cc54c837fd806d59caacd7a858879dd3fd35c5ef
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <assert.h>
30 #include <sys/stat.h>
31 #include <sys/wait.h>
32 #include <sys/ipc.h>
33 #include <sys/shm.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51
52 struct io_log *agg_io_log[2];
53
54 #define TERMINATE_ALL           (-1)
55 #define JOB_START_TIMEOUT       (5 * 1000)
56
57 static inline void td_set_runstate(struct thread_data *td, int runstate)
58 {
59         td->runstate = runstate;
60 }
61
62 static void terminate_threads(int group_id, int forced_kill)
63 {
64         struct thread_data *td;
65         int i;
66
67         for_each_td(td, i) {
68                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
69                         td->terminate = 1;
70                         td->start_delay = 0;
71                         if (forced_kill)
72                                 td_set_runstate(td, TD_EXITED);
73                 }
74         }
75 }
76
77 static void sig_handler(int sig)
78 {
79         switch (sig) {
80                 case SIGALRM:
81                         update_io_ticks();
82                         disk_util_timer_arm();
83                         print_thread_status();
84                         break;
85                 case SIGSEGV:
86                         fprintf(stderr, "fio: got segfault, aborting\n");
87                         terminate_threads(TERMINATE_ALL, 1);
88                         fio_abort = 1;
89                         exit(0);
90                 default:
91                         printf("\nfio: terminating on signal %d\n", sig);
92                         fflush(stdout);
93                         terminate_threads(TERMINATE_ALL, 0);
94                         break;
95         }
96 }
97
98 /*
99  * Check if we are above the minimum rate given.
100  */
101 static int check_min_rate(struct thread_data *td, struct timeval *now)
102 {
103         unsigned long spent;
104         unsigned long rate;
105         int ddir = td->ddir;
106
107         /*
108          * allow a 2 second settle period in the beginning
109          */
110         if (mtime_since(&td->start, now) < 2000)
111                 return 0;
112
113         /*
114          * if rate blocks is set, sample is running
115          */
116         if (td->rate_bytes) {
117                 spent = mtime_since(&td->lastrate, now);
118                 if (spent < td->ratecycle)
119                         return 0;
120
121                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
122                 if (rate < td->ratemin) {
123                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
124                         return 1;
125                 }
126         }
127
128         td->rate_bytes = td->this_io_bytes[ddir];
129         memcpy(&td->lastrate, now, sizeof(*now));
130         return 0;
131 }
132
133 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
134 {
135         if (!td->timeout)
136                 return 0;
137         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
138                 return 1;
139
140         return 0;
141 }
142
143 static struct fio_file *get_next_file(struct thread_data *td)
144 {
145         unsigned int old_next_file = td->next_file;
146         struct fio_file *f;
147
148         do {
149                 f = &td->files[td->next_file];
150
151                 td->next_file++;
152                 if (td->next_file >= td->nr_files)
153                         td->next_file = 0;
154
155                 if (f->fd != -1)
156                         break;
157
158                 f = NULL;
159         } while (td->next_file != old_next_file);
160
161         return f;
162 }
163
164 /*
165  * When job exits, we can cancel the in-flight IO if we are using async
166  * io. Attempt to do so.
167  */
168 static void cleanup_pending_aio(struct thread_data *td)
169 {
170         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
171         struct list_head *entry, *n;
172         struct io_completion_data icd;
173         struct io_u *io_u;
174         int r;
175
176         /*
177          * get immediately available events, if any
178          */
179         r = td_io_getevents(td, 0, td->cur_depth, &ts);
180         if (r > 0) {
181                 icd.nr = r;
182                 ios_completed(td, &icd);
183         }
184
185         /*
186          * now cancel remaining active events
187          */
188         if (td->io_ops->cancel) {
189                 list_for_each_safe(entry, n, &td->io_u_busylist) {
190                         io_u = list_entry(entry, struct io_u, list);
191
192                         r = td->io_ops->cancel(td, io_u);
193                         if (!r)
194                                 put_io_u(td, io_u);
195                 }
196         }
197
198         if (td->cur_depth) {
199                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
200                 if (r > 0) {
201                         icd.nr = r;
202                         ios_completed(td, &icd);
203                 }
204         }
205 }
206
207 /*
208  * Helper to handle the final sync of a file. Works just like the normal
209  * io path, just does everything sync.
