Use 0 timeout for command completion peek
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 /*
140  * When job exits, we can cancel the in-flight IO if we are using async
141  * io. Attempt to do so.
142  */
143 static void cleanup_pending_aio(struct thread_data *td)
144 {
145         struct list_head *entry, *n;
146         struct io_u *io_u;
147         int r;
148
149         /*
150          * get immediately available events, if any
151          */
152         io_u_queued_complete(td, 0, NULL);
153
154         /*
155          * now cancel remaining active events
156          */
157         if (td->io_ops->cancel) {
158                 list_for_each_safe(entry, n, &td->io_u_busylist) {
159                         io_u = list_entry(entry, struct io_u, list);
160
161                         r = td->io_ops->cancel(td, io_u);
162                         if (!r)
163                                 put_io_u(td, io_u);
164                 }
165         }
166
167         if (td->cur_depth)
168                 io_u_queued_complete(td, td->cur_depth, NULL);
169 }
170
171 /*
172  * Helper to handle the final sync of a file. Works just like the normal
173  * io path, just does everything sync.
174  */
175 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
176 {
177         struct io_u *io_u = __get_io_u(td);
178         int ret;
179
180         if (!io_u)
181                 return 1;
182
183         io_u->ddir = DDIR_SYNC;
184         io_u->file = f;
185
186         if (td_io_prep(td, io_u)) {
187                 put_io_u(td, io_u);
188                 return 1;
189         }
190
191 requeue:
192         ret = td_io_queue(td, io_u);
193         if (ret < 0) {
194                 td_verror(td, io_u->error);
195                 put_io_u(td, io_u);
196                 return 1;
197         } else if (ret == FIO_Q_QUEUED) {
198                 if (io_u_queued_complete(td, 1, NULL))
199                         return 1;
200         } else if (ret == FIO_Q_COMPLETED) {
201                 if (io_u->error) {
202                         td_verror(td, io_u->error);
203                         return 1;
204                 }
205
206                 io_u_sync_complete(td, io_u, NULL);
207         } else if (ret == FIO_Q_BUSY) {
208                 if (td_io_commit(td))
209                         return 1;
210                 goto requeue;
211         }
212
213         return 0;
214 }
215
216 /*
217  * The main verify engine. Runs over the writes we previusly submitted,
218  * reads the blocks back in, and checks the crc/md5 of the data.
219  */
220 static void do_verify(struct thread_data *td)
221 {
222         struct fio_file *f;
223         struct io_u *io_u;
224         int ret, i, min_events;
225
226         /*
227          * sync io first and invalidate cache, to make sure we really
228          * read from disk.
229          */
230         for_each_file(td, f, i) {
231                 fio_io_sync(td, f);
232                 file_invalidate_cache(td, f);
233         }
234
235         td_set_runstate(td, TD_VERIFYING);
236
237         io_u = NULL;
238         while (!td->terminate) {
239                 io_u = __get_io_u(td);
240                 if (!io_u)
241                         break;
242
243                 if (runtime_exceeded(td, &io_u->start_time))
244                         break;
245
246                 if (get_next_verify(td, io_u))
247                         break;
248
249                 if (td_io_prep(td, io_u))
250                         break;
251
252 requeue:
253                 ret = td_io_queue(td, io_u);
254
255                 switch (ret) {
256                 case FIO_Q_COMPLETED:
257                         if (io_u->error)
258                                 ret = -io_u->error;
259                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
260                                 int bytes = io_u->xfer_buflen - io_u->resid;
261
262                                 io_u->xfer_buflen = io_u->resid;
263                                 io_u->xfer_buf += bytes;
264                                 goto requeue;
265                         }
266                         ret = io_u_sync_complete(td, io_u, verify_io_u);
267                         if (ret)
268                                 break;
269                         continue;
270                 case FIO_Q_QUEUED:
271                         break;
272                 case FIO_Q_BUSY:
273                         requeue_io_u(td, &io_u);
274                         ret = td_io_commit(td);
275                         break;
276                 default:
277                         assert(ret < 0);
278                         td_verror(td, -ret);
279                         break;
280                 }
281
282                 if (ret < 0 || td->error)
283                         break;
284
285                 /*
286                  * if we can queue more, do so. but check if there are
287                  * completed io_u's first.
