eb857afc690f4d794dfcbfa74f42b61d2986e0b9
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 static struct fio_file *get_next_file(struct thread_data *td)
140 {
141         unsigned int old_next_file = td->next_file;
142         struct fio_file *f;
143
144         do {
145                 f = &td->files[td->next_file];
146
147                 td->next_file++;
148                 if (td->next_file >= td->nr_files)
149                         td->next_file = 0;
150
151                 if (f->fd != -1)
152                         break;
153
154                 f = NULL;
155         } while (td->next_file != old_next_file);
156
157         return f;
158 }
159
160 /*
161  * When job exits, we can cancel the in-flight IO if we are using async
162  * io. Attempt to do so.
163  */
164 static void cleanup_pending_aio(struct thread_data *td)
165 {
166         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
167         struct list_head *entry, *n;
168         struct io_completion_data icd;
169         struct io_u *io_u;
170         int r;
171
172         /*
173          * get immediately available events, if any
174          */
175         r = td_io_getevents(td, 0, td->cur_depth, &ts);
176         if (r > 0) {
177                 init_icd(&icd, NULL, r);
178                 ios_completed(td, &icd);
179         }
180
181         /*
182          * now cancel remaining active events
183          */
184         if (td->io_ops->cancel) {
185                 list_for_each_safe(entry, n, &td->io_u_busylist) {
186                         io_u = list_entry(entry, struct io_u, list);
187
188                         r = td->io_ops->cancel(td, io_u);
189                         if (!r)
190                                 put_io_u(td, io_u);
191                 }
192         }
193
194         if (td->cur_depth) {
195                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
196                 if (r > 0) {
197                         init_icd(&icd, NULL, r);
198                         ios_completed(td, &icd);
199                 }
200         }
201 }
202
203 /*
204  * Helper to handle the final sync of a file. Works just like the normal
205  * io path, just does everything sync.
206  */
207 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
208 {
209         struct io_u *io_u = __get_io_u(td);
210         struct io_completion_data icd;
211         int ret;
212
213         if (!io_u)
214                 return 1;
215
216         io_u->ddir = DDIR_SYNC;
217         io_u->file = f;
218
219         if (td_io_prep(td, io_u)) {
220                 put_io_u(td, io_u);
221                 return 1;
222         }
223
224         ret = td_io_queue(td, io_u);
225         if (ret < 0) {
226                 td_verror(td, io_u->error);
227                 put_io_u(td, io_u);
228                 return 1;
229         } else if (ret == FIO_Q_QUEUED) {
230                 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
231                 if (ret < 0) {
232                         td_verror(td, ret);
233                         return 1;
234                 }
235
236                 init_icd(&icd, NULL, ret);
237                 ios_completed(td, &icd);
238                 if (icd.error) {
239                         td_verror(td, icd.error);
240                         return 1;
241                 }
242         } else if (ret == FIO_Q_COMPLETED) {
243                 if (io_u->error) {
244                         td_verror(td, io_u->error);
245                         return 1;
246                 }
247
248                 init_icd(&icd, NULL, 1);
249                 io_completed(td, io_u, &icd);
250                 put_io_u(td, io_u);
251         }
252
253         return 0;
254 }
255
256 /*
257  * The main verify engine. Runs over the writes we previusly submitted,
258  * reads the blocks back in, and checks the crc/md5 of the data.
259  */
260 static void do_verify(struct thread_data *td)
261 {
262         struct fio_file *f;
263         struct io_u *io_u;
264         int ret, i, min_events;
265
266         /*
267          * sync io first and invalidate cache, to make sure we really
268          * read from disk.
269          */
270         for_each_file(td, f, i) {
271                 fio_io_sync(td, f);
272                 file_invalidate_cache(td, f);
273         }
274
275         td_set_runstate(td, TD_VERIFYING);
276
277         io_u = NULL;
278         while (!td->terminate) {
279                 struct io_completion_data icd;
280                 struct timespec *timeout;
281
282                 io_u = __get_io_u(td);
283                 if (!io_u)
284                         break;
285
286                 if (runtime_exceeded(td, &io_u->start_time))
287                         break;
288
289                 if (get_next_verify(td, io_u))
290                         break;
291
292                 if (td_io_prep(td, io_u))
293                         break;
294
295 requeue:
296                 ret = td_io_queue(td, io_u);
297
298                 switch (ret) {
299                 case FIO_Q_COMPLETED:
300                         if (io_u->error)
301                                 ret = io_u->error;
302                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
303                                 int bytes = io_u->xfer_buflen - io_u->resid;
304
305                                 io_u->xfer_buflen = io_u->resid;
306                                 io_u->xfer_buf += bytes;
307                                 goto requeue;
308                         }
309                         init_icd(&icd, verify_io_u, 1);
310                         io_completed(td, io_u, &icd);
311                         if (icd.error) {
312                                 ret = icd.error;
313                                 break;
314                         }
315                         put_io_u(td, io_u);
316                         continue;
317                 case FIO_Q_QUEUED:
318                         break;
319                 default:
320                         assert(ret < 0);
321                         td_verror(td, ret);
322                         break;
323                 }
324
325                 if (ret < 0)
326                         break;
327
328                 /*
329                  * if we can queue more, do so. but check if there are
330                  * completed io_u's first.
