e8181a1c317f6a8a7a595100f9beed12126e9e5f
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <assert.h>
30 #include <sys/stat.h>
31 #include <sys/wait.h>
32 #include <sys/ipc.h>
33 #include <sys/shm.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 #define MASK    (4095)
41
42 #define ALIGN(buf)      (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50
51 #define TERMINATE_ALL           (-1)
52 #define JOB_START_TIMEOUT       (5 * 1000)
53
54 static void terminate_threads(int group_id)
55 {
56         struct thread_data *td;
57         int i;
58
59         for_each_td(td, i) {
60                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
61                         td->terminate = 1;
62                         td->start_delay = 0;
63                 }
64         }
65 }
66
67 static void sig_handler(int sig)
68 {
69         switch (sig) {
70                 case SIGALRM:
71                         update_io_ticks();
72                         disk_util_timer_arm();
73                         print_thread_status();
74                         break;
75                 default:
76                         printf("\nfio: terminating on signal\n");
77                         fflush(stdout);
78                         terminate_threads(TERMINATE_ALL);
79                         break;
80         }
81 }
82
83 /*
84  * Check if we are above the minimum rate given.
85  */
86 static int check_min_rate(struct thread_data *td, struct timeval *now)
87 {
88         unsigned long spent;
89         unsigned long rate;
90         int ddir = td->ddir;
91
92         /*
93          * allow a 2 second settle period in the beginning
94          */
95         if (mtime_since(&td->start, now) < 2000)
96                 return 0;
97
98         /*
99          * if rate blocks is set, sample is running
100          */
101         if (td->rate_bytes) {
102                 spent = mtime_since(&td->lastrate, now);
103                 if (spent < td->ratecycle)
104                         return 0;
105
106                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
107                 if (rate < td->ratemin) {
108                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
109                         return 1;
110                 }
111         }
112
113         td->rate_bytes = td->this_io_bytes[ddir];
114         memcpy(&td->lastrate, now, sizeof(*now));
115         return 0;
116 }
117
118 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
119 {
120         if (!td->timeout)
121                 return 0;
122         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
123                 return 1;
124
125         return 0;
126 }
127
128 static inline void td_set_runstate(struct thread_data *td, int runstate)
129 {
130         td->runstate = runstate;
131 }
132
133 static struct fio_file *get_next_file(struct thread_data *td)
134 {
135         unsigned int old_next_file = td->next_file;
136         struct fio_file *f;
137
138         do {
139                 f = &td->files[td->next_file];
140
141                 td->next_file++;
142                 if (td->next_file >= td->nr_files)
143                         td->next_file = 0;
144
145                 if (f->fd != -1)
146                         break;
147
148                 f = NULL;
149         } while (td->next_file != old_next_file);
150
151         return f;
152 }
153
154 /*
155  * When job exits, we can cancel the in-flight IO if we are using async
156  * io. Attempt to do so.
157  */
158 static void cleanup_pending_aio(struct thread_data *td)
159 {
160         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
161         struct list_head *entry, *n;
162         struct io_completion_data icd;
163         struct io_u *io_u;
164         int r;
165
166         /*
167          * get immediately available events, if any
168          */
169         r = td_io_getevents(td, 0, td->cur_depth, &ts);
170         if (r > 0) {
171                 icd.nr = r;
172                 ios_completed(td, &icd);
173         }
174
175         /*
176          * now cancel remaining active events
177          */
178         if (td->io_ops->cancel) {
179                 list_for_each_safe(entry, n, &td->io_u_busylist) {
180                         io_u = list_entry(entry, struct io_u, list);
181
182                         r = td->io_ops->cancel(td, io_u);
183                         if (!r)
184                                 put_io_u(td, io_u);
185                 }
186         }
187
188         if (td->cur_depth) {
189                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
190                 if (r > 0) {
191                         icd.nr = r;
192                         ios_completed(td, &icd);
193                 }
194         }
195 }
196
197 /*
198  * Helper to handle the final sync of a file. Works just like the normal
199  * io path, just does everything sync.
