dbea661d961ca5b911b0a35161510c238d6f0b2a
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long long bytes = 0;
100         unsigned long spent;
101         unsigned long rate;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         if (td_read(td))
110                 bytes += td->this_io_bytes[DDIR_READ];
111         if (td_write(td))
112                 bytes += td->this_io_bytes[DDIR_WRITE];
113
114         /*
115          * if rate blocks is set, sample is running
116          */
117         if (td->rate_bytes) {
118                 spent = mtime_since(&td->lastrate, now);
119                 if (spent < td->ratecycle)
120                         return 0;
121
122                 if (bytes < td->rate_bytes) {
123                         fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
124                         return 1;
125                 } else {
126                         rate = (bytes - td->rate_bytes) / spent;
127                         if (rate < td->ratemin || bytes < td->rate_bytes) {
128                                 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
129                                 return 1;
130                         }
131                 }
132         }
133
134         td->rate_bytes = bytes;
135         memcpy(&td->lastrate, now, sizeof(*now));
136         return 0;
137 }
138
139 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
140 {
141         if (!td->timeout)
142                 return 0;
143         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
144                 return 1;
145
146         return 0;
147 }
148
149 /*
150  * When job exits, we can cancel the in-flight IO if we are using async
151  * io. Attempt to do so.
152  */
153 static void cleanup_pending_aio(struct thread_data *td)
154 {
155         struct list_head *entry, *n;
156         struct io_u *io_u;
157         int r;
158
159         /*
160          * get immediately available events, if any
161          */
162         r = io_u_queued_complete(td, 0, NULL);
163         if (r < 0)
164                 return;
165
166         /*
167          * now cancel remaining active events
168          */
169         if (td->io_ops->cancel) {
170                 list_for_each_safe(entry, n, &td->io_u_busylist) {
171                         io_u = list_entry(entry, struct io_u, list);
172
173                         /*
174                          * if the io_u isn't in flight, then that generally
175                          * means someone leaked an io_u. complain but fix
176                          * it up, so we don't stall here.
177                          */
178                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
179                                 log_err("fio: non-busy IO on busy list\n");
180                                 put_io_u(td, io_u);
181                         } else {
182                                 r = td->io_ops->cancel(td, io_u);
183                                 if (!r)
184                                         put_io_u(td, io_u);
185                         }
186                 }
187         }
188
189         if (td->cur_depth)
190                 r = io_u_queued_complete(td, td->cur_depth, NULL);
191 }
192
193 /*
194  * Helper to handle the final sync of a file. Works just like the normal
195  * io path, just does everything sync.
196  */
197 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
198 {
199         struct io_u *io_u = __get_io_u(td);
200         int ret;
201
202         if (!io_u)
203                 return 1;
204
205         io_u->ddir = DDIR_SYNC;
206         io_u->file = f;
207
208         if (td_io_prep(td, io_u)) {
209                 put_io_u(td, io_u);
210                 return 1;
211         }
212
213 requeue:
214         ret = td_io_queue(td, io_u);
215         if (ret < 0) {
216                 td_verror(td, io_u->error, "td_io_queue");
217                 put_io_u(td, io_u);
218                 return 1;
219         } else if (ret == FIO_Q_QUEUED) {
220                 if (io_u_queued_complete(td, 1, NULL) < 0)
221                         return 1;
222         } else if (ret == FIO_Q_COMPLETED) {
223                 if (io_u->error) {
224                         td_verror(td, io_u->error, "td_io_queue");
225                         return 1;
226                 }
227
228                 if (io_u_sync_complete(td, io_u, NULL) < 0)
229                         return 1;
230         } else if (ret == FIO_Q_BUSY) {
231                 if (td_io_commit(td))
232                         return 1;
233                 goto requeue;
234         }
235
236         return 0;
237 }
238
239 /*
240  * The main verify engine. Runs over the writes we previusly submitted,
241  * reads the blocks back in, and checks the crc/md5 of the data.
242  */
243 static void do_verify(struct thread_data *td)
244 {
245         struct fio_file *f;
246         struct io_u *io_u;
247         int ret, i, min_events;
248
249         /*
250          * sync io first and invalidate cache, to make sure we really
251          * read from disk.