331                  */
332                 if (queue_full(td)) {
333                         timeout = NULL;
334                         min_events = 1;
335                 } else {
336                         struct timespec ts;
337
338                         ts.tv_sec = 0;
339                         ts.tv_nsec = 0;
340                         timeout = &ts;
341                         min_events = 0;
342                 }
343
344                 /*
345                  * Reap required number of io units, if any, and do the
346                  * verification on them through the callback handler
347                  */
348                 ret = td_io_getevents(td, min_events, td->cur_depth, timeout);
349                 if (ret < 0)
350                         break;
351                 else if (!ret)
352                         continue;
353
354                 init_icd(&icd, verify_io_u, ret);
355                 ios_completed(td, &icd);
356
357                 if (icd.error) {
358                         td_verror(td, icd.error);
359                         break;
360                 }
361         }
362
363         if (io_u)
364                 put_io_u(td, io_u);
365
366         if (td->cur_depth)
367                 cleanup_pending_aio(td);
368
369         td_set_runstate(td, TD_RUNNING);
370 }
371
372 /*
373  * Not really an io thread, all it does is burn CPU cycles in the specified
374  * manner.
375  */
376 static void do_cpuio(struct thread_data *td)
377 {
378         struct timeval e;
379         int split = 100 / td->cpuload;
380         int i = 0;
381
382         while (!td->terminate) {
383                 fio_gettime(&e, NULL);
384
385                 if (runtime_exceeded(td, &e))
386                         break;
387
388                 if (!(i % split))
389                         __usec_sleep(10000);
390                 else
391                         usec_sleep(td, 10000);
392
393                 i++;
394         }
395 }
396
397 /*
398  * Main IO worker function. It retrieves io_u's to process and queues
399  * and reaps them, checking for rate and errors along the way.
400  */
401 static void do_io(struct thread_data *td)
402 {
403         struct io_completion_data icd;
404         struct timeval s;
405         unsigned long usec;
406         struct fio_file *f;
407         int i, ret = 0;
408
409         td_set_runstate(td, TD_RUNNING);
410
411         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
412                 struct timespec *timeout;
413                 int min_evts = 0;
414                 struct io_u *io_u;
415
416                 if (td->terminate)
417                         break;
418
419                 f = get_next_file(td);
420                 if (!f)
421                         break;
422
423                 io_u = get_io_u(td, f);
424                 if (!io_u)
425                         break;
426
427                 memcpy(&s, &io_u->start_time, sizeof(s));
428 requeue:
429                 ret = td_io_queue(td, io_u);
430
431                 switch (ret) {
432                 case FIO_Q_COMPLETED:
433                         if (io_u->error) {
434                                 ret = io_u->error;
435                                 break;
436                         }
437                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
438                                 int bytes = io_u->xfer_buflen - io_u->resid;
439
440                                 io_u->xfer_buflen = io_u->resid;
441                                 io_u->xfer_buf += bytes;
442                                 goto requeue;
443                         }
444                         init_icd(&icd, NULL, 1);
445                         io_completed(td, io_u, &icd);
446                         put_io_u(td, io_u);
447                         break;
448                 case FIO_Q_QUEUED:
449                         break;
450                 default:
451                         assert(ret < 0);
452                         put_io_u(td, io_u);
453                         break;
454                 }
455
456                 if (ret < 0)
457                         break;
458
459                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
460
461                 if (ret == FIO_Q_QUEUED) {
462                         if (td->cur_depth < td->iodepth) {
463                                 struct timespec ts;
464
465                                 ts.tv_sec = 0;
466                                 ts.tv_nsec = 0;
467                                 timeout = &ts;
468                                 min_evts = 0;
469                         } else {
470                                 timeout = NULL;
471                                 min_evts = 1;
472                         }
473
474                         ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
475                         if (ret < 0) {
476                                 td_verror(td, ret);
477                                 break;
478                         } else if (!ret)
479                                 continue;