210  */
211 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
212 {
213         struct io_u *io_u = __get_io_u(td);
214         struct io_completion_data icd;
215         int ret;
216
217         if (!io_u)
218                 return 1;
219
220         io_u->ddir = DDIR_SYNC;
221         io_u->file = f;
222
223         if (td_io_prep(td, io_u)) {
224                 put_io_u(td, io_u);
225                 return 1;
226         }
227
228         ret = td_io_queue(td, io_u);
229         if (ret) {
230                 td_verror(td, io_u->error);
231                 put_io_u(td, io_u);
232                 return 1;
233         }
234
235         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
236         if (ret < 0) {
237                 td_verror(td, ret);
238                 return 1;
239         }
240
241         icd.nr = ret;
242         ios_completed(td, &icd);
243         if (icd.error) {
244                 td_verror(td, icd.error);
245                 return 1;
246         }
247
248         return 0;
249 }
250
251 /*
252  * The main verify engine. Runs over the writes we previusly submitted,
253  * reads the blocks back in, and checks the crc/md5 of the data.
254  */
255 static void do_verify(struct thread_data *td)
256 {
257         struct io_u *io_u, *v_io_u = NULL;
258         struct io_completion_data icd;
259         struct fio_file *f;
260         int ret, i;
261
262         /*
263          * sync io first and invalidate cache, to make sure we really
264          * read from disk.
265          */
266         for_each_file(td, f, i) {
267                 fio_io_sync(td, f);
268                 file_invalidate_cache(td, f);
269         }
270
271         td_set_runstate(td, TD_VERIFYING);
272
273         do {
274                 if (td->terminate)
275                         break;
276
277                 io_u = __get_io_u(td);
278                 if (!io_u)
279                         break;
280
281                 if (runtime_exceeded(td, &io_u->start_time)) {
282                         put_io_u(td, io_u);
283                         break;
284                 }
285
286                 if (get_next_verify(td, io_u)) {
287                         put_io_u(td, io_u);
288                         break;
289                 }
290
291                 f = get_next_file(td);
292                 if (!f)
293                         break;
294
295                 io_u->file = f;
296
297                 if (td_io_prep(td, io_u)) {
298                         put_io_u(td, io_u);
299                         break;
300                 }
301
302                 ret = td_io_queue(td, io_u);
303                 if (ret) {
304                         td_verror(td, io_u->error);
305                         put_io_u(td, io_u);
306                         break;
307                 }
308
309                 /*
310                  * we have one pending to verify, do that while
311                  * we are doing io on the next one
312                  */
313                 if (do_io_u_verify(td, &v_io_u))
314                         break;
315
316                 ret = td_io_getevents(td, 1, 1, NULL);
317                 if (ret != 1) {
318                         if (ret < 0)
319                                 td_verror(td, ret);
320                         break;
321                 }
322
323                 v_io_u = td->io_ops->event(td, 0);
324                 icd.nr = 1;
325                 icd.error = 0;
326                 fio_gettime(&icd.time, NULL);
327                 io_completed(td, v_io_u, &icd);
328
329                 if (icd.error) {
330                         td_verror(td, icd.error);
331                         put_io_u(td, v_io_u);
332                         v_io_u = NULL;
333                         break;
334                 }
335
336                 /*
337                  * if we can't submit more io, we need to verify now
338                  */
339                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
340                         break;
341
342         } while (1);
343
344         do_io_u_verify(td, &v_io_u);
345
346         if (td->cur_depth)
347                 cleanup_pending_aio(td);
348
349         td_set_runstate(td, TD_RUNNING);
350 }
351
352 /*
353  * Not really an io thread, all it does is burn CPU cycles in the specified
354  * manner.
355  */
356 static void do_cpuio(struct thread_data *td)
357 {
358         struct timeval e;
359         int split = 100 / td->cpuload;
360         int i = 0;
361
362         while (!td->terminate) {
363                 fio_gettime(&e, NULL);
364
365                 if (runtime_exceeded(td, &e))
366                         break;
367
368                 if (!(i % split))
369                         __usec_sleep(10000);
370                 else
371                         usec_sleep(td, 10000);
372
373                 i++;
374         }
375 }
376
377 /*
378  * Main IO worker function. It retrieves io_u's to process and queues
379  * and reaps them, checking for rate and errors along the way.
