Fio 1.14a
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 unsigned long page_mask;
41 unsigned long page_size;
42 #define ALIGN(buf)      \
43         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45 int groupid = 0;
46 int thread_number = 0;
47 int nr_process = 0;
48 int nr_thread = 0;
49 int shm_id = 0;
50 int temp_stall_ts;
51
52 static struct fio_sem *startup_sem;
53 static volatile int fio_abort;
54 static int exit_value;
55
56 struct io_log *agg_io_log[2];
57
58 #define TERMINATE_ALL           (-1)
59 #define JOB_START_TIMEOUT       (5 * 1000)
60
61 static inline void td_set_runstate(struct thread_data *td, int runstate)
62 {
63         td->runstate = runstate;
64 }
65
66 static void terminate_threads(int group_id)
67 {
68         struct thread_data *td;
69         int i;
70
71         for_each_td(td, i) {
72                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
73                         /*
74                          * if the thread is running, just let it exit
75                          */
76                         if (td->runstate < TD_RUNNING)
77                                 kill(td->pid, SIGQUIT);
78                         td->terminate = 1;
79                         td->start_delay = 0;
80                 }
81         }
82 }
83
84 static void sig_handler(int sig)
85 {
86         switch (sig) {
87                 case SIGALRM:
88                         update_io_ticks();
89                         disk_util_timer_arm();
90                         print_thread_status();
91                         break;
92                 default:
93                         printf("\nfio: terminating on signal %d\n", sig);
94                         fflush(stdout);
95                         terminate_threads(TERMINATE_ALL);
96                         break;
97         }
98 }
99
100 /*
101  * Check if we are above the minimum rate given.
102  */
103 static int check_min_rate(struct thread_data *td, struct timeval *now)
104 {
105         unsigned long long bytes = 0;
106         unsigned long spent;
107         unsigned long rate;
108
109         /*
110          * No minimum rate set, always ok
111          */
112         if (!td->ratemin)
113                 return 0;
114
115         /*
116          * allow a 2 second settle period in the beginning
117          */
118         if (mtime_since(&td->start, now) < 2000)
119                 return 0;
120
121         if (td_read(td))
122                 bytes += td->this_io_bytes[DDIR_READ];
123         if (td_write(td))
124                 bytes += td->this_io_bytes[DDIR_WRITE];
125
126         /*
127          * if rate blocks is set, sample is running
128          */
129         if (td->rate_bytes) {
130                 spent = mtime_since(&td->lastrate, now);
131                 if (spent < td->ratecycle)
132                         return 0;
133
134                 if (bytes < td->rate_bytes) {
135                         fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
136                         return 1;
137                 } else {
138                         rate = (bytes - td->rate_bytes) / spent;
139                         if (rate < td->ratemin || bytes < td->rate_bytes) {
140                                 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
141                                 return 1;
142                         }
143                 }
144         }
145
146         td->rate_bytes = bytes;
147         memcpy(&td->lastrate, now, sizeof(*now));
148         return 0;
149 }
150
151 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
152 {
153         if (!td->timeout)
154                 return 0;
155         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
156                 return 1;
157
158         return 0;
159 }
160
161 /*
162  * When job exits, we can cancel the in-flight IO if we are using async
163  * io. Attempt to do so.
164  */
165 static void cleanup_pending_aio(struct thread_data *td)
166 {
167         struct list_head *entry, *n;
168         struct io_u *io_u;
169         int r;
170
171         /*
172          * get immediately available events, if any
173          */
174         r = io_u_queued_complete(td, 0);
175         if (r < 0)
176                 return;
177
178         /*
179          * now cancel remaining active events
180          */
181         if (td->io_ops->cancel) {
182                 list_for_each_safe(entry, n, &td->io_u_busylist) {
183                         io_u = list_entry(entry, struct io_u, list);
184
185                         /*
186                          * if the io_u isn't in flight, then that generally
187                          * means someone leaked an io_u. complain but fix
188                          * it up, so we don't stall here.