480
481                         init_icd(&icd, NULL, ret);
482                         ios_completed(td, &icd);
483                         if (icd.error) {
484                                 td_verror(td, icd.error);
485                                 break;
486                         }
487                 }
488
489                 /*
490                  * the rate is batched for now, it should work for batches
491                  * of completions except the very first one which may look
492                  * a little bursty
493                  */
494                 usec = utime_since(&s, &icd.time);
495
496                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
497
498                 if (check_min_rate(td, &icd.time)) {
499                         if (exitall_on_terminate)
500                                 terminate_threads(td->groupid, 0);
501                         td_verror(td, ENODATA);
502                         break;
503                 }
504
505                 if (runtime_exceeded(td, &icd.time))
506                         break;
507
508                 if (td->thinktime) {
509                         unsigned long long b;
510
511                         b = td->io_blocks[0] + td->io_blocks[1];
512                         if (!(b % td->thinktime_blocks)) {
513                                 int left;
514
515                                 if (td->thinktime_spin)
516                                         __usec_sleep(td->thinktime_spin);
517
518                                 left = td->thinktime - td->thinktime_spin;
519                                 if (left)
520                                         usec_sleep(td, left);
521                         }
522                 }
523         }
524
525         if (!td->error) {
526                 if (td->cur_depth)
527                         cleanup_pending_aio(td);
528
529                 if (should_fsync(td) && td->end_fsync) {
530                         td_set_runstate(td, TD_FSYNCING);
531                         for_each_file(td, f, i)
532                                 fio_io_sync(td, f);
533                 }
534         }
535 }
536
537 static void cleanup_io_u(struct thread_data *td)
538 {
539         struct list_head *entry, *n;
540         struct io_u *io_u;
541
542         list_for_each_safe(entry, n, &td->io_u_freelist) {
543                 io_u = list_entry(entry, struct io_u, list);
544
545                 list_del(&io_u->list);
546                 free(io_u);
547         }
548
549         free_io_mem(td);
550 }
551
552 /*
553  * "randomly" fill the buffer contents
554  */
555 static void fill_rand_buf(struct io_u *io_u, int max_bs)
556 {
557         int *ptr = io_u->buf;
558
559         while ((void *) ptr - io_u->buf < max_bs) {
560                 *ptr = rand() * 0x9e370001;
561                 ptr++;
562         }
563 }
564
565 static int init_io_u(struct thread_data *td)
566 {
567         struct io_u *io_u;
568         unsigned int max_bs;
569         int i, max_units;
570         char *p;
571
572         if (td->io_ops->flags & FIO_CPUIO)
573                 return 0;
574
575         if (td->io_ops->flags & FIO_SYNCIO)
576                 max_units = 1;
577         else
578                 max_units = td->iodepth;
579
580         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
581         td->orig_buffer_size = max_bs * max_units;
582
583         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
584                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
585         else
586                 td->orig_buffer_size += page_mask;
587
588         if (allocate_io_mem(td))
589                 return 1;
590
591         p = ALIGN(td->orig_buffer);
592         for (i = 0; i < max_units; i++) {
593                 io_u = malloc(sizeof(*io_u));
594                 memset(io_u, 0, sizeof(*io_u));
595                 INIT_LIST_HEAD(&io_u->list);
596
597                 io_u->buf = p + max_bs * i;
598                 if (td_write(td) || td_rw(td))
599                         fill_rand_buf(io_u, max_bs);
600
601                 io_u->index = i;
602                 list_add(&io_u->list, &td->io_u_freelist);
603         }
604
605         return 0;
606 }
607
608 static int switch_ioscheduler(struct thread_data *td)
609 {
610         char tmp[256], tmp2[128];
611         FILE *f;
612         int ret;
613
614         if (td->io_ops->flags & FIO_CPUIO)
615                 return 0;
616
617         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
618
619         f = fopen(tmp, "r+");
620         if (!f) {
621                 td_verror(td, errno);
622                 return 1;
623         }
624
625         /*
626          * Set io scheduler.
627          */
628         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
629         if (ferror(f) || ret != 1) {
630                 td_verror(td, errno);
631                 fclose(f);
632                 return 1;
633         }
634
635         rewind(f);
636
637         /*
638          * Read back and check that the selected scheduler is now the default.
