dd52626469a0358cdbacc062d02058b19f148825
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <assert.h>
30 #include <sys/stat.h>
31 #include <sys/wait.h>
32 #include <sys/ipc.h>
33 #include <sys/shm.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 #define MASK    (4095)
41
42 #define ALIGN(buf)      (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50
51 #define TERMINATE_ALL           (-1)
52 #define JOB_START_TIMEOUT       (5 * 1000)
53
54 static void terminate_threads(int group_id)
55 {
56         struct thread_data *td;
57         int i;
58
59         for_each_td(td, i) {
60                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
61                         td->terminate = 1;
62                         td->start_delay = 0;
63                 }
64         }
65 }
66
67 static void sig_handler(int sig)
68 {
69         switch (sig) {
70                 case SIGALRM:
71                         update_io_ticks();
72                         disk_util_timer_arm();
73                         print_thread_status();
74                         break;
75                 default:
76                         printf("\nfio: terminating on signal\n");
77                         fflush(stdout);
78                         terminate_threads(TERMINATE_ALL);
79                         break;
80         }
81 }
82
83 /*
84  * Check if we are above the minimum rate given.
85  */
86 static int check_min_rate(struct thread_data *td, struct timeval *now)
87 {
88         unsigned long spent;
89         unsigned long rate;
90         int ddir = td->ddir;
91
92         /*
93          * allow a 2 second settle period in the beginning
94          */
95         if (mtime_since(&td->start, now) < 2000)
96                 return 0;
97
98         /*
99          * if rate blocks is set, sample is running
100          */
101         if (td->rate_bytes) {
102                 spent = mtime_since(&td->lastrate, now);
103                 if (spent < td->ratecycle)
104                         return 0;
105
106                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
107                 if (rate < td->ratemin) {
108                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
109                         return 1;
110                 }
111         }
112
113         td->rate_bytes = td->this_io_bytes[ddir];
114         memcpy(&td->lastrate, now, sizeof(*now));
115         return 0;
116 }
117
118 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
119 {
120         if (!td->timeout)
121                 return 0;
122         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
123                 return 1;
124
125         return 0;
126 }
127
128 static inline void td_set_runstate(struct thread_data *td, int runstate)
129 {
130         td->runstate = runstate;
131 }
132
133 static struct fio_file *get_next_file(struct thread_data *td)
134 {
135         unsigned int old_next_file = td->next_file;
136         struct fio_file *f;
137
138         do {
139                 f = &td->files[td->next_file];
140
141                 td->next_file++;
142                 if (td->next_file >= td->nr_files)
143                         td->next_file = 0;
144
145                 if (f->fd != -1)
146                         break;
147
148                 f = NULL;
149         } while (td->next_file != old_next_file);
150
151         return f;
152 }
153
154 /*
155  * When job exits, we can cancel the in-flight IO if we are using async
156  * io. Attempt to do so.
157  */
158 static void cleanup_pending_aio(struct thread_data *td)
159 {
160         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
161         struct list_head *entry, *n;
162         struct io_completion_data icd;
163         struct io_u *io_u;
164         int r;
165
166         /*
167          * get immediately available events, if any
168          */
169         r = td_io_getevents(td, 0, td->cur_depth, &ts);
170         if (r > 0) {
171                 icd.nr = r;
172                 ios_completed(td, &icd);
173         }
174
175         /*
176          * now cancel remaining active events
177          */
178         if (td->io_ops->cancel) {
179                 list_for_each_safe(entry, n, &td->io_u_busylist) {
180                         io_u = list_entry(entry, struct io_u, list);
181
182                         r = td->io_ops->cancel(td, io_u);
183                         if (!r)
184                                 put_io_u(td, io_u);
185                 }
186         }
187
188         if (td->cur_depth) {
189                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
190                 if (r > 0) {
191                         icd.nr = r;
192                         ios_completed(td, &icd);
193                 }
194         }
195 }
196
197 /*
198  * Helper to handle the final sync of a file. Works just like the normal
199  * io path, just does everything sync.