189                          */
190                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
191                                 log_err("fio: non-busy IO on busy list\n");
192                                 put_io_u(td, io_u);
193                         } else {
194                                 r = td->io_ops->cancel(td, io_u);
195                                 if (!r)
196                                         put_io_u(td, io_u);
197                         }
198                 }
199         }
200
201         if (td->cur_depth)
202                 r = io_u_queued_complete(td, td->cur_depth);
203 }
204
205 /*
206  * Helper to handle the final sync of a file. Works just like the normal
207  * io path, just does everything sync.
208  */
209 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
210 {
211         struct io_u *io_u = __get_io_u(td);
212         int ret;
213
214         if (!io_u)
215                 return 1;
216
217         io_u->ddir = DDIR_SYNC;
218         io_u->file = f;
219
220         if (td_io_prep(td, io_u)) {
221                 put_io_u(td, io_u);
222                 return 1;
223         }
224
225 requeue:
226         ret = td_io_queue(td, io_u);
227         if (ret < 0) {
228                 td_verror(td, io_u->error, "td_io_queue");
229                 put_io_u(td, io_u);
230                 return 1;
231         } else if (ret == FIO_Q_QUEUED) {
232                 if (io_u_queued_complete(td, 1) < 0)
233                         return 1;
234         } else if (ret == FIO_Q_COMPLETED) {
235                 if (io_u->error) {
236                         td_verror(td, io_u->error, "td_io_queue");
237                         return 1;
238                 }
239
240                 if (io_u_sync_complete(td, io_u) < 0)
241                         return 1;
242         } else if (ret == FIO_Q_BUSY) {
243                 if (td_io_commit(td))
244                         return 1;
245                 goto requeue;
246         }
247
248         return 0;
249 }
250
251 /*
252  * The main verify engine. Runs over the writes we previously submitted,
253  * reads the blocks back in, and checks the crc/md5 of the data.
254  */
255 static void do_verify(struct thread_data *td)
256 {
257         struct fio_file *f;
258         struct io_u *io_u;
259         int ret, min_events;
260         unsigned int i;
261
262         /*
263          * sync io first and invalidate cache, to make sure we really
264          * read from disk.
265          */
266         for_each_file(td, f, i) {
267                 if (!(f->flags & FIO_FILE_OPEN))
268                         continue;
269                 if (fio_io_sync(td, f))
270                         break;
271                 if (file_invalidate_cache(td, f))
272                         break;
273         }
274
275         if (td->error)
276                 return;
277
278         td_set_runstate(td, TD_VERIFYING);
279
280         io_u = NULL;
281         while (!td->terminate) {
282                 int ret2;
283
284                 io_u = __get_io_u(td);
285                 if (!io_u)
286                         break;
287
288                 if (runtime_exceeded(td, &io_u->start_time)) {
289                         put_io_u(td, io_u);
290                         break;
291                 }
292
293                 if (get_next_verify(td, io_u)) {
294                         put_io_u(td, io_u);
295                         break;
296                 }
297
298                 if (td_io_prep(td, io_u)) {
299                         put_io_u(td, io_u);
300                         break;
301                 }
302
303                 io_u->end_io = verify_io_u;
304
305                 ret = td_io_queue(td, io_u);
306                 switch (ret) {
307                 case FIO_Q_COMPLETED:
308                         if (io_u->error)
309                                 ret = -io_u->error;
310                         else if (io_u->resid) {
311                                 int bytes = io_u->xfer_buflen - io_u->resid;
312
313                                 /*
314                                  * zero read, fail
315                                  */
316                                 if (!bytes) {
317                                         td_verror(td, ENODATA, "full resid");
318                                         put_io_u(td, io_u);
319                                         break;
320                                 }
321                                 io_u->xfer_buflen = io_u->resid;
322                                 io_u->xfer_buf += bytes;
323                                 requeue_io_u(td, &io_u);
324                         } else {
325                                 ret = io_u_sync_complete(td, io_u);
326                                 if (ret < 0)
327                                         break;
328                         }
329                         continue;
330                 case FIO_Q_QUEUED:
331                         break;
332                 case FIO_Q_BUSY:
333                         requeue_io_u(td, &io_u);
334                         ret2 = td_io_commit(td);
335                         if (ret2 < 0)
336                                 ret = ret2;
337                         break;
338                 default:
339                         assert(ret < 0);
340                         td_verror(td, -ret, "td_io_queue");
341                         break;
342                 }
343
344                 if (ret < 0 || td->error)
345                         break;
346
347                 /*
348                  * if we can queue more, do so. but check if there are
349                  * completed io_u's first.