380  */
381 static void do_io(struct thread_data *td)
382 {
383         struct io_completion_data icd;
384         struct timeval s;
385         unsigned long usec;
386         struct fio_file *f;
387         int i, ret = 0;
388
389         td_set_runstate(td, TD_RUNNING);
390
391         while (td->this_io_bytes[td->ddir] < td->io_size) {
392                 struct timespec *timeout;
393                 int min_evts = 0;
394                 struct io_u *io_u;
395
396                 if (td->terminate)
397                         break;
398
399                 f = get_next_file(td);
400                 if (!f)
401                         break;
402
403                 io_u = get_io_u(td, f);
404                 if (!io_u)
405                         break;
406
407                 memcpy(&s, &io_u->start_time, sizeof(s));
408
409                 ret = td_io_queue(td, io_u);
410                 if (ret) {
411                         td_verror(td, io_u->error);
412                         put_io_u(td, io_u);
413                         break;
414                 }
415
416                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
417
418                 if (td->cur_depth < td->iodepth) {
419                         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
420
421                         timeout = &ts;
422                         min_evts = 0;
423                 } else {
424                         timeout = NULL;
425                         min_evts = 1;
426                 }
427
428                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
429                 if (ret < 0) {
430                         td_verror(td, ret);
431                         break;
432                 } else if (!ret)
433                         continue;
434
435                 icd.nr = ret;
436                 ios_completed(td, &icd);
437                 if (icd.error) {
438                         td_verror(td, icd.error);
439                         break;
440                 }
441
442                 /*
443                  * the rate is batched for now, it should work for batches
444                  * of completions except the very first one which may look
445                  * a little bursty
446                  */
447                 usec = utime_since(&s, &icd.time);
448
449                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
450
451                 if (check_min_rate(td, &icd.time)) {
452                         if (exitall_on_terminate)
453                                 terminate_threads(td->groupid, 0);
454                         td_verror(td, ENODATA);
455                         break;
456                 }
457
458                 if (runtime_exceeded(td, &icd.time))
459                         break;
460
461                 if (td->thinktime) {
462                         unsigned long long b;
463
464                         b = td->io_blocks[0] + td->io_blocks[1];
465                         if (!(b % td->thinktime_blocks))
466                                 usec_sleep(td, td->thinktime);
467                 }
468         }
469
470         if (!td->error) {
471                 if (td->cur_depth)
472                         cleanup_pending_aio(td);
473
474                 if (should_fsync(td) && td->end_fsync) {
475                         td_set_runstate(td, TD_FSYNCING);
476                         for_each_file(td, f, i)
477                                 fio_io_sync(td, f);
478                 }
479         }
480 }
481
482 static void cleanup_io_u(struct thread_data *td)
483 {
484         struct list_head *entry, *n;
485         struct io_u *io_u;
486
487         list_for_each_safe(entry, n, &td->io_u_freelist) {
488                 io_u = list_entry(entry, struct io_u, list);
489
490                 list_del(&io_u->list);
491                 free(io_u);
492         }
493
494         free_io_mem(td);
495 }
496
497 /*
498  * "randomly" fill the buffer contents
499  */
500 static void fill_rand_buf(struct io_u *io_u, int max_bs)
501 {
502         int *ptr = io_u->buf;
503
504         while ((void *) ptr - io_u->buf < max_bs) {
505                 *ptr = rand() * 0x9e370001;
506                 ptr++;
507         }
508 }
509
510 static int init_io_u(struct thread_data *td)
511 {
512         struct io_u *io_u;
513         unsigned int max_bs;
514         int i, max_units;
515         char *p;
516
517         if (td->io_ops->flags & FIO_CPUIO)
518                 return 0;
519
520         if (td->io_ops->flags & FIO_SYNCIO)
521                 max_units = 1;
522         else
523                 max_units = td->iodepth;
524
525         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
526         td->orig_buffer_size = max_bs * max_units;
527
528         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
529                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
530         else
531                 td->orig_buffer_size += page_mask;
532
533         if (allocate_io_mem(td))
534                 return 1;
535
536         p = ALIGN(td->orig_buffer);
537         for (i = 0; i < max_units; i++) {
538                 io_u = malloc(sizeof(*io_u));
539                 memset(io_u, 0, sizeof(*io_u));
540                 INIT_LIST_HEAD(&io_u->list);
541
542                 io_u->buf = p + max_bs * i;
543                 if (td_write(td) || td_rw(td))
544                         fill_rand_buf(io_u, max_bs);
545
546                 io_u->index = i;
547                 list_add(&io_u->list, &td->io_u_freelist);
548         }
549
550         return 0;
551 }
552
553 static int switch_ioscheduler(struct thread_data *td)
554 {
555         char tmp[256], tmp2[128];
556         FILE *f;
557         int ret;
558
559         if (td->io_ops->flags & FIO_CPUIO)
560                 return 0;
561
562         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
563
564         f = fopen(tmp, "r+");
565         if (!f) {
566                 td_verror(td, errno);
567                 return 1;
568         }
569
570         /*
571          * Set io scheduler.
