syslet v4 support
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long long bytes = 0;
100         unsigned long spent;
101         unsigned long rate;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         if (td_read(td))
110                 bytes += td->this_io_bytes[DDIR_READ];
111         if (td_write(td))
112                 bytes += td->this_io_bytes[DDIR_WRITE];
113
114         /*
115          * if rate blocks is set, sample is running
116          */
117         if (td->rate_bytes) {
118                 spent = mtime_since(&td->lastrate, now);
119                 if (spent < td->ratecycle)
120                         return 0;
121
122                 if (bytes < td->rate_bytes) {
123                         fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
124                         return 1;
125                 } else {
126                         rate = (bytes - td->rate_bytes) / spent;
127                         if (rate < td->ratemin || bytes < td->rate_bytes) {
128                                 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
129                                 return 1;
130                         }
131                 }
132         }
133
134         td->rate_bytes = bytes;
135         memcpy(&td->lastrate, now, sizeof(*now));
136         return 0;
137 }
138
139 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
140 {
141         if (!td->timeout)
142                 return 0;
143         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
144                 return 1;
145
146         return 0;
147 }
148
149 /*
150  * When job exits, we can cancel the in-flight IO if we are using async
151  * io. Attempt to do so.
152  */
153 static void cleanup_pending_aio(struct thread_data *td)
154 {
155         struct list_head *entry, *n;
156         struct io_u *io_u;
157         int r;
158
159         /*
160          * get immediately available events, if any
161          */
162         r = io_u_queued_complete(td, 0);
163         if (r < 0)
164                 return;
165
166         /*
167          * now cancel remaining active events
168          */
169         if (td->io_ops->cancel) {
170                 list_for_each_safe(entry, n, &td->io_u_busylist) {
171                         io_u = list_entry(entry, struct io_u, list);
172
173                         /*
174                          * if the io_u isn't in flight, then that generally
175                          * means someone leaked an io_u. complain but fix
176                          * it up, so we don't stall here.
177                          */
178                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
179                                 log_err("fio: non-busy IO on busy list\n");
180                                 put_io_u(td, io_u);
181                         } else {
182                                 r = td->io_ops->cancel(td, io_u);
183                                 if (!r)
184                                         put_io_u(td, io_u);
185                         }
186                 }
187         }
188
189         if (td->cur_depth)
190                 r = io_u_queued_complete(td, td->cur_depth);
191 }
192
193 /*
194  * Helper to handle the final sync of a file. Works just like the normal
195  * io path, just does everything sync.
196  */
197 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
198 {
199         struct io_u *io_u = __get_io_u(td);
200         int ret;
201
202         if (!io_u)
203                 return 1;
204
205         io_u->ddir = DDIR_SYNC;
206         io_u->file = f;
207
208         if (td_io_prep(td, io_u)) {
209                 put_io_u(td, io_u);
210                 return 1;
211         }
212
213 requeue:
214         ret = td_io_queue(td, io_u);
215         if (ret < 0) {
216                 td_verror(td, io_u->error, "td_io_queue");
217                 put_io_u(td, io_u);
218                 return 1;
219         } else if (ret == FIO_Q_QUEUED) {
220                 if (io_u_queued_complete(td, 1) < 0)
221                         return 1;
222         } else if (ret == FIO_Q_COMPLETED) {
223                 if (io_u->error) {
224                         td_verror(td, io_u->error, "td_io_queue");
225                         return 1;
226                 }
227
228                 if (io_u_sync_complete(td, io_u) < 0)
229                         return 1;
230         } else if (ret == FIO_Q_BUSY) {
231                 if (td_io_commit(td))
232                         return 1;
233                 goto requeue;
234         }
235
236         return 0;
237 }
238
239 /*
240  * The main verify engine. Runs over the writes we previusly submitted,
241  * reads the blocks back in, and checks the crc/md5 of the data.
242  */
243 static void do_verify(struct thread_data *td)
244 {
245         struct fio_file *f;
246         struct io_u *io_u;
247         int ret, i, min_events;
248
249         /*
250          * sync io first and invalidate cache, to make sure we really
251          * read from disk.