252          */
253         for_each_file(td, f, i) {
254                 if (fio_io_sync(td, f))
255                         break;
256                 if (file_invalidate_cache(td, f))
257                         break;
258         }
259
260         if (td->error)
261                 return;
262
263         td_set_runstate(td, TD_VERIFYING);
264
265         io_u = NULL;
266         while (!td->terminate) {
267                 io_u = __get_io_u(td);
268                 if (!io_u)
269                         break;
270
271                 if (runtime_exceeded(td, &io_u->start_time)) {
272                         put_io_u(td, io_u);
273                         break;
274                 }
275
276                 if (get_next_verify(td, io_u)) {
277                         put_io_u(td, io_u);
278                         break;
279                 }
280
281                 if (td_io_prep(td, io_u)) {
282                         put_io_u(td, io_u);
283                         break;
284                 }
285 requeue:
286                 ret = td_io_queue(td, io_u);
287
288                 switch (ret) {
289                 case FIO_Q_COMPLETED:
290                         if (io_u->error)
291                                 ret = -io_u->error;
292                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
293                                 int bytes = io_u->xfer_buflen - io_u->resid;
294
295                                 io_u->xfer_buflen = io_u->resid;
296                                 io_u->xfer_buf += bytes;
297                                 goto requeue;
298                         }
299                         ret = io_u_sync_complete(td, io_u, verify_io_u);
300                         if (ret < 0)
301                                 break;
302                         continue;
303                 case FIO_Q_QUEUED:
304                         break;
305                 case FIO_Q_BUSY:
306                         requeue_io_u(td, &io_u);
307                         ret = td_io_commit(td);
308                         break;
309                 default:
310                         assert(ret < 0);
311                         td_verror(td, -ret, "td_io_queue");
312                         break;
313                 }
314
315                 if (ret < 0 || td->error)
316                         break;
317
318                 /*
319                  * if we can queue more, do so. but check if there are
320                  * completed io_u's first.
321                  */
322                 min_events = 0;
323                 if (queue_full(td) || ret == FIO_Q_BUSY) {
324                         min_events = 1;
325
326                         if (td->cur_depth > td->iodepth_low)
327                                 min_events = td->cur_depth - td->iodepth_low;
328                 }
329
330                 /*
331                  * Reap required number of io units, if any, and do the
332                  * verification on them through the callback handler
333                  */
334                 if (io_u_queued_complete(td, min_events, verify_io_u) < 0)
335                         break;
336         }
337
338         if (td->cur_depth)
339                 cleanup_pending_aio(td);
340
341         td_set_runstate(td, TD_RUNNING);
342 }
343
344 /*
345  * Not really an io thread, all it does is burn CPU cycles in the specified
346  * manner.
347  */
348 static void do_cpuio(struct thread_data *td)
349 {
350         struct timeval e;
351         int split = 100 / td->cpuload;
352         int i = 0;
353
354         while (!td->terminate) {
355                 fio_gettime(&e, NULL);
356
357                 if (runtime_exceeded(td, &e))
358                         break;
359
360                 if (!(i % split))
361                         __usec_sleep(10000);
362                 else
363                         usec_sleep(td, 10000);
364
365                 i++;
366         }
367 }
368
369 /*
370  * Main IO worker function. It retrieves io_u's to process and queues
371  * and reaps them, checking for rate and errors along the way.
