7110e87dfac36cfeec1cac0b87a8eb3018eac68b
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static struct fio_sem *startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         /*
71                          * if the thread is running, just let it exit
72                          */
73                         if (td->runstate < TD_RUNNING)
74                                 kill(td->pid, SIGQUIT);
75                         td->terminate = 1;
76                         td->start_delay = 0;
77                 }
78         }
79 }
80
81 static void sig_handler(int sig)
82 {
83         switch (sig) {
84                 case SIGALRM:
85                         update_io_ticks();
86                         disk_util_timer_arm();
87                         print_thread_status();
88                         break;
89                 default:
90                         printf("\nfio: terminating on signal %d\n", sig);
91                         fflush(stdout);
92                         terminate_threads(TERMINATE_ALL);
93                         break;
94         }
95 }
96
97 /*
98  * Check if we are above the minimum rate given.
99  */
100 static int check_min_rate(struct thread_data *td, struct timeval *now)
101 {
102         unsigned long long bytes = 0;
103         unsigned long spent;
104         unsigned long rate;
105
106         /*
107          * No minimum rate set, always ok
108          */
109         if (!td->ratemin)
110                 return 0;
111
112         /*
113          * allow a 2 second settle period in the beginning
114          */
115         if (mtime_since(&td->start, now) < 2000)
116                 return 0;
117
118         if (td_read(td))
119                 bytes += td->this_io_bytes[DDIR_READ];
120         if (td_write(td))
121                 bytes += td->this_io_bytes[DDIR_WRITE];
122
123         /*
124          * if rate blocks is set, sample is running
125          */
126         if (td->rate_bytes) {
127                 spent = mtime_since(&td->lastrate, now);
128                 if (spent < td->ratecycle)
129                         return 0;
130
131                 if (bytes < td->rate_bytes) {
132                         fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
133                         return 1;
134                 } else {
135                         rate = (bytes - td->rate_bytes) / spent;
136                         if (rate < td->ratemin || bytes < td->rate_bytes) {
137                                 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
138                                 return 1;
139                         }
140                 }
141         }
142
143         td->rate_bytes = bytes;
144         memcpy(&td->lastrate, now, sizeof(*now));
145         return 0;
146 }
147
148 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
149 {
150         if (!td->timeout)
151                 return 0;
152         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
153                 return 1;
154
155         return 0;
156 }
157
158 /*
159  * When job exits, we can cancel the in-flight IO if we are using async
160  * io. Attempt to do so.
161  */
162 static void cleanup_pending_aio(struct thread_data *td)
163 {
164         struct list_head *entry, *n;
165         struct io_u *io_u;
166         int r;
167
168         /*
169          * get immediately available events, if any
170          */
171         r = io_u_queued_complete(td, 0);
172         if (r < 0)
173                 return;
174
175         /*
176          * now cancel remaining active events
177          */
178         if (td->io_ops->cancel) {
179                 list_for_each_safe(entry, n, &td->io_u_busylist) {
180                         io_u = list_entry(entry, struct io_u, list);
181
182                         /*
183                          * if the io_u isn't in flight, then that generally
184                          * means someone leaked an io_u. complain but fix
185                          * it up, so we don't stall here.
186                          */
187                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
188                                 log_err("fio: non-busy IO on busy list\n");
189                                 put_io_u(td, io_u);
190                         } else {
191                                 r = td->io_ops->cancel(td, io_u);
192                                 if (!r)
193                                         put_io_u(td, io_u);
194                         }
195                 }
196         }
197
198         if (td->cur_depth)
199                 r = io_u_queued_complete(td, td->cur_depth);
200 }
201
202 /*
203  * Helper to handle the final sync of a file. Works just like the normal
204  * io path, just does everything sync.
205  */
206 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
207 {
208         struct io_u *io_u = __get_io_u(td);
209         int ret;
210
211         if (!io_u)
212                 return 1;
213
214         io_u->ddir = DDIR_SYNC;
215         io_u->file = f;
216
217         if (td_io_prep(td, io_u)) {
218                 put_io_u(td, io_u);
219                 return 1;
220         }
221
222 requeue:
223         ret = td_io_queue(td, io_u);
224         if (ret < 0) {
225                 td_verror(td, io_u->error, "td_io_queue");
226                 put_io_u(td, io_u);
227                 return 1;
228         } else if (ret == FIO_Q_QUEUED) {
229                 if (io_u_queued_complete(td, 1) < 0)
230                         return 1;
231         } else if (ret == FIO_Q_COMPLETED) {
232                 if (io_u->error) {
233                         td_verror(td, io_u->error, "td_io_queue");
234                         return 1;
235                 }
236
237                 if (io_u_sync_complete(td, io_u) < 0)
238                         return 1;
239         } else if (ret == FIO_Q_BUSY) {
240                 if (td_io_commit(td))
241                         return 1;
242                 goto requeue;
243         }
244
245         return 0;
246 }
247
248 /*
249  * The main verify engine. Runs over the writes we previously submitted,
250  * reads the blocks back in, and checks the crc/md5 of the data.