252          */
253         for_each_file(td, f, i) {
254                 if (fio_io_sync(td, f))
255                         break;
256                 if (file_invalidate_cache(td, f))
257                         break;
258         }
259
260         if (td->error)
261                 return;
262
263         td_set_runstate(td, TD_VERIFYING);
264
265         io_u = NULL;
266         while (!td->terminate) {
267                 io_u = __get_io_u(td);
268                 if (!io_u)
269                         break;
270
271                 if (runtime_exceeded(td, &io_u->start_time)) {
272                         put_io_u(td, io_u);
273                         break;
274                 }
275
276                 if (get_next_verify(td, io_u)) {
277                         put_io_u(td, io_u);
278                         break;
279                 }
280
281                 if (td_io_prep(td, io_u)) {
282                         put_io_u(td, io_u);
283                         break;
284                 }
285
286                 io_u->end_io = verify_io_u;
287 requeue:
288                 ret = td_io_queue(td, io_u);
289
290                 switch (ret) {
291                 case FIO_Q_COMPLETED:
292                         if (io_u->error)
293                                 ret = -io_u->error;
294                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
295                                 int bytes = io_u->xfer_buflen - io_u->resid;
296
297                                 io_u->xfer_buflen = io_u->resid;
298                                 io_u->xfer_buf += bytes;
299                                 goto requeue;
300                         }
301                         ret = io_u_sync_complete(td, io_u);
302                         if (ret < 0)
303                                 break;
304                         continue;
305                 case FIO_Q_QUEUED:
306                         break;
307                 case FIO_Q_BUSY:
308                         requeue_io_u(td, &io_u);
309                         ret = td_io_commit(td);
310                         break;
311                 default:
312                         assert(ret < 0);
313                         td_verror(td, -ret, "td_io_queue");
314                         break;
315                 }
316
317                 if (ret < 0 || td->error)
318                         break;
319
320                 /*
321                  * if we can queue more, do so. but check if there are
322                  * completed io_u's first.
323                  */
324                 min_events = 0;
325                 if (queue_full(td) || ret == FIO_Q_BUSY) {
326                         min_events = 1;
327
328                         if (td->cur_depth > td->iodepth_low)
329                                 min_events = td->cur_depth - td->iodepth_low;
330                 }
331
332                 /*
333                  * Reap required number of io units, if any, and do the
334                  * verification on them through the callback handler
335                  */
336                 if (io_u_queued_complete(td, min_events) < 0)
337                         break;
338         }
339
340         if (td->cur_depth)
341                 cleanup_pending_aio(td);
342
343         td_set_runstate(td, TD_RUNNING);
344 }
345
346 /*
347  * Not really an io thread, all it does is burn CPU cycles in the specified
348  * manner.
349  */
350 static void do_cpuio(struct thread_data *td)
351 {
352         struct timeval e;
353         int split = 100 / td->cpuload;
354         int i = 0;
355
356         while (!td->terminate) {
357                 fio_gettime(&e, NULL);
358
359                 if (runtime_exceeded(td, &e))
360                         break;
361
362                 if (!(i % split))
363                         __usec_sleep(10000);
364                 else
365                         usec_sleep(td, 10000);
366
367                 i++;
368         }
369 }
370
371 /*
372  * Main IO worker function. It retrieves io_u's to process and queues
373  * and reaps them, checking for rate and errors along the way.