572          */
573         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
574         if (ferror(f) || ret != 1) {
575                 td_verror(td, errno);
576                 fclose(f);
577                 return 1;
578         }
579
580         rewind(f);
581
582         /*
583          * Read back and check that the selected scheduler is now the default.
584          */
585         ret = fread(tmp, 1, sizeof(tmp), f);
586         if (ferror(f) || ret < 0) {
587                 td_verror(td, errno);
588                 fclose(f);
589                 return 1;
590         }
591
592         sprintf(tmp2, "[%s]", td->ioscheduler);
593         if (!strstr(tmp, tmp2)) {
594                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
595                 td_verror(td, EINVAL);
596                 fclose(f);
597                 return 1;
598         }
599
600         fclose(f);
601         return 0;
602 }
603
604 static void clear_io_state(struct thread_data *td)
605 {
606         struct fio_file *f;
607         int i;
608
609         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
610         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
611         td->zone_bytes = 0;
612
613         for_each_file(td, f, i) {
614                 f->last_pos = 0;
615                 if (td->io_ops->flags & FIO_SYNCIO)
616                         lseek(f->fd, SEEK_SET, 0);
617
618                 if (f->file_map)
619                         memset(f->file_map, 0, f->num_maps * sizeof(long));
620         }
621 }
622
623 /*
624  * Entry point for the thread based jobs. The process based jobs end up
625  * here as well, after a little setup.
626  */
627 static void *thread_main(void *data)
628 {
629         unsigned long long runtime[2];
630         struct thread_data *td = data;
631
632         if (!td->use_thread)
633                 setsid();
634
635         td->pid = getpid();
636
637         INIT_LIST_HEAD(&td->io_u_freelist);
638         INIT_LIST_HEAD(&td->io_u_busylist);
639         INIT_LIST_HEAD(&td->io_hist_list);
640         INIT_LIST_HEAD(&td->io_log_list);
641
642         if (init_io_u(td))
643                 goto err;
644
645         if (fio_setaffinity(td) == -1) {
646                 td_verror(td, errno);
647                 goto err;
648         }
649
650         if (init_iolog(td))
651                 goto err;
652
653         if (td->ioprio) {
654                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
655                         td_verror(td, errno);
656                         goto err;
657                 }
658         }
659
660         if (nice(td->nice) == -1) {
661                 td_verror(td, errno);
662                 goto err;
663         }
664
665         if (init_random_state(td))
666                 goto err;
667
668         if (td->ioscheduler && switch_ioscheduler(td))
669                 goto err;
670
671         td_set_runstate(td, TD_INITIALIZED);
672         fio_sem_up(&startup_sem);
673         fio_sem_down(&td->mutex);
674
675         if (!td->create_serialize && setup_files(td))
676                 goto err;
677         if (open_files(td))
678                 goto err;
679
680         /*
681          * Do this late, as some IO engines would like to have the
682          * files setup prior to initializing structures.