350                  */
351                 min_events = 0;
352                 if (queue_full(td) || ret == FIO_Q_BUSY) {
353                         min_events = 1;
354
355                         if (td->cur_depth > td->iodepth_low)
356                                 min_events = td->cur_depth - td->iodepth_low;
357                 }
358
359                 /*
360                  * Reap required number of io units, if any, and do the
361                  * verification on them through the callback handler
362                  */
363                 if (io_u_queued_complete(td, min_events) < 0)
364                         break;
365         }
366
367         if (!td->error) {
368                 min_events = td->cur_depth;
369
370                 if (min_events)
371                         ret = io_u_queued_complete(td, min_events);
372         } else
373                 cleanup_pending_aio(td);
374
375         td_set_runstate(td, TD_RUNNING);
376 }
377
378 /*
379  * Main IO worker function. It retrieves io_u's to process and queues
380  * and reaps them, checking for rate and errors along the way.
381  */
382 static void do_io(struct thread_data *td)
383 {
384         struct timeval s;
385         unsigned long usec;
386         unsigned int i;
387         int ret = 0;
388
389         td_set_runstate(td, TD_RUNNING);
390
391         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
392                 struct timeval comp_time;
393                 long bytes_done = 0;
394                 int min_evts = 0;
395                 struct io_u *io_u;
396                 int ret2;
397
398                 if (td->terminate)
399                         break;
400
401                 io_u = get_io_u(td);
402                 if (!io_u)
403                         break;
404
405                 memcpy(&s, &io_u->start_time, sizeof(s));
406
407                 if (runtime_exceeded(td, &s)) {
408                         put_io_u(td, io_u);
409                         break;
410                 }
411
412                 ret = td_io_queue(td, io_u);
413                 switch (ret) {
414                 case FIO_Q_COMPLETED:
415                         if (io_u->error)
416                                 ret = -io_u->error;
417                         else if (io_u->resid) {
418                                 int bytes = io_u->xfer_buflen - io_u->resid;
419
420                                 /*
421                                  * zero read, fail
422                                  */
423                                 if (!bytes) {
424                                         td_verror(td, ENODATA, "full resid");
425                                         put_io_u(td, io_u);
426                                         break;
427                                 }
428
429                                 io_u->xfer_buflen = io_u->resid;
430                                 io_u->xfer_buf += bytes;
431                                 requeue_io_u(td, &io_u);
432                         } else {
433                                 fio_gettime(&comp_time, NULL);
434                                 bytes_done = io_u_sync_complete(td, io_u);
435                                 if (bytes_done < 0)
436                                         ret = bytes_done;
437                         }
438                         break;
439                 case FIO_Q_QUEUED:
440                         /*
441                          * if the engine doesn't have a commit hook,
442                          * the io_u is really queued. if it does have such
443                          * a hook, it has to call io_u_queued() itself.