374  */
375 static void do_io(struct thread_data *td)
376 {
377         struct timeval s;
378         unsigned long usec;
379         int i, ret = 0;
380
381         td_set_runstate(td, TD_RUNNING);
382
383         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
384                 struct timeval comp_time;
385                 long bytes_done = 0;
386                 int min_evts = 0;
387                 struct io_u *io_u;
388
389                 if (td->terminate)
390                         break;
391
392                 io_u = get_io_u(td);
393                 if (!io_u)
394                         break;
395
396                 memcpy(&s, &io_u->start_time, sizeof(s));
397
398                 if (runtime_exceeded(td, &s)) {
399                         put_io_u(td, io_u);
400                         break;
401                 }
402 requeue:
403                 ret = td_io_queue(td, io_u);
404
405                 switch (ret) {
406                 case FIO_Q_COMPLETED:
407                         if (io_u->error) {
408                                 ret = io_u->error;
409                                 break;
410                         }
411                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
412                                 int bytes = io_u->xfer_buflen - io_u->resid;
413
414                                 io_u->xfer_buflen = io_u->resid;
415                                 io_u->xfer_buf += bytes;
416                                 goto requeue;
417                         }
418                         fio_gettime(&comp_time, NULL);
419                         bytes_done = io_u_sync_complete(td, io_u);
420                         if (bytes_done < 0)
421                                 ret = bytes_done;
422                         break;
423                 case FIO_Q_QUEUED:
424                         /*
425                          * if the engine doesn't have a commit hook,
426                          * the io_u is really queued. if it does have such
427                          * a hook, it has to call io_u_queued() itself.
428                          */
429                         if (td->io_ops->commit == NULL)
430                                 io_u_queued(td, io_u);
431                         break;
432                 case FIO_Q_BUSY:
433                         requeue_io_u(td, &io_u);
434                         ret = td_io_commit(td);
435                         break;
436                 default:
437                         assert(ret < 0);
438                         put_io_u(td, io_u);
439                         break;
440                 }
441
442                 if (ret < 0 || td->error)
443                         break;
444
445                 /*
446                  * See if we need to complete some commands
447                  */
448                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
449                         min_evts = 0;
450                         if (queue_full(td) || ret == FIO_Q_BUSY) {
451                                 min_evts = 1;
452
453                                 if (td->cur_depth > td->iodepth_low)
454                                         min_evts = td->cur_depth - td->iodepth_low;
455                         }
456
457                         fio_gettime(&comp_time, NULL);
458                         bytes_done = io_u_queued_complete(td, min_evts);
459                         if (bytes_done < 0)
460                                 break;
461                 }
462
463                 if (!bytes_done)
464                         continue;
465
466                 /*
467                  * the rate is batched for now, it should work for batches
468                  * of completions except the very first one which may look
469                  * a little bursty
470                  */
471                 usec = utime_since(&s, &comp_time);
472
473                 rate_throttle(td, usec, bytes_done);
474
475                 if (check_min_rate(td, &comp_time)) {
476                         if (exitall_on_terminate)
477                                 terminate_threads(td->groupid, 0);
478                         td_verror(td, ENODATA, "check_min_rate");
479                         break;
480                 }
481
482                 if (td->thinktime) {
483                         unsigned long long b;
484
485                         b = td->io_blocks[0] + td->io_blocks[1];
486                         if (!(b % td->thinktime_blocks)) {
487                                 int left;
488
489                                 if (td->thinktime_spin)
490                                         __usec_sleep(td->thinktime_spin);
491
492                                 left = td->thinktime - td->thinktime_spin;
493                                 if (left)
494                                         usec_sleep(td, left);
495                         }
496                 }
497         }
498
499         if (!td->error) {
500                 struct fio_file *f;
501
502                 if (td->cur_depth)
503                         cleanup_pending_aio(td);
504
505                 if (should_fsync(td) && td->end_fsync) {
506                         td_set_runstate(td, TD_FSYNCING);
507                         for_each_file(td, f, i)
508                                 fio_io_sync(td, f);
509                 }
510         }
511 }
512
513 static void cleanup_io_u(struct thread_data *td)
514 {
515         struct list_head *entry, *n;
516         struct io_u *io_u;
517
518         list_for_each_safe(entry, n, &td->io_u_freelist) {
519                 io_u = list_entry(entry, struct io_u, list);
520
521                 list_del(&io_u->list);
522                 free(io_u);
523         }
524
525         free_io_mem(td);
526 }
527
528 /*