372  */
373 static void do_io(struct thread_data *td)
374 {
375         struct timeval s;
376         unsigned long usec;
377         int i, ret = 0;
378
379         td_set_runstate(td, TD_RUNNING);
380
381         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
382                 struct timeval comp_time;
383                 long bytes_done = 0;
384                 int min_evts = 0;
385                 struct io_u *io_u;
386
387                 if (td->terminate)
388                         break;
389
390                 io_u = get_io_u(td);
391                 if (!io_u)
392                         break;
393
394                 memcpy(&s, &io_u->start_time, sizeof(s));
395
396                 if (runtime_exceeded(td, &s)) {
397                         put_io_u(td, io_u);
398                         break;
399                 }
400 requeue:
401                 ret = td_io_queue(td, io_u);
402
403                 switch (ret) {
404                 case FIO_Q_COMPLETED:
405                         if (io_u->error) {
406                                 ret = io_u->error;
407                                 break;
408                         }
409                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
410                                 int bytes = io_u->xfer_buflen - io_u->resid;
411
412                                 io_u->xfer_buflen = io_u->resid;
413                                 io_u->xfer_buf += bytes;
414                                 goto requeue;
415                         }
416                         fio_gettime(&comp_time, NULL);
417                         bytes_done = io_u_sync_complete(td, io_u, NULL);
418                         if (bytes_done < 0)
419                                 ret = bytes_done;
420                         break;
421                 case FIO_Q_QUEUED:
422                         /*
423                          * if the engine doesn't have a commit hook,
424                          * the io_u is really queued. if it does have such
425                          * a hook, it has to call io_u_queued() itself.
426                          */
427                         if (td->io_ops->commit == NULL)
428                                 io_u_queued(td, io_u);
429                         break;
430                 case FIO_Q_BUSY:
431                         requeue_io_u(td, &io_u);
432                         ret = td_io_commit(td);
433                         break;
434                 default:
435                         assert(ret < 0);
436                         put_io_u(td, io_u);
437                         break;
438                 }
439
440                 if (ret < 0 || td->error)
441                         break;
442
443                 /*
444                  * See if we need to complete some commands
445                  */
446                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
447                         min_evts = 0;
448                         if (queue_full(td) || ret == FIO_Q_BUSY) {
449                                 min_evts = 1;
450
451                                 if (td->cur_depth > td->iodepth_low)
452                                         min_evts = td->cur_depth - td->iodepth_low;
453                         }
454
455                         fio_gettime(&comp_time, NULL);
456                         bytes_done = io_u_queued_complete(td, min_evts, NULL);
457                         if (bytes_done < 0)
458                                 break;
459                 }
460
461                 if (!bytes_done)
462                         continue;
463
464                 /*
465                  * the rate is batched for now, it should work for batches
466                  * of completions except the very first one which may look
467                  * a little bursty
468                  */
469                 usec = utime_since(&s, &comp_time);
470
471                 rate_throttle(td, usec, bytes_done);
472
473                 if (check_min_rate(td, &comp_time)) {
474                         if (exitall_on_terminate)
475                                 terminate_threads(td->groupid, 0);
476                         td_verror(td, ENODATA, "check_min_rate");
477                         break;
478                 }
479
480                 if (td->thinktime) {
481                         unsigned long long b;
482
483                         b = td->io_blocks[0] + td->io_blocks[1];
484                         if (!(b % td->thinktime_blocks)) {
485                                 int left;
486
487                                 if (td->thinktime_spin)
488                                         __usec_sleep(td->thinktime_spin);
489
490                                 left = td->thinktime - td->thinktime_spin;
491                                 if (left)
492                                         usec_sleep(td, left);
493                         }
494                 }
495         }
496
497         if (!td->error) {
498                 struct fio_file *f;
499
500                 if (td->cur_depth)
501                         cleanup_pending_aio(td);
502
503                 if (should_fsync(td) && td->end_fsync) {
504                         td_set_runstate(td, TD_FSYNCING);
505                         for_each_file(td, f, i)
506                                 fio_io_sync(td, f);
507                 }
508         }
509 }
510
511 static void cleanup_io_u(struct thread_data *td)
512 {
513         struct list_head *entry, *n;
514         struct io_u *io_u;
515
516         list_for_each_safe(entry, n, &td->io_u_freelist) {
517                 io_u = list_entry(entry, struct io_u, list);
518
519                 list_del(&io_u->list);
520                 free(io_u);
521         }
522
523         free_io_mem(td);
524 }
525