444                          */
445                         if (td->io_ops->commit == NULL)
446                                 io_u_queued(td, io_u);
447                         break;
448                 case FIO_Q_BUSY:
449                         requeue_io_u(td, &io_u);
450                         ret2 = td_io_commit(td);
451                         if (ret2 < 0)
452                                 ret = ret2;
453                         break;
454                 default:
455                         assert(ret < 0);
456                         put_io_u(td, io_u);
457                         break;
458                 }
459
460                 if (ret < 0 || td->error)
461                         break;
462
463                 /*
464                  * See if we need to complete some commands
465                  */
466                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
467                         min_evts = 0;
468                         if (queue_full(td) || ret == FIO_Q_BUSY) {
469                                 min_evts = 1;
470
471                                 if (td->cur_depth > td->iodepth_low)
472                                         min_evts = td->cur_depth - td->iodepth_low;
473                         }
474
475                         fio_gettime(&comp_time, NULL);
476                         bytes_done = io_u_queued_complete(td, min_evts);
477                         if (bytes_done < 0)
478                                 break;
479                 }
480
481                 if (!bytes_done)
482                         continue;
483
484                 /*
485                  * the rate is batched for now, it should work for batches
486                  * of completions except the very first one which may look
487                  * a little bursty
488                  */
489                 usec = utime_since(&s, &comp_time);
490
491                 rate_throttle(td, usec, bytes_done);
492
493                 if (check_min_rate(td, &comp_time)) {
494                         if (exitall_on_terminate)
495                                 terminate_threads(td->groupid);
496                         td_verror(td, ENODATA, "check_min_rate");
497                         break;
498                 }
499
500                 if (td->thinktime) {
501                         unsigned long long b;
502
503                         b = td->io_blocks[0] + td->io_blocks[1];
504                         if (!(b % td->thinktime_blocks)) {
505                                 int left;
506
507                                 if (td->thinktime_spin)
508                                         __usec_sleep(td->thinktime_spin);
509
510                                 left = td->thinktime - td->thinktime_spin;
511                                 if (left)
512                                         usec_sleep(td, left);
513                         }
514                 }
515         }
516
517         if (!td->error) {
518                 struct fio_file *f;
519
520                 i = td->cur_depth;
521                 if (i)
522                         ret = io_u_queued_complete(td, i);
523
524                 if (should_fsync(td) && td->end_fsync) {
525                         td_set_runstate(td, TD_FSYNCING);
526
527                         for_each_file(td, f, i) {
528                                 if (!(f->flags & FIO_FILE_OPEN))
529                                         continue;
530                                 fio_io_sync(td, f);
531                         }
532                 }
533         } else
534                 cleanup_pending_aio(td);
535 }
536
537 static void cleanup_io_u(struct thread_data *td)
538 {
539         struct list_head *entry, *n;
540         struct io_u *io_u;
541
542         list_for_each_safe(entry, n, &td->io_u_freelist) {
543                 io_u = list_entry(entry, struct io_u, list);
544
545                 list_del(&io_u->list);
546                 free(io_u);
547         }
548
549         free_io_mem(td);
550 }
551
552 /*
553  * "randomly" fill the buffer contents
554  */
555 static void fill_rand_buf(struct io_u *io_u, int max_bs)
556 {
557         int *ptr = io_u->buf;
558
559         while ((void *) ptr - io_u->buf < max_bs) {
560                 *ptr = rand() * 0x9e370001;
561                 ptr++;
562         }
563 }
564
565 static int init_io_u(struct thread_data *td)
566 {
567         struct io_u *io_u;
568         unsigned int max_bs;
569         int i, max_units;
570         char *p;
571
572         if (td->io_ops->flags & FIO_SYNCIO)
573                 max_units = 1;
574         else
575                 max_units = td->iodepth;
576
577         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
578         td->orig_buffer_size = max_bs * max_units;
579
580         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
581                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
582         else
583                 td->orig_buffer_size += page_mask;
584
585         if (allocate_io_mem(td))
586                 return 1;
587
588         p = ALIGN(td->orig_buffer);
589         for (i = 0; i < max_units; i++) {
590                 io_u = malloc(sizeof(*io_u));
591                 memset(io_u, 0, sizeof(*io_u));
592                 INIT_LIST_HEAD(&io_u->list);
593
594                 io_u->buf = p + max_bs * i;
595                 if (td_write(td) || td_rw(td))
596                         fill_rand_buf(io_u, max_bs);
597
598                 io_u->index = i;
599                 io_u->flags = IO_U_F_FREE;
600                 list_add(&io_u->list, &td->io_u_freelist);
601         }
602
603         io_u_init_timeout();
604
605         return 0;
606 }
607
608 static int switch_ioscheduler(struct thread_data *td)
609 {
610         char tmp[256], tmp2[128];
611         FILE *f;
612         int ret;
613
614         if (td->io_ops->flags & FIO_DISKLESSIO)
615                 return 0;
616
617         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
618
619         f = fopen(tmp, "r+");
620         if (!f) {
621                 td_verror(td, errno, "fopen");
622                 return 1;
623         }
624
625         /*
626          * Set io scheduler.