529  * "randomly" fill the buffer contents
530  */
531 static void fill_rand_buf(struct io_u *io_u, int max_bs)
532 {
533         int *ptr = io_u->buf;
534
535         while ((void *) ptr - io_u->buf < max_bs) {
536                 *ptr = rand() * 0x9e370001;
537                 ptr++;
538         }
539 }
540
541 static int init_io_u(struct thread_data *td)
542 {
543         struct io_u *io_u;
544         unsigned int max_bs;
545         int i, max_units;
546         char *p;
547
548         if (td->io_ops->flags & FIO_CPUIO)
549                 return 0;
550
551         if (td->io_ops->flags & FIO_SYNCIO)
552                 max_units = 1;
553         else
554                 max_units = td->iodepth;
555
556         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
557         td->orig_buffer_size = max_bs * max_units;
558
559         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
560                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
561         else
562                 td->orig_buffer_size += page_mask;
563
564         if (allocate_io_mem(td))
565                 return 1;
566
567         p = ALIGN(td->orig_buffer);
568         for (i = 0; i < max_units; i++) {
569                 io_u = malloc(sizeof(*io_u));
570                 memset(io_u, 0, sizeof(*io_u));
571                 INIT_LIST_HEAD(&io_u->list);
572
573                 io_u->buf = p + max_bs * i;
574                 if (td_write(td) || td_rw(td))
575                         fill_rand_buf(io_u, max_bs);
576
577                 io_u->index = i;
578                 io_u->flags = IO_U_F_FREE;
579                 list_add(&io_u->list, &td->io_u_freelist);
580         }
581
582         io_u_init_timeout();
583
584         return 0;
585 }
586
587 static int switch_ioscheduler(struct thread_data *td)
588 {
589         char tmp[256], tmp2[128];
590         FILE *f;
591         int ret;
592
593         if (td->io_ops->flags & FIO_CPUIO)
594                 return 0;
595
596         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
597
598         f = fopen(tmp, "r+");
599         if (!f) {
600                 td_verror(td, errno, "fopen");
601                 return 1;
602         }
603
604         /*
605          * Set io scheduler.
606          */
607         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
608         if (ferror(f) || ret != 1) {
609                 td_verror(td, errno, "fwrite");
610                 fclose(f);
611                 return 1;
612         }
613
614         rewind(f);
615
616         /*
617          * Read back and check that the selected scheduler is now the default.
618          */
619         ret = fread(tmp, 1, sizeof(tmp), f);
620         if (ferror(f) || ret < 0) {
621                 td_verror(td, errno, "fread");
622                 fclose(f);
623                 return 1;
624         }
625
626         sprintf(tmp2, "[%s]", td->ioscheduler);
627         if (!strstr(tmp, tmp2)) {
628                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
629                 td_verror(td, EINVAL, "iosched_switch");
630                 fclose(f);
631                 return 1;
632         }
633
634         fclose(f);
635         return 0;
636 }
637
638 static void clear_io_state(struct thread_data *td)
639 {
640         struct fio_file *f;
641         int i;
642
643         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
644         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
645         td->zone_bytes = 0;
646
647         td->last_was_sync = 0;
648
649         for_each_file(td, f, i) {
650                 f->last_completed_pos = 0;
651
652                 f->last_pos = 0;
653                 if (td->io_ops->flags & FIO_SYNCIO)
654                         lseek(f->fd, SEEK_SET, 0);
655
656                 if (f->file_map)
657                         memset(f->file_map, 0, f->num_maps * sizeof(long));
658         }
659 }
660
661 /*
662  * Entry point for the thread based jobs. The process based jobs end up
663  * here as well, after a little setup.
664  */
665 static void *thread_main(void *data)
666 {
667         unsigned long long runtime[2];
668         struct thread_data *td = data;
669
670         if (!td->use_thread)
671                 setsid();
672
673         td->pid = getpid();
674
675         INIT_LIST_HEAD(&td->io_u_freelist);
676         INIT_LIST_HEAD(&td->io_u_busylist);
677         INIT_LIST_HEAD(&td->io_u_requeues);
678         INIT_LIST_HEAD(&td->io_hist_list);
679         INIT_LIST_HEAD(&td->io_log_list);
680
681         if (init_io_u(td))
682                 goto err;
683
684         if (fio_setaffinity(td) == -1) {
685                 td_verror(td, errno, "cpu_set_affinity");
686                 goto err;
687         }
688
689         if (init_iolog(td))
690                 goto err;
691
692         if (td->ioprio) {
693                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
694                         td_verror(td, errno, "ioprio_set");
695                         goto err;
696                 }
697         }
698
699         if (nice(td->nice) == -1) {
700                 td_verror(td, errno, "nice");
701                 goto err;
702         }
703
704         if (init_random_state(td))
705                 goto err;
706
707         if (td->ioscheduler && switch_ioscheduler(td))
708                 goto err;
709
710         td_set_runstate(td, TD_INITIALIZED);
711         fio_sem_up(&startup_sem);
712         fio_sem_down(&td->mutex);
713
714         if (!td->create_serialize && setup_files(td))
715                 goto err;
716         if (open_files(td))
717                 goto err;
718
719         /*
720          * Do this late, as some IO engines would like to have the
721          * files setup prior to initializing structures.