526 /*
527  * "randomly" fill the buffer contents
528  */
529 static void fill_rand_buf(struct io_u *io_u, int max_bs)
530 {
531         int *ptr = io_u->buf;
532
533         while ((void *) ptr - io_u->buf < max_bs) {
534                 *ptr = rand() * 0x9e370001;
535                 ptr++;
536         }
537 }
538
539 static int init_io_u(struct thread_data *td)
540 {
541         struct io_u *io_u;
542         unsigned int max_bs;
543         int i, max_units;
544         char *p;
545
546         if (td->io_ops->flags & FIO_CPUIO)
547                 return 0;
548
549         if (td->io_ops->flags & FIO_SYNCIO)
550                 max_units = 1;
551         else
552                 max_units = td->iodepth;
553
554         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
555         td->orig_buffer_size = max_bs * max_units;
556
557         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
558                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
559         else
560                 td->orig_buffer_size += page_mask;
561
562         if (allocate_io_mem(td))
563                 return 1;
564
565         p = ALIGN(td->orig_buffer);
566         for (i = 0; i < max_units; i++) {
567                 io_u = malloc(sizeof(*io_u));
568                 memset(io_u, 0, sizeof(*io_u));
569                 INIT_LIST_HEAD(&io_u->list);
570
571                 io_u->buf = p + max_bs * i;
572                 if (td_write(td) || td_rw(td))
573                         fill_rand_buf(io_u, max_bs);
574
575                 io_u->index = i;
576                 io_u->flags = IO_U_F_FREE;
577                 list_add(&io_u->list, &td->io_u_freelist);
578         }
579
580         io_u_init_timeout();
581
582         return 0;
583 }
584
585 static int switch_ioscheduler(struct thread_data *td)
586 {
587         char tmp[256], tmp2[128];
588         FILE *f;
589         int ret;
590
591         if (td->io_ops->flags & FIO_CPUIO)
592                 return 0;
593
594         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
595
596         f = fopen(tmp, "r+");
597         if (!f) {
598                 td_verror(td, errno, "fopen");
599                 return 1;
600         }
601
602         /*
603          * Set io scheduler.
604          */
605         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
606         if (ferror(f) || ret != 1) {
607                 td_verror(td, errno, "fwrite");
608                 fclose(f);
609                 return 1;
610         }
611
612         rewind(f);
613
614         /*
615          * Read back and check that the selected scheduler is now the default.
616          */
617         ret = fread(tmp, 1, sizeof(tmp), f);
618         if (ferror(f) || ret < 0) {
619                 td_verror(td, errno, "fread");
620                 fclose(f);
621                 return 1;
622         }
623
624         sprintf(tmp2, "[%s]", td->ioscheduler);
625         if (!strstr(tmp, tmp2)) {
626                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
627                 td_verror(td, EINVAL, "iosched_switch");
628                 fclose(f);
629                 return 1;
630         }
631
632         fclose(f);
633         return 0;
634 }
635
636 static void clear_io_state(struct thread_data *td)
637 {
638         struct fio_file *f;
639         int i;
640
641         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
642         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
643         td->zone_bytes = 0;
644
645         td->last_was_sync = 0;
646
647         for_each_file(td, f, i) {
648                 f->last_completed_pos = 0;
649
650                 f->last_pos = 0;
651                 if (td->io_ops->flags & FIO_SYNCIO)
652                         lseek(f->fd, SEEK_SET, 0);
653
654                 if (f->file_map)
655                         memset(f->file_map, 0, f->num_maps * sizeof(long));
656         }
657 }
658
659 /*
660  * Entry point for the thread based jobs. The process based jobs end up
661  * here as well, after a little setup.
662  */
663 static void *thread_main(void *data)
664 {
665         unsigned long long runtime[2];
666         struct thread_data *td = data;
667
668         if (!td->use_thread)
669                 setsid();
670
671         td->pid = getpid();
672
673         INIT_LIST_HEAD(&td->io_u_freelist);
674         INIT_LIST_HEAD(&td->io_u_busylist);
675         INIT_LIST_HEAD(&td->io_u_requeues);
676         INIT_LIST_HEAD(&td->io_hist_list);
677         INIT_LIST_HEAD(&td->io_log_list);
678
679         if (init_io_u(td))
680                 goto err;
681
682         if (fio_setaffinity(td) == -1) {
683                 td_verror(td, errno, "cpu_set_affinity");
684                 goto err;
685         }
686
687         if (init_iolog(td))
688                 goto err;
689
690         if (td->ioprio) {
691                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
692                         td_verror(td, errno, "ioprio_set");
693                         goto err;
694                 }
695         }
696
697         if (nice(td->nice) == -1) {
698                 td_verror(td, errno, "nice");
699                 goto err;
700         }
701
702         if (init_random_state(td))
703                 goto err;
704
705         if (td->ioscheduler && switch_ioscheduler(td))
706                 goto err;
707
708         td_set_runstate(td, TD_INITIALIZED);
709         fio_sem_up(&startup_sem);
710         fio_sem_down(&td->mutex);
711
712         if (!td->create_serialize && setup_files(td))
713                 goto err;
714         if (open_files(td))
715                 goto err;
716
717         /*
718          * Do this late, as some IO engines would like to have the
719          * files setup prior to initializing structures.