200  */
201 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
202 {
203         struct io_u *io_u = __get_io_u(td);
204         struct io_completion_data icd;
205         int ret;
206
207         if (!io_u)
208                 return 1;
209
210         io_u->ddir = DDIR_SYNC;
211         io_u->file = f;
212
213         if (td_io_prep(td, io_u)) {
214                 put_io_u(td, io_u);
215                 return 1;
216         }
217
218         ret = td_io_queue(td, io_u);
219         if (ret) {
220                 td_verror(td, io_u->error);
221                 put_io_u(td, io_u);
222                 return 1;
223         }
224
225         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
226         if (ret < 0) {
227                 td_verror(td, ret);
228                 return 1;
229         }
230
231         icd.nr = ret;
232         ios_completed(td, &icd);
233         if (icd.error) {
234                 td_verror(td, icd.error);
235                 return 1;
236         }
237
238         return 0;
239 }
240
241 /*
242  * The main verify engine. Runs over the writes we previusly submitted,
243  * reads the blocks back in, and checks the crc/md5 of the data.
244  */
245 static void do_verify(struct thread_data *td)
246 {
247         struct io_u *io_u, *v_io_u = NULL;
248         struct io_completion_data icd;
249         struct fio_file *f;
250         int ret, i;
251
252         /*
253          * sync io first and invalidate cache, to make sure we really
254          * read from disk.
255          */
256         for_each_file(td, f, i) {
257                 fio_io_sync(td, f);
258                 file_invalidate_cache(td, f);
259         }
260
261         td_set_runstate(td, TD_VERIFYING);
262
263         do {
264                 if (td->terminate)
265                         break;
266
267                 io_u = __get_io_u(td);
268                 if (!io_u)
269                         break;
270
271                 if (runtime_exceeded(td, &io_u->start_time)) {
272                         put_io_u(td, io_u);
273                         break;
274                 }
275
276                 if (get_next_verify(td, io_u)) {
277                         put_io_u(td, io_u);
278                         break;
279                 }
280
281                 f = get_next_file(td);
282                 if (!f)
283                         break;
284
285                 io_u->file = f;
286
287                 if (td_io_prep(td, io_u)) {
288                         put_io_u(td, io_u);
289                         break;
290                 }
291
292                 ret = td_io_queue(td, io_u);
293                 if (ret) {
294                         td_verror(td, io_u->error);
295                         put_io_u(td, io_u);
296                         break;
297                 }
298
299                 /*
300                  * we have one pending to verify, do that while
301                  * we are doing io on the next one
302                  */
303                 if (do_io_u_verify(td, &v_io_u))
304                         break;
305
306                 ret = td_io_getevents(td, 1, 1, NULL);
307                 if (ret != 1) {
308                         if (ret < 0)
309                                 td_verror(td, ret);
310                         break;
311                 }
312
313                 v_io_u = td->io_ops->event(td, 0);
314                 icd.nr = 1;
315                 icd.error = 0;
316                 fio_gettime(&icd.time, NULL);
317                 io_completed(td, v_io_u, &icd);
318
319                 if (icd.error) {
320                         td_verror(td, icd.error);
321                         put_io_u(td, v_io_u);
322                         v_io_u = NULL;
323                         break;
324                 }
325
326                 /*
327                  * if we can't submit more io, we need to verify now
328                  */
329                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
330                         break;
331
332         } while (1);
333
334         do_io_u_verify(td, &v_io_u);
335
336         if (td->cur_depth)
337                 cleanup_pending_aio(td);
338
339         td_set_runstate(td, TD_RUNNING);
340 }
341
342 /*
343  * Not really an io thread, all it does is burn CPU cycles in the specified
344  * manner.
345  */
346 static void do_cpuio(struct thread_data *td)
347 {
348         struct timeval e;
349         int split = 100 / td->cpuload;
350         int i = 0;
351
352         while (!td->terminate) {
353                 fio_gettime(&e, NULL);
354
355                 if (runtime_exceeded(td, &e))
356                         break;
357
358                 if (!(i % split))
359                         __usec_sleep(10000);
360                 else
361                         usec_sleep(td, 10000);
362
363                 i++;
364         }
365 }
366
367 /*
368  * Main IO worker function. It retrieves io_u's to process and queues
369  * and reaps them, checking for rate and errors along the way.