722          */
723         if (td_io_init(td))
724                 goto err;
725
726         if (td->exec_prerun) {
727                 if (system(td->exec_prerun) < 0)
728                         goto err;
729         }
730
731         fio_gettime(&td->epoch, NULL);
732         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
733         getrusage(RUSAGE_SELF, &td->ts.ru_start);
734
735         runtime[0] = runtime[1] = 0;
736         while (td->loops--) {
737                 fio_gettime(&td->start, NULL);
738                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
739
740                 if (td->ratemin)
741                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
742
743                 clear_io_state(td);
744                 prune_io_piece_log(td);
745
746                 if (td->io_ops->flags & FIO_CPUIO)
747                         do_cpuio(td);
748                 else
749                         do_io(td);
750
751                 if (td_read(td) && td->io_bytes[DDIR_READ])
752                         runtime[DDIR_READ] += utime_since_now(&td->start);
753                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
754                         runtime[DDIR_WRITE] += utime_since_now(&td->start);
755                 
756                 if (td->error || td->terminate)
757                         break;
758
759                 if (td->verify == VERIFY_NONE)
760                         continue;
761
762                 clear_io_state(td);
763                 fio_gettime(&td->start, NULL);
764
765                 do_verify(td);
766
767                 runtime[DDIR_READ] += utime_since_now(&td->start);
768
769                 if (td->error || td->terminate)
770                         break;
771         }
772
773         update_rusage_stat(td);
774         fio_gettime(&td->end_time, NULL);
775         td->runtime[0] = runtime[0] / 1000;
776         td->runtime[1] = runtime[1] / 1000;
777
778         if (td->ts.bw_log)
779                 finish_log(td, td->ts.bw_log, "bw");
780         if (td->ts.slat_log)
781                 finish_log(td, td->ts.slat_log, "slat");
782         if (td->ts.clat_log)
783                 finish_log(td, td->ts.clat_log, "clat");
784         if (td->write_iolog_file)
785                 write_iolog_close(td);
786         if (td->exec_postrun) {
787                 if (system(td->exec_postrun) < 0)
788                         log_err("fio: postrun %s failed\n", td->exec_postrun);
789         }
790
791         if (exitall_on_terminate)
792                 terminate_threads(td->groupid, 0);
793
794 err:
795         if (td->error)
796                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
797         close_files(td);
798         close_ioengine(td);
799         cleanup_io_u(td);
800         td_set_runstate(td, TD_EXITED);
801         return (void *) (unsigned long) td->error;
802 }
803
804 /*
805  * We cannot pass the td data into a forked process, so attach the td and
806  * pass it to the thread worker.
807  */
808 static int fork_main(int shmid, int offset)
809 {
810         struct thread_data *td;
811         void *data, *ret;
812
813         data = shmat(shmid, NULL, 0);
814         if (data == (void *) -1) {
815                 int __err = errno;
816
817                 perror("shmat");
818                 return __err;
819         }
820
821         td = data + offset * sizeof(struct thread_data);
822         ret = thread_main(td);
823         shmdt(data);
824         return (int) (unsigned long) ret;
825 }
826
827 /*
828  * Run over the job map and reap the threads that have exited, if any.