251  */
252 static void do_verify(struct thread_data *td)
253 {
254         struct fio_file *f;
255         struct io_u *io_u;
256         int ret, i, min_events;
257
258         /*
259          * sync io first and invalidate cache, to make sure we really
260          * read from disk.
261          */
262         for_each_file(td, f, i) {
263                 if (fio_io_sync(td, f))
264                         break;
265                 if (file_invalidate_cache(td, f))
266                         break;
267         }
268
269         if (td->error)
270                 return;
271
272         td_set_runstate(td, TD_VERIFYING);
273
274         io_u = NULL;
275         while (!td->terminate) {
276                 int ret2;
277
278                 io_u = __get_io_u(td);
279                 if (!io_u)
280                         break;
281
282                 if (runtime_exceeded(td, &io_u->start_time)) {
283                         put_io_u(td, io_u);
284                         break;
285                 }
286
287                 if (get_next_verify(td, io_u)) {
288                         put_io_u(td, io_u);
289                         break;
290                 }
291
292                 if (td_io_prep(td, io_u)) {
293                         put_io_u(td, io_u);
294                         break;
295                 }
296
297                 io_u->end_io = verify_io_u;
298
299                 ret = td_io_queue(td, io_u);
300                 switch (ret) {
301                 case FIO_Q_COMPLETED:
302                         if (io_u->error)
303                                 ret = -io_u->error;
304                         else if (io_u->resid) {
305                                 int bytes = io_u->xfer_buflen - io_u->resid;
306
307                                 /*
308                                  * zero read, fail
309                                  */
310                                 if (!bytes) {
311                                         td_verror(td, ENODATA, "full resid");
312                                         put_io_u(td, io_u);
313                                         break;
314                                 }
315                                 io_u->xfer_buflen = io_u->resid;
316                                 io_u->xfer_buf += bytes;
317                                 requeue_io_u(td, &io_u);
318                         } else {
319                                 ret = io_u_sync_complete(td, io_u);
320                                 if (ret < 0)
321                                         break;
322                         }
323                         continue;
324                 case FIO_Q_QUEUED:
325                         break;
326                 case FIO_Q_BUSY:
327                         requeue_io_u(td, &io_u);
328                         ret2 = td_io_commit(td);
329                         if (ret2 < 0)
330                                 ret = ret2;
331                         break;
332                 default:
333                         assert(ret < 0);
334                         td_verror(td, -ret, "td_io_queue");
335                         break;
336                 }
337
338                 if (ret < 0 || td->error)
339                         break;
340
341                 /*
342                  * if we can queue more, do so. but check if there are
343                  * completed io_u's first.
344                  */
345                 min_events = 0;
346                 if (queue_full(td) || ret == FIO_Q_BUSY) {
347                         min_events = 1;
348
349                         if (td->cur_depth > td->iodepth_low)
350                                 min_events = td->cur_depth - td->iodepth_low;
351                 }
352
353                 /*
354                  * Reap required number of io units, if any, and do the
355                  * verification on them through the callback handler
356                  */
357                 if (io_u_queued_complete(td, min_events) < 0)
358                         break;
359         }
360
361         if (!td->error) {
362                 min_events = td->cur_depth;
363
364                 if (min_events)
365                         ret = io_u_queued_complete(td, min_events);
366         } else
367                 cleanup_pending_aio(td);
368
369         td_set_runstate(td, TD_RUNNING);
370 }
371
372 /*
373  * Main IO worker function. It retrieves io_u's to process and queues
374  * and reaps them, checking for rate and errors along the way.