720          */
721         if (td_io_init(td))
722                 goto err;
723
724         if (td->exec_prerun) {
725                 if (system(td->exec_prerun) < 0)
726                         goto err;
727         }
728
729         fio_gettime(&td->epoch, NULL);
730         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
731         getrusage(RUSAGE_SELF, &td->ts.ru_start);
732
733         runtime[0] = runtime[1] = 0;
734         while (td->loops--) {
735                 fio_gettime(&td->start, NULL);
736                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
737
738                 if (td->ratemin)
739                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
740
741                 clear_io_state(td);
742                 prune_io_piece_log(td);
743
744                 if (td->io_ops->flags & FIO_CPUIO)
745                         do_cpuio(td);
746                 else
747                         do_io(td);
748
749                 if (td_read(td) && td->io_bytes[DDIR_READ])
750                         runtime[DDIR_READ] += utime_since_now(&td->start);
751                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
752                         runtime[DDIR_WRITE] += utime_since_now(&td->start);
753                 
754                 if (td->error || td->terminate)
755                         break;
756
757                 if (td->verify == VERIFY_NONE)
758                         continue;
759
760                 clear_io_state(td);
761                 fio_gettime(&td->start, NULL);
762
763                 do_verify(td);
764
765                 runtime[DDIR_READ] += utime_since_now(&td->start);
766
767                 if (td->error || td->terminate)
768                         break;
769         }
770
771         update_rusage_stat(td);
772         fio_gettime(&td->end_time, NULL);
773         td->runtime[0] = runtime[0] / 1000;
774         td->runtime[1] = runtime[1] / 1000;
775
776         if (td->ts.bw_log)
777                 finish_log(td, td->ts.bw_log, "bw");
778         if (td->ts.slat_log)
779                 finish_log(td, td->ts.slat_log, "slat");
780         if (td->ts.clat_log)
781                 finish_log(td, td->ts.clat_log, "clat");
782         if (td->write_iolog_file)
783                 write_iolog_close(td);
784         if (td->exec_postrun) {
785                 if (system(td->exec_postrun) < 0)
786                         log_err("fio: postrun %s failed\n", td->exec_postrun);
787         }
788
789         if (exitall_on_terminate)
790                 terminate_threads(td->groupid, 0);
791
792 err:
793         if (td->error)
794                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
795         close_files(td);
796         close_ioengine(td);
797         cleanup_io_u(td);
798         td_set_runstate(td, TD_EXITED);
799         return (void *) (unsigned long) td->error;
800 }
801
802 /*
803  * We cannot pass the td data into a forked process, so attach the td and
804  * pass it to the thread worker.
805  */
806 static int fork_main(int shmid, int offset)
807 {
808         struct thread_data *td;
809         void *data, *ret;
810
811         data = shmat(shmid, NULL, 0);
812         if (data == (void *) -1) {
813                 int __err = errno;
814
815                 perror("shmat");
816                 return __err;
817         }
818
819         td = data + offset * sizeof(struct thread_data);
820         ret = thread_main(td);
821         shmdt(data);
822         return (int) (unsigned long) ret;
823 }
824
825 /*
826  * Run over the job map and reap the threads that have exited, if any.