200  */
201 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
202 {
203         struct io_u *io_u = __get_io_u(td);
204         struct io_completion_data icd;
205         int ret;
206
207         if (!io_u)
208                 return 1;
209
210         io_u->ddir = DDIR_SYNC;
211         io_u->file = f;
212
213         if (td_io_prep(td, io_u)) {
214                 put_io_u(td, io_u);
215                 return 1;
216         }
217
218         ret = td_io_queue(td, io_u);
219         if (ret) {
220                 td_verror(td, io_u->error);
221                 put_io_u(td, io_u);
222                 return 1;
223         }
224
225         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
226         if (ret < 0) {
227                 td_verror(td, ret);
228                 return 1;
229         }
230
231         icd.nr = ret;
232         ios_completed(td, &icd);
233         if (icd.error) {
234                 td_verror(td, icd.error);
235                 return 1;
236         }
237
238         return 0;
239 }
240
241 /*
242  * The main verify engine. Runs over the writes we previusly submitted,
243  * reads the blocks back in, and checks the crc/md5 of the data.
244  */
245 static void do_verify(struct thread_data *td)
246 {
247         struct io_u *io_u, *v_io_u = NULL;
248         struct io_completion_data icd;
249         struct fio_file *f;
250         int ret, i;
251
252         /*
253          * sync io first and invalidate cache, to make sure we really
254          * read from disk.
255          */
256         for_each_file(td, f, i) {
257                 fio_io_sync(td, f);
258                 file_invalidate_cache(td, f);
259         }
260
261         td_set_runstate(td, TD_VERIFYING);
262
263         do {
264                 if (td->terminate)
265                         break;
266
267                 io_u = __get_io_u(td);
268                 if (!io_u)
269                         break;
270
271                 if (runtime_exceeded(td, &io_u->start_time)) {
272                         put_io_u(td, io_u);
273                         break;
274                 }
275
276                 if (get_next_verify(td, io_u)) {
277                         put_io_u(td, io_u);
278                         break;
279                 }
280
281                 f = get_next_file(td);
282                 if (!f)
283                         break;
284
285                 io_u->file = f;
286
287                 if (td_io_prep(td, io_u)) {
288                         put_io_u(td, io_u);
289                         break;
290                 }
291
292                 ret = td_io_queue(td, io_u);
293                 if (ret) {
294                         td_verror(td, io_u->error);
295                         put_io_u(td, io_u);
296                         break;
297                 }
298
299                 /*
300                  * we have one pending to verify, do that while
301                  * we are doing io on the next one
302                  */
303                 if (do_io_u_verify(td, &v_io_u))
304                         break;
305
306                 ret = td_io_getevents(td, 1, 1, NULL);
307                 if (ret != 1) {
308                         if (ret < 0)
309                                 td_verror(td, ret);
310                         break;
311                 }
312
313                 v_io_u = td->io_ops->event(td, 0);
314                 icd.nr = 1;
315                 icd.error = 0;
316                 fio_gettime(&icd.time, NULL);
317                 io_completed(td, v_io_u, &icd);
318
319                 if (icd.error) {
320                         td_verror(td, icd.error);
321                         put_io_u(td, v_io_u);
322                         v_io_u = NULL;
323                         break;
324                 }
325
326                 /*
327                  * if we can't submit more io, we need to verify now
328                  */
329                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
330                         break;
331
332         } while (1);
333
334         do_io_u_verify(td, &v_io_u);
335
336         if (td->cur_depth)
337                 cleanup_pending_aio(td);
338
339         td_set_runstate(td, TD_RUNNING);
340 }
341
342 /*
343  * Not really an io thread, all it does is burn CPU cycles in the specified
344  * manner.
345  */
346 static void do_cpuio(struct thread_data *td)
347 {
348         struct timeval e;
349         int split = 100 / td->cpuload;
350         int i = 0;
351
352         while (!td->terminate) {
353                 fio_gettime(&e, NULL);
354
355                 if (runtime_exceeded(td, &e))
356                         break;
357
358                 if (!(i % split))
359                         __usec_sleep(10000);
360                 else
361                         usec_sleep(td, 10000);
362
363                 i++;
364         }
365 }
366
367 /*
368  * Main IO worker function. It retrieves io_u's to process and queues
369  * and reaps them, checking for rate and errors along the way.