829  */
830 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
831 {
832         struct thread_data *td;
833         int i, cputhreads, pending, status, ret;
834
835         /*
836          * reap exited threads (TD_EXITED -> TD_REAPED)
837          */
838         pending = cputhreads = 0;
839         for_each_td(td, i) {
840                 int flags = 0;
841
842                 /*
843                  * ->io_ops is NULL for a thread that has closed its
844                  * io engine
845                  */
846                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
847                         cputhreads++;
848
849                 if (!td->pid || td->runstate == TD_REAPED)
850                         continue;
851                 if (td->use_thread) {
852                         if (td->runstate == TD_EXITED) {
853                                 td_set_runstate(td, TD_REAPED);
854                                 goto reaped;
855                         }
856                         continue;
857                 }
858
859                 flags = WNOHANG;
860                 if (td->runstate == TD_EXITED)
861                         flags = 0;
862
863                 /*
864                  * check if someone quit or got killed in an unusual way
865                  */
866                 ret = waitpid(td->pid, &status, flags);
867                 if (ret < 0) {
868                         if (errno == ECHILD) {
869                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
870                                 td_set_runstate(td, TD_REAPED);
871                                 goto reaped;
872                         }
873                         perror("waitpid");
874                 } else if (ret == td->pid) {
875                         if (WIFSIGNALED(status)) {
876                                 int sig = WTERMSIG(status);
877
878                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
879                                 td_set_runstate(td, TD_REAPED);
880                                 goto reaped;
881                         }
882                         if (WIFEXITED(status)) {
883                                 if (WEXITSTATUS(status) && !td->error)
884                                         td->error = WEXITSTATUS(status);
885
886                                 td_set_runstate(td, TD_REAPED);
887                                 goto reaped;
888                         }
889                 }
890
891                 /*
892                  * thread is not dead, continue
893                  */
894                 continue;
895 reaped:
896                 if (td->use_thread) {
897                         long ret;
898
899                         if (pthread_join(td->thread, (void *) &ret))
900                                 perror("pthread_join");
901                 }
902
903                 (*nr_running)--;
904                 (*m_rate) -= td->ratemin;
905                 (*t_rate) -= td->rate;
906
907                 if (td->error)
908                         exit_value++;
909         }
910
911         if (*nr_running == cputhreads && !pending)
912                 terminate_threads(TERMINATE_ALL, 0);
913 }
914
915 /*
916  * Main function for kicking off and reaping jobs, as needed.
917  */
918 static void run_threads(void)
919 {
920         struct thread_data *td;
921         unsigned long spent;
922         int i, todo, nr_running, m_rate, t_rate, nr_started;
923
924         if (fio_pin_memory())
925                 return;
926
927         if (!terse_output) {
928                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
929                 fflush(stdout);
930         }
931
932         signal(SIGINT, sig_handler);
933         signal(SIGALRM, sig_handler);
934
935         todo = thread_number;
936         nr_running = 0;
937         nr_started = 0;
938         m_rate = t_rate = 0;
939
940         for_each_td(td, i) {
941                 print_status_init(td->thread_number - 1);
942
943                 if (!td->create_serialize) {
944                         init_disk_util(td);
945                         continue;
946                 }
947
948                 /*
949                  * do file setup here so it happens sequentially,
950                  * we don't want X number of threads getting their
951                  * client data interspersed on disk
952                  */
953                 if (setup_files(td)) {
954                         exit_value++;
955                         if (td->error)
956                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
957                         td_set_runstate(td, TD_REAPED);
958                         todo--;
959                 }
960
961                 init_disk_util(td);
962         }
963
964         set_genesis_time();
965
966         while (todo) {
967                 struct thread_data *map[MAX_JOBS];
968                 struct timeval this_start;
969                 int this_jobs = 0, left;
970
971                 /*
972                  * create threads (TD_NOT_CREATED -> TD_CREATED)
973                  */
974                 for_each_td(td, i) {
975                         if (td->runstate != TD_NOT_CREATED)
976                                 continue;
977
978                         /*
979                          * never got a chance to start, killed by other
980                          * thread for some reason
981                          */
982                         if (td->terminate) {
983                                 todo--;
984                                 continue;
985                         }
986
987                         if (td->start_delay) {
988                                 spent = mtime_since_genesis();
989
990                                 if (td->start_delay * 1000 > spent)
991                                         continue;
992                         }
993
994                         if (td->stonewall && (nr_started || nr_running))
995                                 break;
996
997                         /*
998                          * Set state to created. Thread will transition
999                          * to TD_INITIALIZED when it's done setting up.