375  */
376 static void do_io(struct thread_data *td)
377 {
378         struct timeval s;
379         unsigned long usec;
380         int i, ret = 0;
381
382         td_set_runstate(td, TD_RUNNING);
383
384         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
385                 struct timeval comp_time;
386                 long bytes_done = 0;
387                 int min_evts = 0;
388                 struct io_u *io_u;
389                 int ret2;
390
391                 if (td->terminate)
392                         break;
393
394                 io_u = get_io_u(td);
395                 if (!io_u)
396                         break;
397
398                 memcpy(&s, &io_u->start_time, sizeof(s));
399
400                 if (runtime_exceeded(td, &s)) {
401                         put_io_u(td, io_u);
402                         break;
403                 }
404
405                 ret = td_io_queue(td, io_u);
406                 switch (ret) {
407                 case FIO_Q_COMPLETED:
408                         if (io_u->error)
409                                 ret = -io_u->error;
410                         else if (io_u->resid) {
411                                 int bytes = io_u->xfer_buflen - io_u->resid;
412
413                                 /*
414                                  * zero read, fail
415                                  */
416                                 if (!bytes) {
417                                         td_verror(td, ENODATA, "full resid");
418                                         put_io_u(td, io_u);
419                                         break;
420                                 }
421
422                                 io_u->xfer_buflen = io_u->resid;
423                                 io_u->xfer_buf += bytes;
424                                 requeue_io_u(td, &io_u);
425                         } else {
426                                 fio_gettime(&comp_time, NULL);
427                                 bytes_done = io_u_sync_complete(td, io_u);
428                                 if (bytes_done < 0)
429                                         ret = bytes_done;
430                         }
431                         break;
432                 case FIO_Q_QUEUED:
433                         /*
434                          * if the engine doesn't have a commit hook,
435                          * the io_u is really queued. if it does have such
436                          * a hook, it has to call io_u_queued() itself.
437                          */
438                         if (td->io_ops->commit == NULL)
439                                 io_u_queued(td, io_u);
440                         break;
441                 case FIO_Q_BUSY:
442                         requeue_io_u(td, &io_u);
443                         ret2 = td_io_commit(td);
444                         if (ret2 < 0)
445                                 ret = ret2;
446                         break;
447                 default:
448                         assert(ret < 0);
449                         put_io_u(td, io_u);
450                         break;
451                 }
452
453                 if (ret < 0 || td->error)
454                         break;
455
456                 /*
457                  * See if we need to complete some commands
458                  */
459                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
460                         min_evts = 0;
461                         if (queue_full(td) || ret == FIO_Q_BUSY) {
462                                 min_evts = 1;
463
464                                 if (td->cur_depth > td->iodepth_low)
465                                         min_evts = td->cur_depth - td->iodepth_low;
466                         }
467
468                         fio_gettime(&comp_time, NULL);
469                         bytes_done = io_u_queued_complete(td, min_evts);
470                         if (bytes_done < 0)
471                                 break;
472                 }
473
474                 if (!bytes_done)
475                         continue;
476
477                 /*
478                  * the rate is batched for now, it should work for batches
479                  * of completions except the very first one which may look
480                  * a little bursty
481                  */
482                 usec = utime_since(&s, &comp_time);
483
484                 rate_throttle(td, usec, bytes_done);
485
486                 if (check_min_rate(td, &comp_time)) {
487                         if (exitall_on_terminate)
488                                 terminate_threads(td->groupid);
489                         td_verror(td, ENODATA, "check_min_rate");
490                         break;
491                 }
492
493                 if (td->thinktime) {
494                         unsigned long long b;
495
496                         b = td->io_blocks[0] + td->io_blocks[1];
497                         if (!(b % td->thinktime_blocks)) {
498                                 int left;
499
500                                 if (td->thinktime_spin)
501                                         __usec_sleep(td->thinktime_spin);