370  */
371 static void do_io(struct thread_data *td)
372 {
373         struct io_completion_data icd;
374         struct timeval s;
375         unsigned long usec;
376         struct fio_file *f;
377         int i, ret = 0;
378
379         td_set_runstate(td, TD_RUNNING);
380
381         while (td->this_io_bytes[td->ddir] < td->io_size) {
382                 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
383                 struct timespec *timeout;
384                 int min_evts = 0;
385                 struct io_u *io_u;
386
387                 if (td->terminate)
388                         break;
389
390                 f = get_next_file(td);
391                 if (!f)
392                         break;
393
394                 io_u = get_io_u(td, f);
395                 if (!io_u)
396                         break;
397
398                 memcpy(&s, &io_u->start_time, sizeof(s));
399
400                 ret = td_io_queue(td, io_u);
401                 if (ret) {
402                         td_verror(td, io_u->error);
403                         put_io_u(td, io_u);
404                         break;
405                 }
406
407                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
408
409                 if (td->cur_depth < td->iodepth) {
410                         timeout = &ts;
411                         min_evts = 0;
412                 } else {
413                         timeout = NULL;
414                         min_evts = 1;
415                 }
416
417                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
418                 if (ret < 0) {
419                         td_verror(td, ret);
420                         break;
421                 } else if (!ret)
422                         continue;
423
424                 icd.nr = ret;
425                 ios_completed(td, &icd);
426                 if (icd.error) {
427                         td_verror(td, icd.error);
428                         break;
429                 }
430
431                 /*
432                  * the rate is batched for now, it should work for batches
433                  * of completions except the very first one which may look
434                  * a little bursty
435                  */
436                 usec = utime_since(&s, &icd.time);
437
438                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
439
440                 if (check_min_rate(td, &icd.time)) {
441                         if (exitall_on_terminate)
442                                 terminate_threads(td->groupid);
443                         td_verror(td, ENOMEM);
444                         break;
445                 }
446
447                 if (runtime_exceeded(td, &icd.time))
448                         break;
449
450                 if (td->thinktime) {
451                         unsigned long long b;
452
453                         b = td->io_blocks[0] + td->io_blocks[1];
454                         if (!(td->thinktime_blocks % b))
455                                 usec_sleep(td, td->thinktime);
456                 }
457         }
458
459         if (!td->error) {
460                 if (td->cur_depth)
461                         cleanup_pending_aio(td);
462
463                 if (should_fsync(td) && td->end_fsync) {
464                         td_set_runstate(td, TD_FSYNCING);
465                         for_each_file(td, f, i)
466                                 fio_io_sync(td, f);
467                 }
468         }
469 }
470
471 static void cleanup_io_u(struct thread_data *td)
472 {
473         struct list_head *entry, *n;
474         struct io_u *io_u;
475
476         list_for_each_safe(entry, n, &td->io_u_freelist) {
477                 io_u = list_entry(entry, struct io_u, list);
478
479                 list_del(&io_u->list);
480                 free(io_u);
481         }
482
483         free_io_mem(td);
484 }
485
486 /*
487  * "randomly" fill the buffer contents
488  */
489 static void fill_rand_buf(struct io_u *io_u, int max_bs)
490 {
491         int *ptr = io_u->buf;
492
493         while ((void *) ptr - io_u->buf < max_bs) {
494                 *ptr = rand() * 0x9e370001;
495                 ptr++;
496         }
497 }
498
499 static int init_io_u(struct thread_data *td)
500 {
501         struct io_u *io_u;
502         unsigned int max_bs;
503         int i, max_units;
504         char *p;
505
506         if (td->io_ops->flags & FIO_CPUIO)
507                 return 0;
508
509         if (td->io_ops->flags & FIO_SYNCIO)
510                 max_units = 1;
511         else
512                 max_units = td->iodepth;
513
514         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
515         td->orig_buffer_size = max_bs * max_units;
516
517         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
518                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
519         else
520                 td->orig_buffer_size += MASK;
521
522         if (allocate_io_mem(td))
523                 return 1;
524
525         p = ALIGN(td->orig_buffer);
526         for (i = 0; i < max_units; i++) {
527                 io_u = malloc(sizeof(*io_u));
528                 memset(io_u, 0, sizeof(*io_u));
529                 INIT_LIST_HEAD(&io_u->list);
530
531                 io_u->buf = p + max_bs * i;
532                 if (td_write(td) || td_rw(td))
533                         fill_rand_buf(io_u, max_bs);
534
535                 io_u->index = i;
536                 list_add(&io_u->list, &td->io_u_freelist);
537         }
538
539         return 0;
540 }
541
542 static int switch_ioscheduler(struct thread_data *td)
543 {
544         char tmp[256], tmp2[128];
545         FILE *f;
546         int ret;
547
548         if (td->io_ops->flags & FIO_CPUIO)
549                 return 0;
550
551         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
552
553         f = fopen(tmp, "r+");
554         if (!f) {
555                 td_verror(td, errno);
556                 return 1;
557         }
558
559         /*
560          * Set io scheduler.