683          */
684         if (td_io_init(td))
685                 goto err;
686
687         if (td->exec_prerun)
688                 system(td->exec_prerun);
689
690         fio_gettime(&td->epoch, NULL);
691         getrusage(RUSAGE_SELF, &td->ru_start);
692
693         runtime[0] = runtime[1] = 0;
694         while (td->loops--) {
695                 fio_gettime(&td->start, NULL);
696                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
697
698                 if (td->ratemin)
699                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
700
701                 clear_io_state(td);
702                 prune_io_piece_log(td);
703
704                 if (td->io_ops->flags & FIO_CPUIO)
705                         do_cpuio(td);
706                 else
707                         do_io(td);
708
709                 runtime[td->ddir] += utime_since_now(&td->start);
710                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
711                         runtime[td->ddir ^ 1] = runtime[td->ddir];
712
713                 if (td->error || td->terminate)
714                         break;
715
716                 if (td->verify == VERIFY_NONE)
717                         continue;
718
719                 clear_io_state(td);
720                 fio_gettime(&td->start, NULL);
721
722                 do_verify(td);
723
724                 runtime[DDIR_READ] += utime_since_now(&td->start);
725
726                 if (td->error || td->terminate)
727                         break;
728         }
729
730         update_rusage_stat(td);
731         fio_gettime(&td->end_time, NULL);
732         td->runtime[0] = runtime[0] / 1000;
733         td->runtime[1] = runtime[1] / 1000;
734
735         if (td->bw_log)
736                 finish_log(td, td->bw_log, "bw");
737         if (td->slat_log)
738                 finish_log(td, td->slat_log, "slat");
739         if (td->clat_log)
740                 finish_log(td, td->clat_log, "clat");
741         if (td->write_iolog_file)
742                 write_iolog_close(td);
743         if (td->exec_postrun)
744                 system(td->exec_postrun);
745
746         if (exitall_on_terminate)
747                 terminate_threads(td->groupid, 0);
748
749 err:
750         close_files(td);
751         close_ioengine(td);
752         cleanup_io_u(td);
753         td_set_runstate(td, TD_EXITED);
754         return NULL;
755
756 }
757
758 /*
759  * We cannot pass the td data into a forked process, so attach the td and
760  * pass it to the thread worker.
761  */
762 static void *fork_main(int shmid, int offset)
763 {
764         struct thread_data *td;
765         void *data;
766
767         data = shmat(shmid, NULL, 0);
768         if (data == (void *) -1) {
769                 perror("shmat");
770                 return NULL;
771         }
772
773         td = data + offset * sizeof(struct thread_data);
774         thread_main(td);
775         shmdt(data);
776         return NULL;
777 }
778
779 /*
780  * Run over the job map and reap the threads that have exited, if any.
781  */
782 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
783 {
784         struct thread_data *td;
785         int i, cputhreads, pending;
786
787         /*
788          * reap exited threads (TD_EXITED -> TD_REAPED)
789          */
790         pending = cputhreads = 0;
791         for_each_td(td, i) {
792                 /*
793                  * ->io_ops is NULL for a thread that has closed its
794                  * io engine
795                  */
796                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
797                         cputhreads++;
798
799                 if (td->runstate != TD_EXITED) {
800                         if (td->runstate < TD_RUNNING)
801                                 pending++;
802
803                         continue;
804                 }
805
806                 td_set_runstate(td, TD_REAPED);
807
808                 if (td->use_thread) {
809                         long ret;
810
811                         if (pthread_join(td->thread, (void *) &ret))
812                                 perror("thread_join");
813                 } else
814                         waitpid(td->pid, NULL, 0);
815
816                 (*nr_running)--;
817                 (*m_rate) -= td->ratemin;
818                 (*t_rate) -= td->rate;
819         }
820
821         if (*nr_running == cputhreads && !pending)
822                 terminate_threads(TERMINATE_ALL, 0);
823 }
824
825 /*
826  * Main function for kicking off and reaping jobs, as needed.
827  */
828 static void run_threads(void)
829 {
830         struct thread_data *td;
831         unsigned long spent;
832         int i, todo, nr_running, m_rate, t_rate, nr_started;
833
834         if (fio_pin_memory())
835                 return;
836
837         if (!terse_output) {
838                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
839                 fflush(stdout);
840         }
841
842         signal(SIGINT, sig_handler);
843         signal(SIGALRM, sig_handler);
844         signal(SIGSEGV, sig_handler);
845
846         todo = thread_number;
847         nr_running = 0;
848         nr_started = 0;
849         m_rate = t_rate = 0;
850
851         for_each_td(td, i) {
852                 print_status_init(td->thread_number - 1);
853
854                 if (!td->create_serialize) {
855                         init_disk_util(td);
856                         continue;
857                 }
858
859                 /*
860                  * do file setup here so it happens sequentially,
861                  * we don't want X number of threads getting their
862                  * client data interspersed on disk
863                  */
864                 if (setup_files(td)) {
865                         td_set_runstate(td, TD_REAPED);
866                         todo--;
867                 }
868
869                 init_disk_util(td);
870         }
871
872         while (todo) {
873                 struct thread_data *map[MAX_JOBS];
874                 struct timeval this_start;
875                 int this_jobs = 0, left;
876
877                 /*
878                  * create threads (TD_NOT_CREATED -> TD_CREATED)
879                  */
880                 for_each_td(td, i) {
881                         if (td->runstate != TD_NOT_CREATED)
882                                 continue;
883
884                         /*
885                          * never got a chance to start, killed by other
886                          * thread for some reason
887                          */
888                         if (td->terminate) {
889                                 todo--;
890                                 continue;
891                         }
892
893                         if (td->start_delay) {
894                                 spent = mtime_since_genesis();
895
896                                 if (td->start_delay * 1000 > spent)
897                                         continue;
898                         }
899
900                         if (td->stonewall && (nr_started || nr_running))
901                                 break;
902
903                         /*
904                          * Set state to created. Thread will transition
905                          * to TD_INITIALIZED when it's done setting up.