502
503                                 left = td->thinktime - td->thinktime_spin;
504                                 if (left)
505                                         usec_sleep(td, left);
506                         }
507                 }
508         }
509
510         if (!td->error) {
511                 struct fio_file *f;
512
513                 i = td->cur_depth;
514                 if (i)
515                         ret = io_u_queued_complete(td, i);
516
517                 if (should_fsync(td) && td->end_fsync) {
518                         td_set_runstate(td, TD_FSYNCING);
519                         for_each_file(td, f, i)
520                                 fio_io_sync(td, f);
521                 }
522         } else
523                 cleanup_pending_aio(td);
524 }
525
526 static void cleanup_io_u(struct thread_data *td)
527 {
528         struct list_head *entry, *n;
529         struct io_u *io_u;
530
531         list_for_each_safe(entry, n, &td->io_u_freelist) {
532                 io_u = list_entry(entry, struct io_u, list);
533
534                 list_del(&io_u->list);
535                 free(io_u);
536         }
537
538         free_io_mem(td);
539 }
540
541 /*
542  * "randomly" fill the buffer contents
543  */
544 static void fill_rand_buf(struct io_u *io_u, int max_bs)
545 {
546         int *ptr = io_u->buf;
547
548         while ((void *) ptr - io_u->buf < max_bs) {
549                 *ptr = rand() * 0x9e370001;
550                 ptr++;
551         }
552 }
553
554 static int init_io_u(struct thread_data *td)
555 {
556         struct io_u *io_u;
557         unsigned int max_bs;
558         int i, max_units;
559         char *p;
560
561         if (td->io_ops->flags & FIO_SYNCIO)
562                 max_units = 1;
563         else
564                 max_units = td->iodepth;
565
566         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
567         td->orig_buffer_size = max_bs * max_units;
568
569         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
570                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
571         else
572                 td->orig_buffer_size += page_mask;
573
574         if (allocate_io_mem(td))
575                 return 1;
576
577         p = ALIGN(td->orig_buffer);
578         for (i = 0; i < max_units; i++) {
579                 io_u = malloc(sizeof(*io_u));
580                 memset(io_u, 0, sizeof(*io_u));
581                 INIT_LIST_HEAD(&io_u->list);
582
583                 io_u->buf = p + max_bs * i;
584                 if (td_write(td) || td_rw(td))
585                         fill_rand_buf(io_u, max_bs);
586
587                 io_u->index = i;
588                 io_u->flags = IO_U_F_FREE;
589                 list_add(&io_u->list, &td->io_u_freelist);
590         }
591
592         io_u_init_timeout();
593
594         return 0;
595 }
596
597 static int switch_ioscheduler(struct thread_data *td)
598 {
599         char tmp[256], tmp2[128];
600         FILE *f;
601         int ret;
602
603         if (td->io_ops->flags & FIO_DISKLESSIO)
604                 return 0;
605
606         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
607
608         f = fopen(tmp, "r+");
609         if (!f) {
610                 td_verror(td, errno, "fopen");
611                 return 1;
612         }
613
614         /*
615          * Set io scheduler.
616          */
617         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
618         if (ferror(f) || ret != 1) {
619                 td_verror(td, errno, "fwrite");
620                 fclose(f);
621                 return 1;
622         }
623
624         rewind(f);
625
626         /*
627          * Read back and check that the selected scheduler is now the default.
628          */
629         ret = fread(tmp, 1, sizeof(tmp), f);
630         if (ferror(f) || ret < 0) {
631                 td_verror(td, errno, "fread");
632                 fclose(f);
633                 return 1;
634         }
635
636         sprintf(tmp2, "[%s]", td->ioscheduler);
637         if (!strstr(tmp, tmp2)) {
638                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
639                 td_verror(td, EINVAL, "iosched_switch");
640                 fclose(f);
641                 return 1;
642         }
643
644         fclose(f);
645         return 0;
646 }
647
648 static int clear_io_state(struct thread_data *td)
649 {
650         struct fio_file *f;
651         int i, ret;
652
653         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
654         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
655         td->zone_bytes = 0;
656         td->rate_bytes = 0;
657
658         td->last_was_sync = 0;
659
660         for_each_file(td, f, i)
661                 td_io_close_file(td, f);
662
663         ret = 0;
664         for_each_file(td, f, i) {
665                 ret = td_io_open_file(td, f);
666                 if (ret)
667                         break;
668         }
669
670         return ret;
671 }
672
673 /*
674  * Entry point for the thread based jobs. The process based jobs end up
675  * here as well, after a little setup.