561          */
562         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
563         if (ferror(f) || ret != 1) {
564                 td_verror(td, errno);
565                 fclose(f);
566                 return 1;
567         }
568
569         rewind(f);
570
571         /*
572          * Read back and check that the selected scheduler is now the default.
573          */
574         ret = fread(tmp, 1, sizeof(tmp), f);
575         if (ferror(f) || ret < 0) {
576                 td_verror(td, errno);
577                 fclose(f);
578                 return 1;
579         }
580
581         sprintf(tmp2, "[%s]", td->ioscheduler);
582         if (!strstr(tmp, tmp2)) {
583                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
584                 td_verror(td, EINVAL);
585                 fclose(f);
586                 return 1;
587         }
588
589         fclose(f);
590         return 0;
591 }
592
593 static void clear_io_state(struct thread_data *td)
594 {
595         struct fio_file *f;
596         int i;
597
598         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
599         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
600         td->zone_bytes = 0;
601
602         for_each_file(td, f, i) {
603                 f->last_pos = 0;
604                 if (td->io_ops->flags & FIO_SYNCIO)
605                         lseek(f->fd, SEEK_SET, 0);
606
607                 if (f->file_map)
608                         memset(f->file_map, 0, f->num_maps * sizeof(long));
609         }
610 }
611
612 /*
613  * Entry point for the thread based jobs. The process based jobs end up
614  * here as well, after a little setup.
615  */
616 static void *thread_main(void *data)
617 {
618         unsigned long long runtime[2];
619         struct thread_data *td = data;
620
621         if (!td->use_thread)
622                 setsid();
623
624         td->pid = getpid();
625
626         INIT_LIST_HEAD(&td->io_u_freelist);
627         INIT_LIST_HEAD(&td->io_u_busylist);
628         INIT_LIST_HEAD(&td->io_hist_list);
629         INIT_LIST_HEAD(&td->io_log_list);
630
631         if (init_io_u(td))
632                 goto err;
633
634         if (fio_setaffinity(td) == -1) {
635                 td_verror(td, errno);
636                 goto err;
637         }
638
639         if (td_io_init(td))
640                 goto err;
641
642         if (init_iolog(td))
643                 goto err;
644
645         if (td->ioprio) {
646                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
647                         td_verror(td, errno);
648                         goto err;
649                 }
650         }
651
652         if (nice(td->nice) == -1) {
653                 td_verror(td, errno);
654                 goto err;
655         }
656
657         if (init_random_state(td))
658                 goto err;
659
660         if (td->ioscheduler && switch_ioscheduler(td))
661                 goto err;
662
663         td_set_runstate(td, TD_INITIALIZED);
664         fio_sem_up(&startup_sem);
665         fio_sem_down(&td->mutex);
666
667         if (!td->create_serialize && setup_files(td))
668                 goto err;
669         if (open_files(td))
670                 goto err;
671
672         if (td->exec_prerun)
673                 system(td->exec_prerun);
674
675         fio_gettime(&td->epoch, NULL);
676         getrusage(RUSAGE_SELF, &td->ru_start);
677
678         runtime[0] = runtime[1] = 0;
679         while (td->loops--) {
680                 fio_gettime(&td->start, NULL);
681                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
682
683                 if (td->ratemin)
684                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
685
686                 clear_io_state(td);
687                 prune_io_piece_log(td);
688
689                 if (td->io_ops->flags & FIO_CPUIO)