627          */
628         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
629         if (ferror(f) || ret != 1) {
630                 td_verror(td, errno, "fwrite");
631                 fclose(f);
632                 return 1;
633         }
634
635         rewind(f);
636
637         /*
638          * Read back and check that the selected scheduler is now the default.
639          */
640         ret = fread(tmp, 1, sizeof(tmp), f);
641         if (ferror(f) || ret < 0) {
642                 td_verror(td, errno, "fread");
643                 fclose(f);
644                 return 1;
645         }
646
647         sprintf(tmp2, "[%s]", td->ioscheduler);
648         if (!strstr(tmp, tmp2)) {
649                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
650                 td_verror(td, EINVAL, "iosched_switch");
651                 fclose(f);
652                 return 1;
653         }
654
655         fclose(f);
656         return 0;
657 }
658
659 static int clear_io_state(struct thread_data *td)
660 {
661         struct fio_file *f;
662         unsigned int i;
663         int ret;
664
665         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
666         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
667         td->zone_bytes = 0;
668         td->rate_bytes = 0;
669
670         td->last_was_sync = 0;
671
672         for_each_file(td, f, i)
673                 td_io_close_file(td, f);
674
675         ret = 0;
676         for_each_file(td, f, i) {
677                 ret = td_io_open_file(td, f);
678                 if (ret)
679                         break;
680         }
681
682         return ret;
683 }
684
685 /*
686  * Entry point for the thread based jobs. The process based jobs end up
687  * here as well, after a little setup.
688  */
689 static void *thread_main(void *data)
690 {
691         unsigned long long runtime[2];
692         struct thread_data *td = data;
693         int clear_state;
694
695         if (!td->use_thread)
696                 setsid();
697
698         td->pid = getpid();
699
700         INIT_LIST_HEAD(&td->io_u_freelist);
701         INIT_LIST_HEAD(&td->io_u_busylist);
702         INIT_LIST_HEAD(&td->io_u_requeues);
703         INIT_LIST_HEAD(&td->io_hist_list);
704         INIT_LIST_HEAD(&td->io_log_list);
705
706         if (init_io_u(td))
707                 goto err_sem;
708
709         if (fio_setaffinity(td) == -1) {
710                 td_verror(td, errno, "cpu_set_affinity");
711                 goto err_sem;
712         }
713
714         if (init_iolog(td))
715                 goto err_sem;
716
717         if (td->ioprio) {
718                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
719                         td_verror(td, errno, "ioprio_set");
720                         goto err_sem;
721                 }
722         }
723
724         if (nice(td->nice) == -1) {
725                 td_verror(td, errno, "nice");
726                 goto err_sem;
727         }
728
729         if (init_random_state(td))
730                 goto err_sem;
731
732         if (td->ioscheduler && switch_ioscheduler(td))
733                 goto err_sem;
734
735         td_set_runstate(td, TD_INITIALIZED);
736         fio_sem_up(startup_sem);
737         fio_sem_down(td->mutex);
738
739         /*
740          * the ->mutex semaphore is now no longer used, close it to avoid
741          * eating a file descriptor
742          */
743         fio_sem_remove(td->mutex);
744
745         if (!td->create_serialize && setup_files(td))
746                 goto err;
747
748         if (td_io_init(td))
749                 goto err;
750
751         if (open_files(td))
752                 goto err;
753
754         if (td->exec_prerun) {