370  */
371 static void do_io(struct thread_data *td)
372 {
373         struct io_completion_data icd;
374         struct timeval s;
375         unsigned long usec;
376         struct fio_file *f;
377         int i, ret = 0;
378
379         td_set_runstate(td, TD_RUNNING);
380
381         while (td->this_io_bytes[td->ddir] < td->io_size) {
382                 struct timespec *timeout;
383                 int min_evts = 0;
384                 struct io_u *io_u;
385
386                 if (td->terminate)
387                         break;
388
389                 f = get_next_file(td);
390                 if (!f)
391                         break;
392
393                 io_u = get_io_u(td, f);
394                 if (!io_u)
395                         break;
396
397                 memcpy(&s, &io_u->start_time, sizeof(s));
398
399                 ret = td_io_queue(td, io_u);
400                 if (ret) {
401                         td_verror(td, io_u->error);
402                         put_io_u(td, io_u);
403                         break;
404                 }
405
406                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
407
408                 if (td->cur_depth < td->iodepth) {
409                         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
410
411                         timeout = &ts;
412                         min_evts = 0;
413                 } else {
414                         timeout = NULL;
415                         min_evts = 1;
416                 }
417
418                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
419                 if (ret < 0) {
420                         td_verror(td, ret);
421                         break;
422                 } else if (!ret)
423                         continue;
424
425                 icd.nr = ret;
426                 ios_completed(td, &icd);
427                 if (icd.error) {
428                         td_verror(td, icd.error);
429                         break;
430                 }
431
432                 /*
433                  * the rate is batched for now, it should work for batches
434                  * of completions except the very first one which may look
435                  * a little bursty
436                  */
437                 usec = utime_since(&s, &icd.time);
438
439                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
440
441                 if (check_min_rate(td, &icd.time)) {
442                         if (exitall_on_terminate)
443                                 terminate_threads(td->groupid);
444                         td_verror(td, ENOMEM);
445                         break;
446                 }
447
448                 if (runtime_exceeded(td, &icd.time))
449                         break;
450
451                 if (td->thinktime) {
452                         unsigned long long b;
453
454                         b = td->io_blocks[0] + td->io_blocks[1];
455                         if (!(b % td->thinktime_blocks))
456                                 usec_sleep(td, td->thinktime);
457                 }
458         }
459
460         if (!td->error) {
461                 if (td->cur_depth)
462                         cleanup_pending_aio(td);
463
464                 if (should_fsync(td) && td->end_fsync) {
465                         td_set_runstate(td, TD_FSYNCING);
466                         for_each_file(td, f, i)
467                                 fio_io_sync(td, f);
468                 }
469         }
470 }
471
472 static void cleanup_io_u(struct thread_data *td)
473 {
474         struct list_head *entry, *n;
475         struct io_u *io_u;
476
477         list_for_each_safe(entry, n, &td->io_u_freelist) {
478                 io_u = list_entry(entry, struct io_u, list);
479
480                 list_del(&io_u->list);
481                 free(io_u);
482         }
483
484         free_io_mem(td);
485 }
486
487 /*
488  * "randomly" fill the buffer contents
489  */
490 static void fill_rand_buf(struct io_u *io_u, int max_bs)
491 {
492         int *ptr = io_u->buf;
493
494         while ((void *) ptr - io_u->buf < max_bs) {
495                 *ptr = rand() * 0x9e370001;
496                 ptr++;
497         }
498 }
499
500 static int init_io_u(struct thread_data *td)
501 {
502         struct io_u *io_u;
503         unsigned int max_bs;
504         int i, max_units;
505         char *p;
506
507         if (td->io_ops->flags & FIO_CPUIO)
508                 return 0;
509
510         if (td->io_ops->flags & FIO_SYNCIO)
511                 max_units = 1;
512         else
513                 max_units = td->iodepth;
514
515         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
516         td->orig_buffer_size = max_bs * max_units;
517
518         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
519                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
520         else
521                 td->orig_buffer_size += MASK;
522
523         if (allocate_io_mem(td))
524                 return 1;
525
526         p = ALIGN(td->orig_buffer);
527         for (i = 0; i < max_units; i++) {
528                 io_u = malloc(sizeof(*io_u));
529                 memset(io_u, 0, sizeof(*io_u));
530                 INIT_LIST_HEAD(&io_u->list);
531
532                 io_u->buf = p + max_bs * i;
533                 if (td_write(td) || td_rw(td))
534                         fill_rand_buf(io_u, max_bs);
535
536                 io_u->index = i;
537                 list_add(&io_u->list, &td->io_u_freelist);
538         }
539
540         return 0;
541 }
542
543 static int switch_ioscheduler(struct thread_data *td)
544 {
545         char tmp[256], tmp2[128];
546         FILE *f;
547         int ret;
548
549         if (td->io_ops->flags & FIO_CPUIO)
550                 return 0;
551
552         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
553
554         f = fopen(tmp, "r+");
555         if (!f) {
556                 td_verror(td, errno);
557                 return 1;
558         }
559
560         /*
561          * Set io scheduler.