288                  */
289                 min_events = 0;
290                 if (queue_full(td) || ret == FIO_Q_BUSY)
291                         min_events = 1;
292
293                 /*
294                  * Reap required number of io units, if any, and do the
295                  * verification on them through the callback handler
296                  */
297                 if (io_u_queued_complete(td, min_events, verify_io_u))
298                         break;
299         }
300
301         if (io_u)
302                 put_io_u(td, io_u);
303
304         if (td->cur_depth)
305                 cleanup_pending_aio(td);
306
307         td_set_runstate(td, TD_RUNNING);
308 }
309
310 /*
311  * Not really an io thread, all it does is burn CPU cycles in the specified
312  * manner.
313  */
314 static void do_cpuio(struct thread_data *td)
315 {
316         struct timeval e;
317         int split = 100 / td->cpuload;
318         int i = 0;
319
320         while (!td->terminate) {
321                 fio_gettime(&e, NULL);
322
323                 if (runtime_exceeded(td, &e))
324                         break;
325
326                 if (!(i % split))
327                         __usec_sleep(10000);
328                 else
329                         usec_sleep(td, 10000);
330
331                 i++;
332         }
333 }
334
335 /*
336  * Main IO worker function. It retrieves io_u's to process and queues
337  * and reaps them, checking for rate and errors along the way.
338  */
339 static void do_io(struct thread_data *td)
340 {
341         struct timeval s;
342         unsigned long usec;
343         int i, ret = 0;
344
345         td_set_runstate(td, TD_RUNNING);
346
347         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
348                 struct timeval comp_time;
349                 long bytes_done = 0;
350                 int min_evts = 0;
351                 struct io_u *io_u;
352
353                 if (td->terminate)
354                         break;
355
356                 io_u = get_io_u(td);
357                 if (!io_u)
358                         break;
359
360                 memcpy(&s, &io_u->start_time, sizeof(s));
361
362                 if (runtime_exceeded(td, &s)) {
363                         put_io_u(td, io_u);
364                         break;
365                 }
366 requeue:
367                 ret = td_io_queue(td, io_u);
368
369                 switch (ret) {
370                 case FIO_Q_COMPLETED:
371                         if (io_u->error) {
372                                 ret = io_u->error;
373                                 break;
374                         }
375                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
376                                 int bytes = io_u->xfer_buflen - io_u->resid;
377
378                                 io_u->xfer_buflen = io_u->resid;
379                                 io_u->xfer_buf += bytes;
380                                 goto requeue;
381                         }
382                         fio_gettime(&comp_time, NULL);
383                         bytes_done = io_u_sync_complete(td, io_u, NULL);
384                         if (bytes_done < 0)
385                                 ret = bytes_done;
386                         break;
387                 case FIO_Q_QUEUED:
388                         break;
389                 case FIO_Q_BUSY:
390                         requeue_io_u(td, &io_u);
391                         ret = td_io_commit(td);
392                         break;
393                 default:
394                         assert(ret < 0);
395                         put_io_u(td, io_u);
396                         break;
397                 }
398
399                 if (ret < 0 || td->error)
400                         break;
401
402                 if (io_u)
403                         add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
404
405                 /*
406                  * See if we need to complete some commands
407                  */
408                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
409                         min_evts = 0;
410                         if (queue_full(td) || ret == FIO_Q_BUSY)
411                                 min_evts = 1;
412
413                         fio_gettime(&comp_time, NULL);
414                         bytes_done = io_u_queued_complete(td, min_evts, NULL);
415                         if (bytes_done < 0)
416                                 break;
417                 }
418
419                 if (!bytes_done)
420                         continue;
421
422                 /*
423                  * the rate is batched for now, it should work for batches
424                  * of completions except the very first one which may look
425                  * a little bursty
426                  */
427                 usec = utime_since(&s, &comp_time);
428
429                 rate_throttle(td, usec, bytes_done, td->ddir);
430
431                 if (check_min_rate(td, &comp_time)) {
432                         if (exitall_on_terminate)
433                                 terminate_threads(td->groupid, 0);
434                         td_verror(td, ENODATA);
435                         break;
436                 }
437
438                 if (td->thinktime) {
439                         unsigned long long b;