690                         do_cpuio(td);
691                 else
692                         do_io(td);
693
694                 runtime[td->ddir] += utime_since_now(&td->start);
695                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
696                         runtime[td->ddir ^ 1] = runtime[td->ddir];
697
698                 if (td->error || td->terminate)
699                         break;
700
701                 if (td->verify == VERIFY_NONE)
702                         continue;
703
704                 clear_io_state(td);
705                 fio_gettime(&td->start, NULL);
706
707                 do_verify(td);
708
709                 runtime[DDIR_READ] += utime_since_now(&td->start);
710
711                 if (td->error || td->terminate)
712                         break;
713         }
714
715         update_rusage_stat(td);
716         fio_gettime(&td->end_time, NULL);
717         td->runtime[0] = runtime[0] / 1000;
718         td->runtime[1] = runtime[1] / 1000;
719
720         if (td->bw_log)
721                 finish_log(td, td->bw_log, "bw");
722         if (td->slat_log)
723                 finish_log(td, td->slat_log, "slat");
724         if (td->clat_log)
725                 finish_log(td, td->clat_log, "clat");
726         if (td->write_iolog_file)
727                 write_iolog_close(td);
728         if (td->exec_postrun)
729                 system(td->exec_postrun);
730
731         if (exitall_on_terminate)
732                 terminate_threads(td->groupid);
733
734 err:
735         close_files(td);
736         close_ioengine(td);
737         cleanup_io_u(td);
738         td_set_runstate(td, TD_EXITED);
739         return NULL;
740
741 }
742
743 /*
744  * We cannot pass the td data into a forked process, so attach the td and
745  * pass it to the thread worker.
746  */
747 static void *fork_main(int shmid, int offset)
748 {
749         struct thread_data *td;
750         void *data;
751
752         data = shmat(shmid, NULL, 0);
753         if (data == (void *) -1) {
754                 perror("shmat");
755                 return NULL;
756         }
757
758         td = data + offset * sizeof(struct thread_data);
759         thread_main(td);
760         shmdt(data);
761         return NULL;
762 }
763
764 /*
765  * Run over the job map and reap the threads that have exited, if any.
766  */
767 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
768 {
769         struct thread_data *td;
770         int i, cputhreads, pending;
771
772         /*
773          * reap exited threads (TD_EXITED -> TD_REAPED)
774          */
775         pending = cputhreads = 0;
776         for_each_td(td, i) {
777                 /*
778                  * ->io_ops is NULL for a thread that has closed its
779                  * io engine
780                  */
781                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
782                         cputhreads++;
783
784                 if (td->runstate != TD_EXITED) {
785                         if (td->runstate < TD_RUNNING)
786                                 pending++;
787
788                         continue;
789                 }
790
791                 td_set_runstate(td, TD_REAPED);
792
793                 if (td->use_thread) {
794                         long ret;
795
796                         if (pthread_join(td->thread, (void *) &ret))
797                                 perror("thread_join");
798                 } else
799                         waitpid(td->pid, NULL, 0);
800
801                 (*nr_running)--;
802                 (*m_rate) -= td->ratemin;
803                 (*t_rate) -= td->rate;
804         }
805
806         if (*nr_running == cputhreads && !pending)
807                 terminate_threads(TERMINATE_ALL);
808 }
809
810 /*
811  * Main function for kicking off and reaping jobs, as needed.