639          */
640         ret = fread(tmp, 1, sizeof(tmp), f);
641         if (ferror(f) || ret < 0) {
642                 td_verror(td, errno);
643                 fclose(f);
644                 return 1;
645         }
646
647         sprintf(tmp2, "[%s]", td->ioscheduler);
648         if (!strstr(tmp, tmp2)) {
649                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
650                 td_verror(td, EINVAL);
651                 fclose(f);
652                 return 1;
653         }
654
655         fclose(f);
656         return 0;
657 }
658
659 static void clear_io_state(struct thread_data *td)
660 {
661         struct fio_file *f;
662         int i;
663
664         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
665         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
666         td->zone_bytes = 0;
667
668         for_each_file(td, f, i) {
669                 f->last_pos = 0;
670                 if (td->io_ops->flags & FIO_SYNCIO)
671                         lseek(f->fd, SEEK_SET, 0);
672
673                 if (f->file_map)
674                         memset(f->file_map, 0, f->num_maps * sizeof(long));
675         }
676 }
677
678 /*
679  * Entry point for the thread based jobs. The process based jobs end up
680  * here as well, after a little setup.
681  */
682 static void *thread_main(void *data)
683 {
684         unsigned long long runtime[2];
685         struct thread_data *td = data;
686
687         if (!td->use_thread)
688                 setsid();
689
690         td->pid = getpid();
691
692         INIT_LIST_HEAD(&td->io_u_freelist);
693         INIT_LIST_HEAD(&td->io_u_busylist);
694         INIT_LIST_HEAD(&td->io_hist_list);
695         INIT_LIST_HEAD(&td->io_log_list);
696
697         if (init_io_u(td))
698                 goto err;
699
700         if (fio_setaffinity(td) == -1) {
701                 td_verror(td, errno);
702                 goto err;
703         }
704
705         if (init_iolog(td))
706                 goto err;
707
708         if (td->ioprio) {
709                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
710                         td_verror(td, errno);
711                         goto err;
712                 }
713         }
714
715         if (nice(td->nice) == -1) {
716                 td_verror(td, errno);
717                 goto err;
718         }
719
720         if (init_random_state(td))
721                 goto err;
722
723         if (td->ioscheduler && switch_ioscheduler(td))
724                 goto err;
725
726         td_set_runstate(td, TD_INITIALIZED);
727         fio_sem_up(&startup_sem);
728         fio_sem_down(&td->mutex);
729
730         if (!td->create_serialize && setup_files(td))
731                 goto err;
732         if (open_files(td))
733                 goto err;
734
735         /*
736          * Do this late, as some IO engines would like to have the
737          * files setup prior to initializing structures.
738          */
739         if (td_io_init(td))
740                 goto err;
741
742         if (td->exec_prerun) {
743                 if (system(td->exec_prerun) < 0)
744                         goto err;
745         }
746
747         fio_gettime(&td->epoch, NULL);
748         getrusage(RUSAGE_SELF, &td->ru_start);
749
750         runtime[0] = runtime[1] = 0;
751         while (td->loops--) {
752                 fio_gettime(&td->start, NULL);
753                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
754
755                 if (td->ratemin)
756                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
757
758                 clear_io_state(td);
759                 prune_io_piece_log(td);
760
761                 if (td->io_ops->flags & FIO_CPUIO)
762                         do_cpuio(td);
763                 else
764                         do_io(td);
765
766                 runtime[td->ddir] += utime_since_now(&td->start);
767                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
768                         runtime[td->ddir ^ 1] = runtime[td->ddir];
769
770                 if (td->error || td->terminate)
771                         break;
772
773                 if (td->verify == VERIFY_NONE)
774                         continue;
775
776                 clear_io_state(td);
777                 fio_gettime(&td->start, NULL);
778
779                 do_verify(td);
780
781                 runtime[DDIR_READ] += utime_since_now(&td->start);
782
783                 if (td->error || td->terminate)
784                         break;
785         }
786
787         update_rusage_stat(td);
788         fio_gettime(&td->end_time, NULL);
789         td->runtime[0] = runtime[0] / 1000;
790         td->runtime[1] = runtime[1] / 1000;
791
792         if (td->bw_log)
793                 finish_log(td, td->bw_log, "bw");
794         if (td->slat_log)
795                 finish_log(td, td->slat_log, "slat");
796         if (td->clat_log)
797                 finish_log(td, td->clat_log, "clat");
798         if (td->write_iolog_file)
799                 write_iolog_close(td);
800         if (td->exec_postrun) {
801                 if (system(td->exec_postrun) < 0)
802                         log_err("fio: postrun %s failed\n", td->exec_postrun);
803         }
804
805         if (exitall_on_terminate)
806                 terminate_threads(td->groupid, 0);
807
808 err:
809         if (td->error)
810                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
811         close_files(td);
812         close_ioengine(td);
813         cleanup_io_u(td);
814         td_set_runstate(td, TD_EXITED);
815         return (void *) td->error;
816 }
817
818 /*
819  * We cannot pass the td data into a forked process, so attach the td and
820  * pass it to the thread worker.