440
441                         b = td->io_blocks[0] + td->io_blocks[1];
442                         if (!(b % td->thinktime_blocks)) {
443                                 int left;
444
445                                 if (td->thinktime_spin)
446                                         __usec_sleep(td->thinktime_spin);
447
448                                 left = td->thinktime - td->thinktime_spin;
449                                 if (left)
450                                         usec_sleep(td, left);
451                         }
452                 }
453         }
454
455         if (!td->error) {
456                 struct fio_file *f;
457
458                 if (td->cur_depth)
459                         cleanup_pending_aio(td);
460
461                 if (should_fsync(td) && td->end_fsync) {
462                         td_set_runstate(td, TD_FSYNCING);
463                         for_each_file(td, f, i)
464                                 fio_io_sync(td, f);
465                 }
466         }
467 }
468
469 static void cleanup_io_u(struct thread_data *td)
470 {
471         struct list_head *entry, *n;
472         struct io_u *io_u;
473
474         list_for_each_safe(entry, n, &td->io_u_freelist) {
475                 io_u = list_entry(entry, struct io_u, list);
476
477                 list_del(&io_u->list);
478                 free(io_u);
479         }
480
481         free_io_mem(td);
482 }
483
484 /*
485  * "randomly" fill the buffer contents
486  */
487 static void fill_rand_buf(struct io_u *io_u, int max_bs)
488 {
489         int *ptr = io_u->buf;
490
491         while ((void *) ptr - io_u->buf < max_bs) {
492                 *ptr = rand() * 0x9e370001;
493                 ptr++;
494         }
495 }
496
497 static int init_io_u(struct thread_data *td)
498 {
499         struct io_u *io_u;
500         unsigned int max_bs;
501         int i, max_units;
502         char *p;
503
504         if (td->io_ops->flags & FIO_CPUIO)
505                 return 0;
506
507         if (td->io_ops->flags & FIO_SYNCIO)
508                 max_units = 1;
509         else
510                 max_units = td->iodepth;
511
512         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
513         td->orig_buffer_size = max_bs * max_units;
514
515         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
516                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
517         else
518                 td->orig_buffer_size += page_mask;
519
520         if (allocate_io_mem(td))
521                 return 1;
522
523         p = ALIGN(td->orig_buffer);
524         for (i = 0; i < max_units; i++) {
525                 io_u = malloc(sizeof(*io_u));
526                 memset(io_u, 0, sizeof(*io_u));
527                 INIT_LIST_HEAD(&io_u->list);
528
529                 io_u->buf = p + max_bs * i;
530                 if (td_write(td) || td_rw(td))
531                         fill_rand_buf(io_u, max_bs);
532
533                 io_u->index = i;
534                 list_add(&io_u->list, &td->io_u_freelist);
535         }
536
537         return 0;
538 }
539
540 static int switch_ioscheduler(struct thread_data *td)
541 {
542         char tmp[256], tmp2[128];
543         FILE *f;
544         int ret;
545
546         if (td->io_ops->flags & FIO_CPUIO)
547                 return 0;
548
549         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
550
551         f = fopen(tmp, "r+");
552         if (!f) {
553                 td_verror(td, errno);
554                 return 1;
555         }
556
557         /*
558          * Set io scheduler.
559          */
560         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
561         if (ferror(f) || ret != 1) {
562                 td_verror(td, errno);
563                 fclose(f);
564                 return 1;
565         }
566
567         rewind(f);
568
569         /*
570          * Read back and check that the selected scheduler is now the default.
571          */
572         ret = fread(tmp, 1, sizeof(tmp), f);
573         if (ferror(f) || ret < 0) {
574                 td_verror(td, errno);
575                 fclose(f);
576                 return 1;
577         }
578
579         sprintf(tmp2, "[%s]", td->ioscheduler);
580         if (!strstr(tmp, tmp2)) {
581                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
582                 td_verror(td, EINVAL);
583                 fclose(f);
584                 return 1;
585         }
586
587         fclose(f);
588         return 0;
589 }
590
591 static void clear_io_state(struct thread_data *td)
592 {
593         struct fio_file *f;
594         int i;
595
596         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
597         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
598         td->zone_bytes = 0;
599
600         td->last_was_sync = 0;
601
602         for_each_file(td, f, i) {
603                 f->last_completed_pos = 0;
604
605                 f->last_pos = 0;
606                 if (td->io_ops->flags & FIO_SYNCIO)
607                         lseek(f->fd, SEEK_SET, 0);
608
609                 if (f->file_map)
610                         memset(f->file_map, 0, f->num_maps * sizeof(long));
611         }
612 }
613
614 /*
615  * Entry point for the thread based jobs. The process based jobs end up
616  * here as well, after a little setup.
