex_init(0);
1377
1378         set_genesis_time();
1379
1380         status_timer_arm();
1381
1382         run_threads();
1383
1384         if (!fio_abort) {
1385                 show_run_stats();
1386                 if (write_bw_log) {
1387                         __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1388                         __finish_log(agg_io_log[DDIR_WRITE],
1389                                         "agg-write_bw.log");
1390                 }
1391         }
1392
1393         fio_mutex_remove(startup_mutex);
1394         return exit_value;
1395 }