562          */
563         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
564         if (ferror(f) || ret != 1) {
565                 td_verror(td, errno);
566                 fclose(f);
567                 return 1;
568         }
569
570         rewind(f);
571
572         /*
573          * Read back and check that the selected scheduler is now the default.
574          */
575         ret = fread(tmp, 1, sizeof(tmp), f);
576         if (ferror(f) || ret < 0) {
577                 td_verror(td, errno);
578                 fclose(f);
579                 return 1;
580         }
581
582         sprintf(tmp2, "[%s]", td->ioscheduler);
583         if (!strstr(tmp, tmp2)) {
584                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
585                 td_verror(td, EINVAL);
586                 fclose(f);
587                 return 1;
588         }
589
590         fclose(f);
591         return 0;
592 }
593
594 static void clear_io_state(struct thread_data *td)
595 {
596         struct fio_file *f;
597         int i;
598
599         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
600         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
601         td->zone_bytes = 0;
602
603         for_each_file(td, f, i) {
604                 f->last_pos = 0;
605                 if (td->io_ops->flags & FIO_SYNCIO)
606                         lseek(f->fd, SEEK_SET, 0);
607
608                 if (f->file_map)
609                         memset(f->file_map, 0, f->num_maps * sizeof(long));
610         }
611 }
612
613 /*
614  * Entry point for the thread based jobs. The process based jobs end up
615  * here as well, after a little setup.
616  */
617 static void *thread_main(void *data)
618 {
619         unsigned long long runtime[2];
620         struct thread_data *td = data;
621
622         if (!td->use_thread)
623                 setsid();
624
625         td->pid = getpid();
626
627         INIT_LIST_HEAD(&td->io_u_freelist);
628         INIT_LIST_HEAD(&td->io_u_busylist);
629         INIT_LIST_HEAD(&td->io_hist_list);
630         INIT_LIST_HEAD(&td->io_log_list);
631
632         if (init_io_u(td))
633                 goto err;
634
635         if (fio_setaffinity(td) == -1) {
636                 td_verror(td, errno);
637                 goto err;
638         }
639
640         if (td_io_init(td))
641                 goto err;
642
643         if (init_iolog(td))
644                 goto err;
645
646         if (td->ioprio) {
647                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
648                         td_verror(td, errno);
649                         goto err;
650                 }
651         }
652
653         if (nice(td->nice) == -1) {
654                 td_verror(td, errno);
655                 goto err;
656         }
657
658         if (init_random_state(td))
659                 goto err;
660
661         if (td->ioscheduler && switch_ioscheduler(td))
662                 goto err;
663
664         td_set_runstate(td, TD_INITIALIZED);
665         fio_sem_up(&startup_sem);
666         fio_sem_down(&td->mutex);
667
668         if (!td->create_serialize && setup_files(td))
669                 goto err;
670         if (open_files(td))
671                 goto err;
672
673         if (td->exec_prerun)
674                 system(td->exec_prerun);
675
676         fio_gettime(&td->epoch, NULL);
677         getrusage(RUSAGE_SELF, &td->ru_start);
678
679         runtime[0] = runtime[1] = 0;
680         while (td->loops--) {
681                 fio_gettime(&td->start, NULL);
682                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
683
684                 if (td->ratemin)
685                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
686
687                 clear_io_state(td);
688                 prune_io_piece_log(td);
689
690                 if (td->io_ops->flags & FIO_CPUIO)