812  */
813 static void run_threads(void)
814 {
815         struct thread_data *td;
816         unsigned long spent;
817         int i, todo, nr_running, m_rate, t_rate, nr_started;
818
819         if (fio_pin_memory())
820                 return;
821
822         if (!terse_output) {
823                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
824                 fflush(stdout);
825         }
826
827         signal(SIGINT, sig_handler);
828         signal(SIGALRM, sig_handler);
829
830         todo = thread_number;
831         nr_running = 0;
832         nr_started = 0;
833         m_rate = t_rate = 0;
834
835         for_each_td(td, i) {
836                 print_status_init(td->thread_number - 1);
837
838                 init_disk_util(td);
839
840                 if (!td->create_serialize)
841                         continue;
842
843                 /*
844                  * do file setup here so it happens sequentially,
845                  * we don't want X number of threads getting their
846                  * client data interspersed on disk
847                  */
848                 if (setup_files(td)) {
849                         td_set_runstate(td, TD_REAPED);
850                         todo--;
851                 }
852         }
853
854         while (todo) {
855                 struct thread_data *map[MAX_JOBS];
856                 struct timeval this_start;
857                 int this_jobs = 0, left;
858
859                 /*
860                  * create threads (TD_NOT_CREATED -> TD_CREATED)
861                  */
862                 for_each_td(td, i) {
863                         if (td->runstate != TD_NOT_CREATED)
864                                 continue;
865
866                         /*
867                          * never got a chance to start, killed by other
868                          * thread for some reason
869                          */
870                         if (td->terminate) {
871                                 todo--;
872                                 continue;
873                         }
874
875                         if (td->start_delay) {
876                                 spent = mtime_since_genesis();
877
878                                 if (td->start_delay * 1000 > spent)
879                                         continue;
880                         }
881
882                         if (td->stonewall && (nr_started || nr_running))
883                                 break;
884
885                         /*
886                          * Set state to created. Thread will transition
887                          * to TD_INITIALIZED when it's done setting up.
888                          */
889                         td_set_runstate(td, TD_CREATED);
890                         map[this_jobs++] = td;
891                         fio_sem_init(&startup_sem, 1);
892                         nr_started++;
893
894                         if (td->use_thread) {
895                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
896                                         perror("thread_create");
897                                         nr_started--;
898                                 }
899                         } else {
900                                 if (fork())
901                                         fio_sem_down(&startup_sem);
902                                 else {
903                                         fork_main(shm_id, i);
904                                         exit(0);
905                                 }
906                         }
907                 }
908
909                 /*
910                  * Wait for the started threads to transition to
911                  * TD_INITIALIZED.
912                  */
913                 fio_gettime(&this_start, NULL);
914                 left = this_jobs;
915                 while (left) {
916                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
917                                 break;
918
919                         usleep(100000);
920
921                         for (i = 0; i < this_jobs; i++) {
922                                 td = map[i];
923                                 if (!td)
924                                         continue;
925                                 if (td->runstate == TD_INITIALIZED) {
926                                         map[i] = NULL;
927                                         left--;
928                                 } else if (td->runstate >= TD_EXITED) {
929                                         map[i] = NULL;
930                                         left--;
931                                         todo--;
932                                         nr_running++; /* work-around... */
933                                 }
934                         }
935                 }
936
937                 if (left) {
938                         log_err("fio: %d jobs failed to start\n", left);
939                         for (i = 0; i < this_jobs; i++) {
940                                 td = map[i];
941                                 if (!td)
942                                         continue;
943                                 kill(td->pid, SIGTERM);
944                         }
945                         break;
946                 }
947
948                 /*
949                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
950                  */
951                 for_each_td(td, i) {
952                         if (td->runstate != TD_INITIALIZED)
953                                 continue;
954
955                         td_set_runstate(td, TD_RUNNING);
956                         nr_running++;
957                         nr_started--;
958                         m_rate += td->ratemin;
959                         t_rate += td->rate;
960                         todo--;
961                         fio_sem_up(&td->mutex);
962                 }
963
964                 reap_threads(&nr_running, &t_rate, &m_rate);
965
966                 if (todo)
967                         usleep(100000);
968         }
969
970         while (nr_running) {
971                 reap_threads(&nr_running, &t_rate, &m_rate);
972                 usleep(10000);
973         }
974
975         update_io_ticks();
976         fio_unpin_memory();
977 }
978
979 int main(int argc, char *argv[])
980 {
981         if (parse_options(argc, argv))
982                 return 1;
983
984         if (!thread_number) {
985                 log_err("Nothing to do\n");
986                 return 1;
987         }
988
989         disk_util_timer_arm();
990
991         run_threads();
992         show_run_stats();
993
994         return 0;
995 }