676  */
677 static void *thread_main(void *data)
678 {
679         unsigned long long runtime[2];
680         struct thread_data *td = data;
681         int clear_state;
682
683         if (!td->use_thread)
684                 setsid();
685
686         td->pid = getpid();
687
688         INIT_LIST_HEAD(&td->io_u_freelist);
689         INIT_LIST_HEAD(&td->io_u_busylist);
690         INIT_LIST_HEAD(&td->io_u_requeues);
691         INIT_LIST_HEAD(&td->io_hist_list);
692         INIT_LIST_HEAD(&td->io_log_list);
693
694         if (init_io_u(td))
695                 goto err_sem;
696
697         if (fio_setaffinity(td) == -1) {
698                 td_verror(td, errno, "cpu_set_affinity");
699                 goto err_sem;
700         }
701
702         if (init_iolog(td))
703                 goto err_sem;
704
705         if (td->ioprio) {
706                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
707                         td_verror(td, errno, "ioprio_set");
708                         goto err_sem;
709                 }
710         }
711
712         if (nice(td->nice) == -1) {
713                 td_verror(td, errno, "nice");
714                 goto err_sem;
715         }
716
717         if (init_random_state(td))
718                 goto err_sem;
719
720         if (td->ioscheduler && switch_ioscheduler(td))
721                 goto err_sem;
722
723         td_set_runstate(td, TD_INITIALIZED);
724         fio_sem_up(startup_sem);
725         fio_sem_down(td->mutex);
726
727         /*
728          * the ->mutex semaphore is now no longer used, close it to avoid
729          * eating a file descriptor
730          */
731         fio_sem_remove(td->mutex);
732
733         if (!td->create_serialize && setup_files(td))
734                 goto err;
735
736         if (td_io_init(td))
737                 goto err;
738
739         if (open_files(td))
740                 goto err;
741
742         if (td->exec_prerun) {
743                 if (system(td->exec_prerun) < 0)
744                         goto err;
745         }
746
747         fio_gettime(&td->epoch, NULL);
748         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
749         getrusage(RUSAGE_SELF, &td->ts.ru_start);
750
751         runtime[0] = runtime[1] = 0;
752         clear_state = 0;
753         while (td->loops--) {
754                 fio_gettime(&td->start, NULL);
755                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
756
757                 if (td->ratemin)
758                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
759
760                 if (clear_state && clear_io_state(td))
761                         break;
762
763                 prune_io_piece_log(td);
764
765                 do_io(td);
766
767                 clear_state = 1;
768
769                 if (td_read(td) && td->io_bytes[DDIR_READ])
770                         runtime[DDIR_READ] += utime_since_now(&td->start);
771                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
772                         runtime[DDIR_WRITE] += utime_since_now(&td->start);
773                 
774                 if (td->error || td->terminate)
775                         break;
776
777                 if (td->verify == VERIFY_NONE)
778                         continue;
779
780                 if (clear_io_state(td))
781                         break;
782
783                 fio_gettime(&td->start, NULL);
784
785                 do_verify(td);
786
787                 runtime[DDIR_READ] += utime_since_now(&td->start);
788
789                 if (td->error || td->terminate)
790                         break;
791         }
792
793         update_rusage_stat(td);
794         td->ts.runtime[0] = runtime[0] / 1000;
795         td->ts.runtime[1] = runtime[1] / 1000;
796         td->ts.total_run_time = mtime_since_now(&td->epoch);
797         td->ts.io_bytes[0] = td->io_bytes[0];
798         td->ts.io_bytes[1] = td->io_bytes[1];
799
800         if (td->ts.bw_log)
801                 finish_log(td, td->ts.bw_log, "bw");
802         if (td->ts.slat_log)
803                 finish_log(td, td->ts.slat_log, "slat");
804         if (td->ts.clat_log)
805                 finish_log(td, td->ts.clat_log, "clat");
806         if (td->write_iolog_file)
807                 write_iolog_close(td);
808         if (td->exec_postrun) {
809                 if (system(td->exec_postrun) < 0)
810                         log_err("fio: postrun %s failed\n", td->exec_postrun);
811         }
812
813         if (exitall_on_terminate)
814                 terminate_threads(td->groupid);
815
816 err:
817         if (td->error)
818                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
819         close_files(td);
820         close_ioengine(td);
821         cleanup_io_u(td);
822         td_set_runstate(td, TD_EXITED);
823         return (void *) (unsigned long) td->error;
824 err_sem:
825         fio_sem_up(startup_sem);
826         goto err;
827 }
828
829 /*
830  * We cannot pass the td data into a forked process, so attach the td and
831  * pass it to the thread worker.
832  */
833 static int fork_main(int shmid, int offset)
834 {
835         struct thread_data *td;
836         void *data, *ret;
837
838         data = shmat(shmid, NULL, 0);
839         if (data == (void *) -1) {
840                 int __err = errno;
841
842                 perror("shmat");
843                 return __err;
844         }
845
846         td = data + offset * sizeof(struct thread_data);
847         ret = thread_main(td);
848         shmdt(data);
849         return (int) (unsigned long) ret;
850 }
851
852 /*
853  * Run over the job map and reap the threads that have exited, if any.