755                 if (system(td->exec_prerun) < 0)
756                         goto err;
757         }
758
759         fio_gettime(&td->epoch, NULL);
760         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
761         getrusage(RUSAGE_SELF, &td->ts.ru_start);
762
763         runtime[0] = runtime[1] = 0;
764         clear_state = 0;
765         while (td->loops--) {
766                 fio_gettime(&td->start, NULL);
767                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
768
769                 if (td->ratemin)
770                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
771
772                 if (clear_state && clear_io_state(td))
773                         break;
774
775                 prune_io_piece_log(td);
776
777                 do_io(td);
778
779                 clear_state = 1;
780
781                 if (td_read(td) && td->io_bytes[DDIR_READ])
782                         runtime[DDIR_READ] += utime_since_now(&td->start);
783                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
784                         runtime[DDIR_WRITE] += utime_since_now(&td->start);
785                 
786                 if (td->error || td->terminate)
787                         break;
788
789                 if (td->verify == VERIFY_NONE)
790                         continue;
791
792                 if (clear_io_state(td))
793                         break;
794
795                 fio_gettime(&td->start, NULL);
796
797                 do_verify(td);
798
799                 runtime[DDIR_READ] += utime_since_now(&td->start);
800
801                 if (td->error || td->terminate)
802                         break;
803         }
804
805         update_rusage_stat(td);
806         td->ts.runtime[0] = runtime[0] / 1000;
807         td->ts.runtime[1] = runtime[1] / 1000;
808         td->ts.total_run_time = mtime_since_now(&td->epoch);
809         td->ts.io_bytes[0] = td->io_bytes[0];
810         td->ts.io_bytes[1] = td->io_bytes[1];
811
812         if (td->ts.bw_log)
813                 finish_log(td, td->ts.bw_log, "bw");
814         if (td->ts.slat_log)
815                 finish_log(td, td->ts.slat_log, "slat");
816         if (td->ts.clat_log)
817                 finish_log(td, td->ts.clat_log, "clat");
818         if (td->write_iolog_file)
819                 write_iolog_close(td);
820         if (td->exec_postrun) {
821                 if (system(td->exec_postrun) < 0)
822                         log_err("fio: postrun %s failed\n", td->exec_postrun);
823         }
824
825         if (exitall_on_terminate)
826                 terminate_threads(td->groupid);
827
828 err:
829         if (td->error)
830                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
831         close_files(td);
832         close_ioengine(td);
833         cleanup_io_u(td);
834         td_set_runstate(td, TD_EXITED);
835         return (void *) (unsigned long) td->error;
836 err_sem:
837         fio_sem_up(startup_sem);
838         goto err;
839 }
840
841 /*
842  * We cannot pass the td data into a forked process, so attach the td and
843  * pass it to the thread worker.
844  */
845 static int fork_main(int shmid, int offset)
846 {
847         struct thread_data *td;
848         void *data, *ret;
849
850         data = shmat(shmid, NULL, 0);
851         if (data == (void *) -1) {
852                 int __err = errno;
853
854                 perror("shmat");
855                 return __err;
856         }
857
858         td = data + offset * sizeof(struct thread_data);
859         ret = thread_main(td);
860         shmdt(data);
861         return (int) (unsigned long) ret;
862 }
863
864 /*
865  * Run over the job map and reap the threads that have exited, if any.