827  */
828 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
829 {
830         struct thread_data *td;
831         int i, cputhreads, pending, status, ret;
832
833         /*
834          * reap exited threads (TD_EXITED -> TD_REAPED)
835          */
836         pending = cputhreads = 0;
837         for_each_td(td, i) {
838                 int flags = 0;
839
840                 /*
841                  * ->io_ops is NULL for a thread that has closed its
842                  * io engine
843                  */
844                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
845                         cputhreads++;
846
847                 if (!td->pid || td->runstate == TD_REAPED)
848                         continue;
849                 if (td->use_thread) {
850                         if (td->runstate == TD_EXITED) {
851                                 td_set_runstate(td, TD_REAPED);
852                                 goto reaped;
853                         }
854                         continue;
855                 }
856
857                 flags = WNOHANG;
858                 if (td->runstate == TD_EXITED)
859                         flags = 0;
860
861                 /*
862                  * check if someone quit or got killed in an unusual way
863                  */
864                 ret = waitpid(td->pid, &status, flags);
865                 if (ret < 0) {
866                         if (errno == ECHILD) {
867                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
868                                 td_set_runstate(td, TD_REAPED);
869                                 goto reaped;
870                         }
871                         perror("waitpid");
872                 } else if (ret == td->pid) {
873                         if (WIFSIGNALED(status)) {
874                                 int sig = WTERMSIG(status);
875
876                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
877                                 td_set_runstate(td, TD_REAPED);
878                                 goto reaped;
879                         }
880                         if (WIFEXITED(status)) {
881                                 if (WEXITSTATUS(status) && !td->error)
882                                         td->error = WEXITSTATUS(status);
883
884                                 td_set_runstate(td, TD_REAPED);
885                                 goto reaped;
886                         }
887                 }
888
889                 /*
890                  * thread is not dead, continue
891                  */
892                 continue;
893 reaped:
894                 if (td->use_thread) {
895                         long ret;
896
897                         if (pthread_join(td->thread, (void *) &ret))
898                                 perror("pthread_join");
899                 }
900
901                 (*nr_running)--;
902                 (*m_rate) -= td->ratemin;
903                 (*t_rate) -= td->rate;
904
905                 if (td->error)
906                         exit_value++;
907         }
908
909         if (*nr_running == cputhreads && !pending)
910                 terminate_threads(TERMINATE_ALL, 0);
911 }
912
913 /*
914  * Main function for kicking off and reaping jobs, as needed.
915  */
916 static void run_threads(void)
917 {
918         struct thread_data *td;
919         unsigned long spent;
920         int i, todo, nr_running, m_rate, t_rate, nr_started;
921
922         if (fio_pin_memory())
923                 return;
924
925         if (!terse_output) {
926                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
927                 fflush(stdout);
928         }
929
930         signal(SIGINT, sig_handler);
931         signal(SIGALRM, sig_handler);
932
933         todo = thread_number;
934         nr_running = 0;
935         nr_started = 0;
936         m_rate = t_rate = 0;
937
938         for_each_td(td, i) {
939                 print_status_init(td->thread_number - 1);
940
941                 if (!td->create_serialize) {
942                         init_disk_util(td);
943                         continue;
944                 }
945
946                 /*
947                  * do file setup here so it happens sequentially,
948                  * we don't want X number of threads getting their
949                  * client data interspersed on disk
950                  */
951                 if (setup_files(td)) {
952                         exit_value++;
953                         if (td->error)
954                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
955                         td_set_runstate(td, TD_REAPED);
956                         todo--;
957                 }
958
959                 init_disk_util(td);
960         }
961
962         set_genesis_time();
963
964         while (todo) {
965                 struct thread_data *map[MAX_JOBS];
966                 struct timeval this_start;
967                 int this_jobs = 0, left;
968
969                 /*
970                  * create threads (TD_NOT_CREATED -> TD_CREATED)
971                  */
972                 for_each_td(td, i) {
973                         if (td->runstate != TD_NOT_CREATED)
974                                 continue;
975
976                         /*
977                          * never got a chance to start, killed by other
978                          * thread for some reason
979                          */
980                         if (td->terminate) {
981                                 todo--;
982                                 continue;
983                         }
984
985                         if (td->start_delay) {
986                                 spent = mtime_since_genesis();
987
988                                 if (td->start_delay * 1000 > spent)
989                                         continue;
990                         }
991
992                         if (td->stonewall && (nr_started || nr_running))
993                                 break;
994
995                         /*
996                          * Set state to created. Thread will transition
997                          * to TD_INITIALIZED when it's done setting up.