854  */
855 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
856 {
857         struct thread_data *td;
858         int i, cputhreads, pending, status, ret;
859
860         /*
861          * reap exited threads (TD_EXITED -> TD_REAPED)
862          */
863         pending = cputhreads = 0;
864         for_each_td(td, i) {
865                 int flags = 0;
866
867                 /*
868                  * ->io_ops is NULL for a thread that has closed its
869                  * io engine
870                  */
871                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
872                         cputhreads++;
873
874                 if (!td->pid || td->runstate == TD_REAPED)
875                         continue;
876                 if (td->use_thread) {
877                         if (td->runstate == TD_EXITED) {
878                                 td_set_runstate(td, TD_REAPED);
879                                 goto reaped;
880                         }
881                         continue;
882                 }
883
884                 flags = WNOHANG;
885                 if (td->runstate == TD_EXITED)
886                         flags = 0;
887
888                 /*
889                  * check if someone quit or got killed in an unusual way
890                  */
891                 ret = waitpid(td->pid, &status, flags);
892                 if (ret < 0) {
893                         if (errno == ECHILD) {
894                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
895                                 td_set_runstate(td, TD_REAPED);
896                                 goto reaped;
897                         }
898                         perror("waitpid");
899                 } else if (ret == td->pid) {
900                         if (WIFSIGNALED(status)) {
901                                 int sig = WTERMSIG(status);
902
903                                 if (sig != SIGQUIT)
904                                         log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
905                                 td_set_runstate(td, TD_REAPED);
906                                 goto reaped;
907                         }
908                         if (WIFEXITED(status)) {
909                                 if (WEXITSTATUS(status) && !td->error)
910                                         td->error = WEXITSTATUS(status);
911
912                                 td_set_runstate(td, TD_REAPED);
913                                 goto reaped;
914                         }
915                 }
916
917                 /*
918                  * thread is not dead, continue
919                  */
920                 continue;
921 reaped:
922                 if (td->use_thread) {
923                         long ret;
924
925                         if (pthread_join(td->thread, (void *) &ret))
926                                 perror("pthread_join");
927                 }
928
929                 (*nr_running)--;
930                 (*m_rate) -= td->ratemin;
931                 (*t_rate) -= td->rate;
932
933                 if (td->error)
934                         exit_value++;
935         }
936
937         if (*nr_running == cputhreads && !pending)
938                 terminate_threads(TERMINATE_ALL);
939 }
940
941 /*
942  * Main function for kicking off and reaping jobs, as needed.
943  */
944 static void run_threads(void)
945 {
946         struct thread_data *td;
947         unsigned long spent;
948         int i, todo, nr_running, m_rate, t_rate, nr_started;
949
950         if (fio_pin_memory())
951                 return;
952
953         if (!terse_output) {
954                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
955                 fflush(stdout);
956         }
957
958         signal(SIGINT, sig_handler);
959         signal(SIGALRM, sig_handler);
960
961         todo = thread_number;
962         nr_running = 0;
963         nr_started = 0;
964         m_rate = t_rate = 0;
965
966         for_each_td(td, i) {
967                 print_status_init(td->thread_number - 1);
968
969                 if (!td->create_serialize) {
970                         init_disk_util(td);
971                         continue;
972                 }
973
974                 /*
975                  * do file setup here so it happens sequentially,
976                  * we don't want X number of threads getting their
977                  * client data interspersed on disk
978                  */
979                 if (setup_files(td)) {
980                         exit_value++;
981                         if (td->error)
982                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
983                         td_set_runstate(td, TD_REAPED);
984                         todo--;
985                 }
986
987                 init_disk_util(td);
988         }
989
990         set_genesis_time();
991
992         while (todo) {
993                 struct thread_data *map[MAX_JOBS];
994                 struct timeval this_start;
995                 int this_jobs = 0, left;
996
997                 /*
998                  * create threads (TD_NOT_CREATED -> TD_CREATED)
999                  */
1000                 for_each_td(td, i) {
1001                         if (td->runstate != TD_NOT_CREATED)
1002                                 continue;
1003
1004                         /*
1005                          * never got a chance to start, killed by other
1006                          * thread for some reason
1007                          */
1008                         if (td->terminate) {
1009                                 todo--;
1010                                 continue;
1011                         }
1012
1013                         if (td->start_delay) {
1014                                 spent = mtime_since_genesis();
1015
1016                                 if (td->start_delay * 1000 > spent)
1017                                         continue;
1018                         }
1019
1020                         if (td->stonewall && (nr_started || nr_running))
1021                                 break;
1022
1023                         /*
1024                          * Set state to created. Thread will transition
1025                          * to TD_INITIALIZED when it's done setting up.