866  */
867 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
868 {
869         struct thread_data *td;
870         int i, cputhreads, pending, status, ret;
871
872         /*
873          * reap exited threads (TD_EXITED -> TD_REAPED)
874          */
875         pending = cputhreads = 0;
876         for_each_td(td, i) {
877                 int flags = 0;
878
879                 /*
880                  * ->io_ops is NULL for a thread that has closed its
881                  * io engine
882                  */
883                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
884                         cputhreads++;
885
886                 if (!td->pid || td->runstate == TD_REAPED)
887                         continue;
888                 if (td->use_thread) {
889                         if (td->runstate == TD_EXITED) {
890                                 td_set_runstate(td, TD_REAPED);
891                                 goto reaped;
892                         }
893                         continue;
894                 }
895
896                 flags = WNOHANG;
897                 if (td->runstate == TD_EXITED)
898                         flags = 0;
899
900                 /*
901                  * check if someone quit or got killed in an unusual way
902                  */
903                 ret = waitpid(td->pid, &status, flags);
904                 if (ret < 0) {
905                         if (errno == ECHILD) {
906                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
907                                 td_set_runstate(td, TD_REAPED);
908                                 goto reaped;
909                         }
910                         perror("waitpid");
911                 } else if (ret == td->pid) {
912                         if (WIFSIGNALED(status)) {
913                                 int sig = WTERMSIG(status);
914
915                                 if (sig != SIGQUIT)
916                                         log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
917                                 td_set_runstate(td, TD_REAPED);
918                                 goto reaped;
919                         }
920                         if (WIFEXITED(status)) {
921                                 if (WEXITSTATUS(status) && !td->error)
922                                         td->error = WEXITSTATUS(status);
923
924                                 td_set_runstate(td, TD_REAPED);
925                                 goto reaped;
926                         }
927                 }
928
929                 /*
930                  * thread is not dead, continue
931                  */
932                 continue;
933 reaped:
934                 if (td->use_thread) {
935                         long ret;
936
937                         if (pthread_join(td->thread, (void *) &ret))
938                                 perror("pthread_join");
939                 }
940
941                 (*nr_running)--;
942                 (*m_rate) -= td->ratemin;
943                 (*t_rate) -= td->rate;
944
945                 if (td->error)
946                         exit_value++;
947         }
948
949         if (*nr_running == cputhreads && !pending)
950                 terminate_threads(TERMINATE_ALL);
951 }
952
953 /*
954  * Main function for kicking off and reaping jobs, as needed.
955  */
956 static void run_threads(void)
957 {
958         struct thread_data *td;
959         unsigned long spent;
960         int i, todo, nr_running, m_rate, t_rate, nr_started;
961
962         if (fio_pin_memory())
963                 return;
964
965         if (!terse_output) {
966                 printf("Starting ");
967                 if (nr_thread)
968                         printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
969                 if (nr_process) {
970                         if (nr_thread)
971                                 printf(" and ");
972                         printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
973                 }
974                 printf("\n");
975                 fflush(stdout);
976         }
977
978         signal(SIGINT, sig_handler);
979         signal(SIGALRM, sig_handler);
980
981         todo = thread_number;
982         nr_running = 0;
983         nr_started = 0;
984         m_rate = t_rate = 0;
985
986         for_each_td(td, i) {
987                 print_status_init(td->thread_number - 1);
988
989                 if (!td->create_serialize) {
990                         init_disk_util(td);
991                         continue;
992                 }
993
994                 /*
995                  * do file setup here so it happens sequentially,
996                  * we don't want X number of threads getting their
997                  * client data interspersed on disk
998                  */
999                 if (setup_files(td)) {
1000                         exit_value++;
1001                         if (td->error)
1002                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1003                         td_set_runstate(td, TD_REAPED);
1004                         todo--;
1005                 }
1006
1007                 init_disk_util(td);
1008         }
1009
1010         set_genesis_time();
1011
1012         while (todo) {
1013                 struct thread_data *map[MAX_JOBS];
1014                 struct timeval this_start;
1015                 int this_jobs = 0, left;
1016
1017                 /*
1018                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1019                  */
1020                 for_each_td(td, i) {
1021                         if (td->runstate != TD_NOT_CREATED)
1022                                 continue;
1023
1024                         /*
1025                          * never got a chance to start, killed by other
1026                          * thread for some reason
1027                          */
1028                         if (td->terminate) {
1029                                 todo--;
1030                                 continue;
1031                         }
1032
1033                         if (td->start_delay) {
1034                                 spent = mtime_since_genesis();
1035
1036                                 if (td->start_delay * 1000 > spent)
1037                                         continue;
1038                         }
1039
1040                         if (td->stonewall && (nr_started || nr_running))
1041                                 break;
1042
1043                         /*
1044                          * Set state to created. Thread will transition
1045                          * to TD_INITIALIZED when it's done setting up.