906                          */
907                         td_set_runstate(td, TD_CREATED);
908                         map[this_jobs++] = td;
909                         fio_sem_init(&startup_sem, 1);
910                         nr_started++;
911
912                         if (td->use_thread) {
913                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
914                                         perror("thread_create");
915                                         nr_started--;
916                                 }
917                         } else {
918                                 if (fork())
919                                         fio_sem_down(&startup_sem);
920                                 else {
921                                         fork_main(shm_id, i);
922                                         exit(0);
923                                 }
924                         }
925                 }
926
927                 /*
928                  * Wait for the started threads to transition to
929                  * TD_INITIALIZED.
930                  */
931                 fio_gettime(&this_start, NULL);
932                 left = this_jobs;
933                 while (left && !fio_abort) {
934                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
935                                 break;
936
937                         usleep(100000);
938
939                         for (i = 0; i < this_jobs; i++) {
940                                 td = map[i];
941                                 if (!td)
942                                         continue;
943                                 if (td->runstate == TD_INITIALIZED) {
944                                         map[i] = NULL;
945                                         left--;
946                                 } else if (td->runstate >= TD_EXITED) {
947                                         map[i] = NULL;
948                                         left--;
949                                         todo--;
950                                         nr_running++; /* work-around... */
951                                 }
952                         }
953                 }
954
955                 if (left) {
956                         log_err("fio: %d jobs failed to start\n", left);
957                         for (i = 0; i < this_jobs; i++) {
958                                 td = map[i];
959                                 if (!td)
960                                         continue;
961                                 kill(td->pid, SIGTERM);
962                         }
963                         break;
964                 }
965
966                 /*
967                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
968                  */
969                 for_each_td(td, i) {
970                         if (td->runstate != TD_INITIALIZED)
971                                 continue;
972
973                         td_set_runstate(td, TD_RUNNING);
974                         nr_running++;
975                         nr_started--;
976                         m_rate += td->ratemin;
977                         t_rate += td->rate;
978                         todo--;
979                         fio_sem_up(&td->mutex);
980                 }
981
982                 reap_threads(&nr_running, &t_rate, &m_rate);
983
984                 if (todo)
985                         usleep(100000);
986         }
987
988         while (nr_running) {
989                 reap_threads(&nr_running, &t_rate, &m_rate);
990                 usleep(10000);
991         }
992
993         update_io_ticks();
994         fio_unpin_memory();
995 }
996
997 int main(int argc, char *argv[])
998 {
999         long ps;
1000
1001         if (parse_options(argc, argv))
1002                 return 1;
1003
1004         if (!thread_number) {
1005                 log_err("Nothing to do\n");
1006                 return 1;
1007         }
1008
1009         ps = sysconf(_SC_PAGESIZE);
1010         if (ps < 0) {
1011                 log_err("Failed to get page size\n");
1012                 return 1;
1013         }
1014
1015         page_mask = ps - 1;
1016
1017         if (write_bw_log) {
1018                 setup_log(&agg_io_log[DDIR_READ]);
1019                 setup_log(&agg_io_log[DDIR_WRITE]);
1020         }
1021
1022         disk_util_timer_arm();
1023
1024         run_threads();
1025
1026         if (!fio_abort) {
1027                 show_run_stats();
1028                 if (write_bw_log) {
1029                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1030                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1031                 }
1032         }
1033
1034         return 0;
1035 }