617  */
618 static void *thread_main(void *data)
619 {
620         unsigned long long runtime[2];
621         struct thread_data *td = data;
622
623         if (!td->use_thread)
624                 setsid();
625
626         td->pid = getpid();
627
628         INIT_LIST_HEAD(&td->io_u_freelist);
629         INIT_LIST_HEAD(&td->io_u_busylist);
630         INIT_LIST_HEAD(&td->io_u_requeues);
631         INIT_LIST_HEAD(&td->io_hist_list);
632         INIT_LIST_HEAD(&td->io_log_list);
633
634         if (init_io_u(td))
635                 goto err;
636
637         if (fio_setaffinity(td) == -1) {
638                 td_verror(td, errno);
639                 goto err;
640         }
641
642         if (init_iolog(td))
643                 goto err;
644
645         if (td->ioprio) {
646                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
647                         td_verror(td, errno);
648                         goto err;
649                 }
650         }
651
652         if (nice(td->nice) == -1) {
653                 td_verror(td, errno);
654                 goto err;
655         }
656
657         if (init_random_state(td))
658                 goto err;
659
660         if (td->ioscheduler && switch_ioscheduler(td))
661                 goto err;
662
663         td_set_runstate(td, TD_INITIALIZED);
664         fio_sem_up(&startup_sem);
665         fio_sem_down(&td->mutex);
666
667         if (!td->create_serialize && setup_files(td))
668                 goto err;
669         if (open_files(td))
670                 goto err;
671
672         /*
673          * Do this late, as some IO engines would like to have the
674          * files setup prior to initializing structures.
675          */
676         if (td_io_init(td))
677                 goto err;
678
679         if (td->exec_prerun) {
680                 if (system(td->exec_prerun) < 0)
681                         goto err;
682         }
683
684         fio_gettime(&td->epoch, NULL);
685         getrusage(RUSAGE_SELF, &td->ru_start);
686
687         runtime[0] = runtime[1] = 0;
688         while (td->loops--) {
689                 fio_gettime(&td->start, NULL);
690                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
691
692                 if (td->ratemin)
693                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
694
695                 clear_io_state(td);
696                 prune_io_piece_log(td);
697
698                 if (td->io_ops->flags & FIO_CPUIO)
699                         do_cpuio(td);
700                 else
701                         do_io(td);
702
703                 runtime[td->ddir] += utime_since_now(&td->start);
704                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
705                         runtime[td->ddir ^ 1] = runtime[td->ddir];
706
707                 if (td->error || td->terminate)
708                         break;
709
710                 if (td->verify == VERIFY_NONE)
711                         continue;
712
713                 clear_io_state(td);
714                 fio_gettime(&td->start, NULL);
715
716                 do_verify(td);
717
718                 runtime[DDIR_READ] += utime_since_now(&td->start);
719
720                 if (td->error || td->terminate)
721                         break;
722         }
723
724         update_rusage_stat(td);
725         fio_gettime(&td->end_time, NULL);
726         td->runtime[0] = runtime[0] / 1000;
727         td->runtime[1] = runtime[1] / 1000;
728
729         if (td->bw_log)
730                 finish_log(td, td->bw_log, "bw");
731         if (td->slat_log)
732                 finish_log(td, td->slat_log, "slat");
733         if (td->clat_log)
734                 finish_log(td, td->clat_log, "clat");
735         if (td->write_iolog_file)
736                 write_iolog_close(td);
737         if (td->exec_postrun) {
738                 if (system(td->exec_postrun) < 0)
739                         log_err("fio: postrun %s failed\n", td->exec_postrun);
740         }
741
742         if (exitall_on_terminate)
743                 terminate_threads(td->groupid, 0);
744
745 err:
746         if (td->error)
747                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
748         close_files(td);
749         close_ioengine(td);
750         cleanup_io_u(td);
751         td_set_runstate(td, TD_EXITED);
752         return (void *) td->error;
753 }
754
755 /*
756  * We cannot pass the td data into a forked process, so attach the td and
757  * pass it to the thread worker.