1046                          */
1047                         td_set_runstate(td, TD_CREATED);
1048                         map[this_jobs++] = td;
1049                         nr_started++;
1050
1051                         if (td->use_thread) {
1052                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1053                                         perror("thread_create");
1054                                         nr_started--;
1055                                         break;
1056                                 }
1057                         } else {
1058                                 if (!fork()) {
1059                                         int ret = fork_main(shm_id, i);
1060
1061                                         exit(ret);
1062                                 }
1063                         }
1064                         fio_sem_down(startup_sem);
1065                 }
1066
1067                 /*
1068                  * Wait for the started threads to transition to
1069                  * TD_INITIALIZED.
1070                  */
1071                 fio_gettime(&this_start, NULL);
1072                 left = this_jobs;
1073                 while (left && !fio_abort) {
1074                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1075                                 break;
1076
1077                         usleep(100000);
1078
1079                         for (i = 0; i < this_jobs; i++) {
1080                                 td = map[i];
1081                                 if (!td)
1082                                         continue;
1083                                 if (td->runstate == TD_INITIALIZED) {
1084                                         map[i] = NULL;
1085                                         left--;
1086                                 } else if (td->runstate >= TD_EXITED) {
1087                                         map[i] = NULL;
1088                                         left--;
1089                                         todo--;
1090                                         nr_running++; /* work-around... */
1091                                 }
1092                         }
1093                 }
1094
1095                 if (left) {
1096                         log_err("fio: %d jobs failed to start\n", left);
1097                         for (i = 0; i < this_jobs; i++) {
1098                                 td = map[i];
1099                                 if (!td)
1100                                         continue;
1101                                 kill(td->pid, SIGTERM);
1102                         }
1103                         break;
1104                 }
1105
1106                 /*
1107                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1108                  */
1109                 for_each_td(td, i) {
1110                         if (td->runstate != TD_INITIALIZED)
1111                                 continue;
1112
1113                         td_set_runstate(td, TD_RUNNING);
1114                         nr_running++;
1115                         nr_started--;
1116                         m_rate += td->ratemin;
1117                         t_rate += td->rate;
1118                         todo--;
1119                         fio_sem_up(td->mutex);
1120                 }
1121
1122                 reap_threads(&nr_running, &t_rate, &m_rate);
1123
1124                 if (todo)
1125                         usleep(100000);
1126         }
1127
1128         while (nr_running) {
1129                 reap_threads(&nr_running, &t_rate, &m_rate);
1130                 usleep(10000);
1131         }
1132
1133         update_io_ticks();
1134         fio_unpin_memory();
1135 }
1136
1137 int main(int argc, char *argv[])
1138 {
1139         long ps;
1140
1141         /*
1142          * We need locale for number printing, if it isn't set then just
1143          * go with the US format.
1144          */
1145         if (!getenv("LC_NUMERIC"))
1146                 setlocale(LC_NUMERIC, "en_US");
1147
1148         if (parse_options(argc, argv))
1149                 return 1;
1150
1151         if (!thread_number) {
1152                 log_err("Nothing to do\n");
1153                 return 1;
1154         }
1155
1156         ps = sysconf(_SC_PAGESIZE);
1157         if (ps < 0) {
1158                 log_err("Failed to get page size\n");
1159                 return 1;
1160         }
1161
1162         page_size = ps;
1163         page_mask = ps - 1;
1164
1165         if (write_bw_log) {
1166                 setup_log(&agg_io_log[DDIR_READ]);
1167                 setup_log(&agg_io_log[DDIR_WRITE]);
1168         }
1169
1170         startup_sem = fio_sem_init(0);
1171
1172         set_genesis_time();
1173
1174         disk_util_timer_arm();
1175
1176         run_threads();
1177
1178         if (!fio_abort) {
1179                 show_run_stats();
1180                 if (write_bw_log) {
1181                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1182                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1183                 }
1184         }
1185
1186         fio_sem_remove(startup_sem);
1187         return exit_value;
1188 }