691                         do_cpuio(td);
692                 else
693                         do_io(td);
694
695                 runtime[td->ddir] += utime_since_now(&td->start);
696                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
697                         runtime[td->ddir ^ 1] = runtime[td->ddir];
698
699                 if (td->error || td->terminate)
700                         break;
701
702                 if (td->verify == VERIFY_NONE)
703                         continue;
704
705                 clear_io_state(td);
706                 fio_gettime(&td->start, NULL);
707
708                 do_verify(td);
709
710                 runtime[DDIR_READ] += utime_since_now(&td->start);
711
712                 if (td->error || td->terminate)
713                         break;
714         }
715
716         update_rusage_stat(td);
717         fio_gettime(&td->end_time, NULL);
718         td->runtime[0] = runtime[0] / 1000;
719         td->runtime[1] = runtime[1] / 1000;
720
721         if (td->bw_log)
722                 finish_log(td, td->bw_log, "bw");
723         if (td->slat_log)
724                 finish_log(td, td->slat_log, "slat");
725         if (td->clat_log)
726                 finish_log(td, td->clat_log, "clat");
727         if (td->write_iolog_file)
728                 write_iolog_close(td);
729         if (td->exec_postrun)
730                 system(td->exec_postrun);
731
732         if (exitall_on_terminate)
733                 terminate_threads(td->groupid);
734
735 err:
736         close_files(td);
737         close_ioengine(td);
738         cleanup_io_u(td);
739         td_set_runstate(td, TD_EXITED);
740         return NULL;
741
742 }
743
744 /*
745  * We cannot pass the td data into a forked process, so attach the td and
746  * pass it to the thread worker.
747  */
748 static void *fork_main(int shmid, int offset)
749 {
750         struct thread_data *td;
751         void *data;
752
753         data = shmat(shmid, NULL, 0);
754         if (data == (void *) -1) {
755                 perror("shmat");
756                 return NULL;
757         }
758
759         td = data + offset * sizeof(struct thread_data);
760         thread_main(td);
761         shmdt(data);
762         return NULL;
763 }
764
765 /*
766  * Run over the job map and reap the threads that have exited, if any.
767  */
768 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
769 {
770         struct thread_data *td;
771         int i, cputhreads, pending;
772
773         /*
774          * reap exited threads (TD_EXITED -> TD_REAPED)
775          */
776         pending = cputhreads = 0;
777         for_each_td(td, i) {
778                 /*
779                  * ->io_ops is NULL for a thread that has closed its
780                  * io engine
781                  */
782                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
783                         cputhreads++;
784
785                 if (td->runstate != TD_EXITED) {
786                         if (td->runstate < TD_RUNNING)
787                                 pending++;
788
789                         continue;
790                 }
791
792                 td_set_runstate(td, TD_REAPED);
793
794                 if (td->use_thread) {
795                         long ret;
796
797                         if (pthread_join(td->thread, (void *) &ret))
798                                 perror("thread_join");
799                 } else
800                         waitpid(td->pid, NULL, 0);
801
802                 (*nr_running)--;
803                 (*m_rate) -= td->ratemin;
804                 (*t_rate) -= td->rate;
805         }
806
807         if (*nr_running == cputhreads && !pending)
808                 terminate_threads(TERMINATE_ALL);
809 }
810
811 /*
812  * Main function for kicking off and reaping jobs, as needed.