1026                          */
1027                         td_set_runstate(td, TD_CREATED);
1028                         map[this_jobs++] = td;
1029                         nr_started++;
1030
1031                         if (td->use_thread) {
1032                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1033                                         perror("thread_create");
1034                                         nr_started--;
1035                                         break;
1036                                 }
1037                         } else {
1038                                 if (!fork()) {
1039                                         int ret = fork_main(shm_id, i);
1040
1041                                         exit(ret);
1042                                 }
1043                         }
1044                         fio_sem_down(startup_sem);
1045                 }
1046
1047                 /*
1048                  * Wait for the started threads to transition to
1049                  * TD_INITIALIZED.
1050                  */
1051                 fio_gettime(&this_start, NULL);
1052                 left = this_jobs;
1053                 while (left && !fio_abort) {
1054                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1055                                 break;
1056
1057                         usleep(100000);
1058
1059                         for (i = 0; i < this_jobs; i++) {
1060                                 td = map[i];
1061                                 if (!td)
1062                                         continue;
1063                                 if (td->runstate == TD_INITIALIZED) {
1064                                         map[i] = NULL;
1065                                         left--;
1066                                 } else if (td->runstate >= TD_EXITED) {
1067                                         map[i] = NULL;
1068                                         left--;
1069                                         todo--;
1070                                         nr_running++; /* work-around... */
1071                                 }
1072                         }
1073                 }
1074
1075                 if (left) {
1076                         log_err("fio: %d jobs failed to start\n", left);
1077                         for (i = 0; i < this_jobs; i++) {
1078                                 td = map[i];
1079                                 if (!td)
1080                                         continue;
1081                                 kill(td->pid, SIGTERM);
1082                         }
1083                         break;
1084                 }
1085
1086                 /*
1087                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1088                  */
1089                 for_each_td(td, i) {
1090                         if (td->runstate != TD_INITIALIZED)
1091                                 continue;
1092
1093                         td_set_runstate(td, TD_RUNNING);
1094                         nr_running++;
1095                         nr_started--;
1096                         m_rate += td->ratemin;
1097                         t_rate += td->rate;
1098                         todo--;
1099                         fio_sem_up(td->mutex);
1100                 }
1101
1102                 reap_threads(&nr_running, &t_rate, &m_rate);
1103
1104                 if (todo)
1105                         usleep(100000);
1106         }
1107
1108         while (nr_running) {
1109                 reap_threads(&nr_running, &t_rate, &m_rate);
1110                 usleep(10000);
1111         }
1112
1113         update_io_ticks();
1114         fio_unpin_memory();
1115 }
1116
1117 int main(int argc, char *argv[])
1118 {
1119         long ps;
1120
1121         /*
1122          * We need locale for number printing, if it isn't set then just
1123          * go with the US format.
1124          */
1125         if (!getenv("LC_NUMERIC"))
1126                 setlocale(LC_NUMERIC, "en_US");
1127
1128         if (parse_options(argc, argv))
1129                 return 1;
1130
1131         if (!thread_number) {
1132                 log_err("Nothing to do\n");
1133                 return 1;
1134         }
1135
1136         ps = sysconf(_SC_PAGESIZE);
1137         if (ps < 0) {
1138                 log_err("Failed to get page size\n");
1139                 return 1;
1140         }
1141
1142         page_mask = ps - 1;
1143
1144         if (write_bw_log) {
1145                 setup_log(&agg_io_log[DDIR_READ]);
1146                 setup_log(&agg_io_log[DDIR_WRITE]);
1147         }
1148
1149         startup_sem = fio_sem_init(0);
1150
1151         set_genesis_time();
1152
1153         disk_util_timer_arm();
1154
1155         run_threads();
1156
1157         if (!fio_abort) {
1158                 show_run_stats();
1159                 if (write_bw_log) {
1160                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1161                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1162                 }
1163         }
1164
1165         fio_sem_remove(startup_sem);
1166         return exit_value;
1167 }