1000                          */
1001                         td_set_runstate(td, TD_CREATED);
1002                         map[this_jobs++] = td;
1003                         fio_sem_init(&startup_sem, 1);
1004                         nr_started++;
1005
1006                         if (td->use_thread) {
1007                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1008                                         perror("thread_create");
1009                                         nr_started--;
1010                                 }
1011                         } else {
1012                                 if (fork())
1013                                         fio_sem_down(&startup_sem);
1014                                 else {
1015                                         int ret = fork_main(shm_id, i);
1016
1017                                         exit(ret);
1018                                 }
1019                         }
1020                 }
1021
1022                 /*
1023                  * Wait for the started threads to transition to
1024                  * TD_INITIALIZED.
1025                  */
1026                 fio_gettime(&this_start, NULL);
1027                 left = this_jobs;
1028                 while (left && !fio_abort) {
1029                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1030                                 break;
1031
1032                         usleep(100000);
1033
1034                         for (i = 0; i < this_jobs; i++) {
1035                                 td = map[i];
1036                                 if (!td)
1037                                         continue;
1038                                 if (td->runstate == TD_INITIALIZED) {
1039                                         map[i] = NULL;
1040                                         left--;
1041                                 } else if (td->runstate >= TD_EXITED) {
1042                                         map[i] = NULL;
1043                                         left--;
1044                                         todo--;
1045                                         nr_running++; /* work-around... */
1046                                 }
1047                         }
1048                 }
1049
1050                 if (left) {
1051                         log_err("fio: %d jobs failed to start\n", left);
1052                         for (i = 0; i < this_jobs; i++) {
1053                                 td = map[i];
1054                                 if (!td)
1055                                         continue;
1056                                 kill(td->pid, SIGTERM);
1057                         }
1058                         break;
1059                 }
1060
1061                 /*
1062                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1063                  */
1064                 for_each_td(td, i) {
1065                         if (td->runstate != TD_INITIALIZED)
1066                                 continue;
1067
1068                         td_set_runstate(td, TD_RUNNING);
1069                         nr_running++;
1070                         nr_started--;
1071                         m_rate += td->ratemin;
1072                         t_rate += td->rate;
1073                         todo--;
1074                         fio_sem_up(&td->mutex);
1075                 }
1076
1077                 reap_threads(&nr_running, &t_rate, &m_rate);
1078
1079                 if (todo)
1080                         usleep(100000);
1081         }
1082
1083         while (nr_running) {
1084                 reap_threads(&nr_running, &t_rate, &m_rate);
1085                 usleep(10000);
1086         }
1087
1088         update_io_ticks();
1089         fio_unpin_memory();
1090 }
1091
1092 int main(int argc, char *argv[])
1093 {
1094         long ps;
1095
1096         /*
1097          * We need locale for number printing, if it isn't set then just
1098          * go with the US format.
1099          */
1100         if (!getenv("LC_NUMERIC"))
1101                 setlocale(LC_NUMERIC, "en_US");
1102
1103         if (parse_options(argc, argv))
1104                 return 1;
1105
1106         if (!thread_number) {
1107                 log_err("Nothing to do\n");
1108                 return 1;
1109         }
1110
1111         ps = sysconf(_SC_PAGESIZE);
1112         if (ps < 0) {
1113                 log_err("Failed to get page size\n");
1114                 return 1;
1115         }
1116
1117         page_mask = ps - 1;
1118
1119         if (write_bw_log) {
1120                 setup_log(&agg_io_log[DDIR_READ]);
1121                 setup_log(&agg_io_log[DDIR_WRITE]);
1122         }
1123
1124         set_genesis_time();
1125
1126         disk_util_timer_arm();
1127
1128         run_threads();
1129
1130         if (!fio_abort) {
1131                 show_run_stats();
1132                 if (write_bw_log) {
1133                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1134                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1135                 }
1136         }
1137
1138         return exit_value;
1139 }