813  */
814 static void run_threads(void)
815 {
816         struct thread_data *td;
817         unsigned long spent;
818         int i, todo, nr_running, m_rate, t_rate, nr_started;
819
820         if (fio_pin_memory())
821                 return;
822
823         if (!terse_output) {
824                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
825                 fflush(stdout);
826         }
827
828         signal(SIGINT, sig_handler);
829         signal(SIGALRM, sig_handler);
830
831         todo = thread_number;
832         nr_running = 0;
833         nr_started = 0;
834         m_rate = t_rate = 0;
835
836         for_each_td(td, i) {
837                 print_status_init(td->thread_number - 1);
838
839                 init_disk_util(td);
840
841                 if (!td->create_serialize)
842                         continue;
843
844                 /*
845                  * do file setup here so it happens sequentially,
846                  * we don't want X number of threads getting their
847                  * client data interspersed on disk
848                  */
849                 if (setup_files(td)) {
850                         td_set_runstate(td, TD_REAPED);
851                         todo--;
852                 }
853         }
854
855         while (todo) {
856                 struct thread_data *map[MAX_JOBS];
857                 struct timeval this_start;
858                 int this_jobs = 0, left;
859
860                 /*
861                  * create threads (TD_NOT_CREATED -> TD_CREATED)
862                  */
863                 for_each_td(td, i) {
864                         if (td->runstate != TD_NOT_CREATED)
865                                 continue;
866
867                         /*
868                          * never got a chance to start, killed by other
869                          * thread for some reason
870                          */
871                         if (td->terminate) {
872                                 todo--;
873                                 continue;
874                         }
875
876                         if (td->start_delay) {
877                                 spent = mtime_since_genesis();
878
879                                 if (td->start_delay * 1000 > spent)
880                                         continue;
881                         }
882
883                         if (td->stonewall && (nr_started || nr_running))
884                                 break;
885
886                         /*
887                          * Set state to created. Thread will transition
888                          * to TD_INITIALIZED when it's done setting up.
889                          */
890                         td_set_runstate(td, TD_CREATED);
891                         map[this_jobs++] = td;
892                         fio_sem_init(&startup_sem, 1);
893                         nr_started++;
894
895                         if (td->use_thread) {
896                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
897                                         perror("thread_create");
898                                         nr_started--;
899                                 }
900                         } else {
901                                 if (fork())
902                                         fio_sem_down(&startup_sem);
903                                 else {
904                                         fork_main(shm_id, i);
905                                         exit(0);
906                                 }
907                         }
908                 }
909
910                 /*
911                  * Wait for the started threads to transition to
912                  * TD_INITIALIZED.
913                  */
914                 fio_gettime(&this_start, NULL);
915                 left = this_jobs;
916                 while (left) {
917                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
918                                 break;
919
920                         usleep(100000);
921
922                         for (i = 0; i < this_jobs; i++) {
923                                 td = map[i];
924                                 if (!td)
925                                         continue;
926                                 if (td->runstate == TD_INITIALIZED) {
927                                         map[i] = NULL;
928                                         left--;
929                                 } else if (td->runstate >= TD_EXITED) {
930                                         map[i] = NULL;
931                                         left--;
932                                         todo--;
933                                         nr_running++; /* work-around... */
934                                 }
935                         }
936                 }
937
938                 if (left) {
939                         log_err("fio: %d jobs failed to start\n", left);
940                         for (i = 0; i < this_jobs; i++) {
941                                 td = map[i];
942                                 if (!td)
943                                         continue;
944                                 kill(td->pid, SIGTERM);
945                         }
946                         break;
947                 }
948
949                 /*
950                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
951                  */
952                 for_each_td(td, i) {
953                         if (td->runstate != TD_INITIALIZED)
954                                 continue;
955
956                         td_set_runstate(td, TD_RUNNING);
957                         nr_running++;
958                         nr_started--;
959                         m_rate += td->ratemin;
960                         t_rate += td->rate;
961                         todo--;
962                         fio_sem_up(&td->mutex);
963                 }
964
965                 reap_threads(&nr_running, &t_rate, &m_rate);
966
967                 if (todo)
968                         usleep(100000);
969         }
970
971         while (nr_running) {
972                 reap_threads(&nr_running, &t_rate, &m_rate);
973                 usleep(10000);
974         }
975
976         update_io_ticks();
977         fio_unpin_memory();
978 }
979
980 int main(int argc, char *argv[])
981 {
982         if (parse_options(argc, argv))
983                 return 1;
984
985         if (!thread_number) {
986                 log_err("Nothing to do\n");
987                 return 1;
988         }
989
990         disk_util_timer_arm();
991
992         run_threads();
993         show_run_stats();
994
995         return 0;
996 }