821  */
822 static int fork_main(int shmid, int offset)
823 {
824         struct thread_data *td;
825         void *data, *ret;
826
827         data = shmat(shmid, NULL, 0);
828         if (data == (void *) -1) {
829                 int __err = errno;
830
831                 perror("shmat");
832                 return __err;
833         }
834
835         td = data + offset * sizeof(struct thread_data);
836         ret = thread_main(td);
837         shmdt(data);
838         return (int) ret;
839 }
840
841 /*
842  * Run over the job map and reap the threads that have exited, if any.
843  */
844 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
845 {
846         struct thread_data *td;
847         int i, cputhreads, pending, status, ret;
848
849         /*
850          * reap exited threads (TD_EXITED -> TD_REAPED)
851          */
852         pending = cputhreads = 0;
853         for_each_td(td, i) {
854                 /*
855                  * ->io_ops is NULL for a thread that has closed its
856                  * io engine
857                  */
858                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
859                         cputhreads++;
860
861                 if (td->runstate < TD_EXITED) {
862                         /*
863                          * check if someone quit or got killed in an unusual way
864                          */
865                         ret = waitpid(td->pid, &status, WNOHANG);
866                         if (ret < 0)
867                                 perror("waitpid");
868                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
869                                 int sig = WTERMSIG(status);
870
871                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
872                                 td_set_runstate(td, TD_REAPED);
873                                 goto reaped;
874                         }
875                 }
876
877                 if (td->runstate != TD_EXITED) {
878                         if (td->runstate < TD_RUNNING)
879                                 pending++;
880
881                         continue;
882                 }
883
884                 if (td->error)
885                         exit_value++;
886
887                 td_set_runstate(td, TD_REAPED);
888
889                 if (td->use_thread) {
890                         long ret;
891
892                         if (pthread_join(td->thread, (void *) &ret))
893                                 perror("thread_join");
894                 } else {
895                         int status;
896
897                         ret = waitpid(td->pid, &status, 0);
898                         if (ret < 0)
899                                 perror("waitpid");
900                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
901                                 if (!exit_value)
902                                         exit_value++;
903                         }
904                 }
905
906 reaped:
907                 (*nr_running)--;
908                 (*m_rate) -= td->ratemin;
909                 (*t_rate) -= td->rate;
910         }
911
912         if (*nr_running == cputhreads && !pending)
913                 terminate_threads(TERMINATE_ALL, 0);
914 }
915
916 /*
917  * Main function for kicking off and reaping jobs, as needed.
918  */
919 static void run_threads(void)
920 {
921         struct thread_data *td;
922         unsigned long spent;
923         int i, todo, nr_running, m_rate, t_rate, nr_started;
924
925         if (fio_pin_memory())
926                 return;
927
928         if (!terse_output) {
929                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
930                 fflush(stdout);
931         }
932
933         signal(SIGINT, sig_handler);
934         signal(SIGALRM, sig_handler);
935
936         todo = thread_number;
937         nr_running = 0;
938         nr_started = 0;
939         m_rate = t_rate = 0;
940
941         for_each_td(td, i) {
942                 print_status_init(td->thread_number - 1);
943
944                 if (!td->create_serialize) {
945                         init_disk_util(td);
946                         continue;
947                 }
948
949                 /*
950                  * do file setup here so it happens sequentially,
951                  * we don't want X number of threads getting their
952                  * client data interspersed on disk
953                  */
954                 if (setup_files(td)) {
955                         exit_value++;
956                         if (td->error)
957                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
958                         td_set_runstate(td, TD_REAPED);
959                         todo--;
960                 }
961
962                 init_disk_util(td);
963         }
964
965         while (todo) {
966                 struct thread_data *map[MAX_JOBS];
967                 struct timeval this_start;
968                 int this_jobs = 0, left;
969
970                 /*
971                  * create threads (TD_NOT_CREATED -> TD_CREATED)
972                  */
973                 for_each_td(td, i) {
974                         if (td->runstate != TD_NOT_CREATED)
975                                 continue;
976
977                         /*
978                          * never got a chance to start, killed by other
979                          * thread for some reason
980                          */
981                         if (td->terminate) {
982                                 todo--;
983                                 continue;
984                         }
985
986                         if (td->start_delay) {
987                                 spent = mtime_since_genesis();
988
989                                 if (td->start_delay * 1000 > spent)
990                                         continue;
991                         }
992
993                         if (td->stonewall && (nr_started || nr_running))
994                                 break;
995
996                         /*
997                          * Set state to created. Thread will transition
998                          * to TD_INITIALIZED when it's done setting up.