758  */
759 static int fork_main(int shmid, int offset)
760 {
761         struct thread_data *td;
762         void *data, *ret;
763
764         data = shmat(shmid, NULL, 0);
765         if (data == (void *) -1) {
766                 int __err = errno;
767
768                 perror("shmat");
769                 return __err;
770         }
771
772         td = data + offset * sizeof(struct thread_data);
773         ret = thread_main(td);
774         shmdt(data);
775         return (int) ret;
776 }
777
778 /*
779  * Run over the job map and reap the threads that have exited, if any.
780  */
781 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
782 {
783         struct thread_data *td;
784         int i, cputhreads, pending, status, ret;
785
786         /*
787          * reap exited threads (TD_EXITED -> TD_REAPED)
788          */
789         pending = cputhreads = 0;
790         for_each_td(td, i) {
791                 /*
792                  * ->io_ops is NULL for a thread that has closed its
793                  * io engine
794                  */
795                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
796                         cputhreads++;
797
798                 if (td->runstate < TD_EXITED) {
799                         /*
800                          * check if someone quit or got killed in an unusual way
801                          */
802                         ret = waitpid(td->pid, &status, WNOHANG);
803                         if (ret < 0)
804                                 perror("waitpid");
805                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
806                                 int sig = WTERMSIG(status);
807
808                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
809                                 td_set_runstate(td, TD_REAPED);
810                                 goto reaped;
811                         }
812                 }
813
814                 if (td->runstate != TD_EXITED) {
815                         if (td->runstate < TD_RUNNING)
816                                 pending++;
817
818                         continue;
819                 }
820
821                 if (td->error)
822                         exit_value++;
823
824                 td_set_runstate(td, TD_REAPED);
825
826                 if (td->use_thread) {
827                         long ret;
828
829                         if (pthread_join(td->thread, (void *) &ret))
830                                 perror("thread_join");
831                 } else {
832                         int status;
833
834                         ret = waitpid(td->pid, &status, 0);
835                         if (ret < 0)
836                                 perror("waitpid");
837                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
838                                 if (!exit_value)
839                                         exit_value++;
840                         }
841                 }
842
843 reaped:
844                 (*nr_running)--;
845                 (*m_rate) -= td->ratemin;
846                 (*t_rate) -= td->rate;
847         }
848
849         if (*nr_running == cputhreads && !pending)
850                 terminate_threads(TERMINATE_ALL, 0);
851 }
852
853 /*
854  * Main function for kicking off and reaping jobs, as needed.
855  */
856 static void run_threads(void)
857 {
858         struct thread_data *td;
859         unsigned long spent;
860         int i, todo, nr_running, m_rate, t_rate, nr_started;
861
862         if (fio_pin_memory())
863                 return;
864
865         if (!terse_output) {
866                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
867                 fflush(stdout);
868         }
869
870         signal(SIGINT, sig_handler);
871         signal(SIGALRM, sig_handler);
872
873         todo = thread_number;
874         nr_running = 0;
875         nr_started = 0;
876         m_rate = t_rate = 0;
877
878         for_each_td(td, i) {
879                 print_status_init(td->thread_number - 1);
880
881                 if (!td->create_serialize) {
882                         init_disk_util(td);
883                         continue;
884                 }
885
886                 /*
887                  * do file setup here so it happens sequentially,
888                  * we don't want X number of threads getting their
889                  * client data interspersed on disk
890                  */
891                 if (setup_files(td)) {
892                         exit_value++;
893                         if (td->error)
894                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
895                         td_set_runstate(td, TD_REAPED);
896                         todo--;
897                 }
898
899                 init_disk_util(td);
900         }
901
902         while (todo) {
903                 struct thread_data *map[MAX_JOBS];
904                 struct timeval this_start;
905                 int this_jobs = 0, left;
906
907                 /*
908                  * create threads (TD_NOT_CREATED -> TD_CREATED)
909                  */
910                 for_each_td(td, i) {
911                         if (td->runstate != TD_NOT_CREATED)
912                                 continue;
913
914                         /*
915                          * never got a chance to start, killed by other
916                          * thread for some reason
917                          */
918                         if (td->terminate) {
919                                 todo--;
920                                 continue;
921                         }
922
923                         if (td->start_delay) {
924                                 spent = mtime_since_genesis();
925
926                                 if (td->start_delay * 1000 > spent)
927                                         continue;
928                         }
929
930                         if (td->stonewall && (nr_started || nr_running))
931                                 break;
932
933                         /*
934                          * Set state to created. Thread will transition
935                          * to TD_INITIALIZED when it's done setting up.