998                          */
999                         td_set_runstate(td, TD_CREATED);
1000                         map[this_jobs++] = td;
1001                         fio_sem_init(&startup_sem, 1);
1002                         nr_started++;
1003
1004                         if (td->use_thread) {
1005                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1006                                         perror("thread_create");
1007                                         nr_started--;
1008                                 }
1009                         } else {
1010                                 if (fork())
1011                                         fio_sem_down(&startup_sem);
1012                                 else {
1013                                         int ret = fork_main(shm_id, i);
1014
1015                                         exit(ret);
1016                                 }
1017                         }
1018                 }
1019
1020                 /*
1021                  * Wait for the started threads to transition to
1022                  * TD_INITIALIZED.
1023                  */
1024                 fio_gettime(&this_start, NULL);
1025                 left = this_jobs;
1026                 while (left && !fio_abort) {
1027                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1028                                 break;
1029
1030                         usleep(100000);
1031
1032                         for (i = 0; i < this_jobs; i++) {
1033                                 td = map[i];
1034                                 if (!td)
1035                                         continue;
1036                                 if (td->runstate == TD_INITIALIZED) {
1037                                         map[i] = NULL;
1038                                         left--;
1039                                 } else if (td->runstate >= TD_EXITED) {
1040                                         map[i] = NULL;
1041                                         left--;
1042                                         todo--;
1043                                         nr_running++; /* work-around... */
1044                                 }
1045                         }
1046                 }
1047
1048                 if (left) {
1049                         log_err("fio: %d jobs failed to start\n", left);
1050                         for (i = 0; i < this_jobs; i++) {
1051                                 td = map[i];
1052                                 if (!td)
1053                                         continue;
1054                                 kill(td->pid, SIGTERM);
1055                         }
1056                         break;
1057                 }
1058
1059                 /*
1060                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1061                  */
1062                 for_each_td(td, i) {
1063                         if (td->runstate != TD_INITIALIZED)
1064                                 continue;
1065
1066                         td_set_runstate(td, TD_RUNNING);
1067                         nr_running++;
1068                         nr_started--;
1069                         m_rate += td->ratemin;
1070                         t_rate += td->rate;
1071                         todo--;
1072                         fio_sem_up(&td->mutex);
1073                 }
1074
1075                 reap_threads(&nr_running, &t_rate, &m_rate);
1076
1077                 if (todo)
1078                         usleep(100000);
1079         }
1080
1081         while (nr_running) {
1082                 reap_threads(&nr_running, &t_rate, &m_rate);
1083                 usleep(10000);
1084         }
1085
1086         update_io_ticks();
1087         fio_unpin_memory();
1088 }
1089
1090 int main(int argc, char *argv[])
1091 {
1092         long ps;
1093
1094         /*
1095          * We need locale for number printing, if it isn't set then just
1096          * go with the US format.
1097          */
1098         if (!getenv("LC_NUMERIC"))
1099                 setlocale(LC_NUMERIC, "en_US");
1100
1101         if (parse_options(argc, argv))
1102                 return 1;
1103
1104         if (!thread_number) {
1105                 log_err("Nothing to do\n");
1106                 return 1;
1107         }
1108
1109         ps = sysconf(_SC_PAGESIZE);
1110         if (ps < 0) {
1111                 log_err("Failed to get page size\n");
1112                 return 1;
1113         }
1114
1115         page_mask = ps - 1;
1116
1117         if (write_bw_log) {
1118                 setup_log(&agg_io_log[DDIR_READ]);
1119                 setup_log(&agg_io_log[DDIR_WRITE]);
1120         }
1121
1122         set_genesis_time();
1123
1124         disk_util_timer_arm();
1125
1126         run_threads();
1127
1128         if (!fio_abort) {
1129                 show_run_stats();
1130                 if (write_bw_log) {
1131                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1132                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1133                 }
1134         }
1135
1136         return exit_value;
1137 }