999                          */
1000                         td_set_runstate(td, TD_CREATED);
1001                         map[this_jobs++] = td;
1002                         fio_sem_init(&startup_sem, 1);
1003                         nr_started++;
1004
1005                         if (td->use_thread) {
1006                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1007                                         perror("thread_create");
1008                                         nr_started--;
1009                                 }
1010                         } else {
1011                                 if (fork())
1012                                         fio_sem_down(&startup_sem);
1013                                 else {
1014                                         int ret = fork_main(shm_id, i);
1015
1016                                         exit(ret);
1017                                 }
1018                         }
1019                 }
1020
1021                 /*
1022                  * Wait for the started threads to transition to
1023                  * TD_INITIALIZED.
1024                  */
1025                 fio_gettime(&this_start, NULL);
1026                 left = this_jobs;
1027                 while (left && !fio_abort) {
1028                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1029                                 break;
1030
1031                         usleep(100000);
1032
1033                         for (i = 0; i < this_jobs; i++) {
1034                                 td = map[i];
1035                                 if (!td)
1036                                         continue;
1037                                 if (td->runstate == TD_INITIALIZED) {
1038                                         map[i] = NULL;
1039                                         left--;
1040                                 } else if (td->runstate >= TD_EXITED) {
1041                                         map[i] = NULL;
1042                                         left--;
1043                                         todo--;
1044                                         nr_running++; /* work-around... */
1045                                 }
1046                         }
1047                 }
1048
1049                 if (left) {
1050                         log_err("fio: %d jobs failed to start\n", left);
1051                         for (i = 0; i < this_jobs; i++) {
1052                                 td = map[i];
1053                                 if (!td)
1054                                         continue;
1055                                 kill(td->pid, SIGTERM);
1056                         }
1057                         break;
1058                 }
1059
1060                 /*
1061                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1062                  */
1063                 for_each_td(td, i) {
1064                         if (td->runstate != TD_INITIALIZED)
1065                                 continue;
1066
1067                         td_set_runstate(td, TD_RUNNING);
1068                         nr_running++;
1069                         nr_started--;
1070                         m_rate += td->ratemin;
1071                         t_rate += td->rate;
1072                         todo--;
1073                         fio_sem_up(&td->mutex);
1074                 }
1075
1076                 reap_threads(&nr_running, &t_rate, &m_rate);
1077
1078                 if (todo)
1079                         usleep(100000);
1080         }
1081
1082         while (nr_running) {
1083                 reap_threads(&nr_running, &t_rate, &m_rate);
1084                 usleep(10000);
1085         }
1086
1087         update_io_ticks();
1088         fio_unpin_memory();
1089 }
1090
1091 int main(int argc, char *argv[])
1092 {
1093         long ps;
1094
1095         /*
1096          * We need locale for number printing, if it isn't set then just
1097          * go with the US format.
1098          */
1099         if (!getenv("LC_NUMERIC"))
1100                 setlocale(LC_NUMERIC, "en_US");
1101
1102         if (parse_options(argc, argv))
1103                 return 1;
1104
1105         if (!thread_number) {
1106                 log_err("Nothing to do\n");
1107                 return 1;
1108         }
1109
1110         ps = sysconf(_SC_PAGESIZE);
1111         if (ps < 0) {
1112                 log_err("Failed to get page size\n");
1113                 return 1;
1114         }
1115
1116         page_mask = ps - 1;
1117
1118         if (write_bw_log) {
1119                 setup_log(&agg_io_log[DDIR_READ]);
1120                 setup_log(&agg_io_log[DDIR_WRITE]);
1121         }
1122
1123         disk_util_timer_arm();
1124
1125         run_threads();
1126
1127         if (!fio_abort) {
1128                 show_run_stats();
1129                 if (write_bw_log) {
1130                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1131                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1132                 }
1133         }
1134
1135         return exit_value;
1136 }