936                          */
937                         td_set_runstate(td, TD_CREATED);
938                         map[this_jobs++] = td;
939                         fio_sem_init(&startup_sem, 1);
940                         nr_started++;
941
942                         if (td->use_thread) {
943                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
944                                         perror("thread_create");
945                                         nr_started--;
946                                 }
947                         } else {
948                                 if (fork())
949                                         fio_sem_down(&startup_sem);
950                                 else {
951                                         int ret = fork_main(shm_id, i);
952
953                                         exit(ret);
954                                 }
955                         }
956                 }
957
958                 /*
959                  * Wait for the started threads to transition to
960                  * TD_INITIALIZED.
961                  */
962                 fio_gettime(&this_start, NULL);
963                 left = this_jobs;
964                 while (left && !fio_abort) {
965                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
966                                 break;
967
968                         usleep(100000);
969
970                         for (i = 0; i < this_jobs; i++) {
971                                 td = map[i];
972                                 if (!td)
973                                         continue;
974                                 if (td->runstate == TD_INITIALIZED) {
975                                         map[i] = NULL;
976                                         left--;
977                                 } else if (td->runstate >= TD_EXITED) {
978                                         map[i] = NULL;
979                                         left--;
980                                         todo--;
981                                         nr_running++; /* work-around... */
982                                 }
983                         }
984                 }
985
986                 if (left) {
987                         log_err("fio: %d jobs failed to start\n", left);
988                         for (i = 0; i < this_jobs; i++) {
989                                 td = map[i];
990                                 if (!td)
991                                         continue;
992                                 kill(td->pid, SIGTERM);
993                         }
994                         break;
995                 }
996
997                 /*
998                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
999                  */
1000                 for_each_td(td, i) {
1001                         if (td->runstate != TD_INITIALIZED)
1002                                 continue;
1003
1004                         td_set_runstate(td, TD_RUNNING);
1005                         nr_running++;
1006                         nr_started--;
1007                         m_rate += td->ratemin;
1008                         t_rate += td->rate;
1009                         todo--;
1010                         fio_sem_up(&td->mutex);
1011                 }
1012
1013                 reap_threads(&nr_running, &t_rate, &m_rate);
1014
1015                 if (todo)
1016                         usleep(100000);
1017         }
1018
1019         while (nr_running) {
1020                 reap_threads(&nr_running, &t_rate, &m_rate);
1021                 usleep(10000);
1022         }
1023
1024         update_io_ticks();
1025         fio_unpin_memory();
1026 }
1027
1028 int main(int argc, char *argv[])
1029 {
1030         long ps;
1031
1032         /*
1033          * We need locale for number printing, if it isn't set then just
1034          * go with the US format.
1035          */
1036         if (!getenv("LC_NUMERIC"))
1037                 setlocale(LC_NUMERIC, "en_US");
1038
1039         if (parse_options(argc, argv))
1040                 return 1;
1041
1042         if (!thread_number) {
1043                 log_err("Nothing to do\n");
1044                 return 1;
1045         }
1046
1047         ps = sysconf(_SC_PAGESIZE);
1048         if (ps < 0) {
1049                 log_err("Failed to get page size\n");
1050                 return 1;
1051         }
1052
1053         page_mask = ps - 1;
1054
1055         if (write_bw_log) {
1056                 setup_log(&agg_io_log[DDIR_READ]);
1057                 setup_log(&agg_io_log[DDIR_WRITE]);
1058         }
1059
1060         disk_util_timer_arm();
1061
1062         run_threads();
1063
1064         if (!fio_abort) {
1065                 show_run_stats();
1066                 if (write_bw_log) {
1067                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1068                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1069                 }
1070         }
1071
1072         return exit_value;
1073 }