Update io_u.c comments
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 /*
140  * When job exits, we can cancel the in-flight IO if we are using async
141  * io. Attempt to do so.
142  */
143 static void cleanup_pending_aio(struct thread_data *td)
144 {
145         struct list_head *entry, *n;
146         struct io_u *io_u;
147         int r;
148
149         /*
150          * get immediately available events, if any
151          */
152         io_u_queued_complete(td, 0, NULL);
153
154         /*
155          * now cancel remaining active events
156          */
157         if (td->io_ops->cancel) {
158                 list_for_each_safe(entry, n, &td->io_u_busylist) {
159                         io_u = list_entry(entry, struct io_u, list);
160
161                         r = td->io_ops->cancel(td, io_u);
162                         if (!r)
163                                 put_io_u(td, io_u);
164                 }
165         }
166
167         if (td->cur_depth)
168                 io_u_queued_complete(td, td->cur_depth, NULL);
169 }
170
171 /*
172  * Helper to handle the final sync of a file. Works just like the normal
173  * io path, just does everything sync.
174  */
175 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
176 {
177         struct io_u *io_u = __get_io_u(td);
178         int ret;
179
180         if (!io_u)
181                 return 1;
182
183         io_u->ddir = DDIR_SYNC;
184         io_u->file = f;
185
186         if (td_io_prep(td, io_u)) {
187                 put_io_u(td, io_u);
188                 return 1;
189         }
190
191 requeue:
192         ret = td_io_queue(td, io_u);
193         if (ret < 0) {
194                 td_verror(td, io_u->error);
195                 put_io_u(td, io_u);
196                 return 1;
197         } else if (ret == FIO_Q_QUEUED) {
198                 if (io_u_queued_complete(td, 1, NULL))
199                         return 1;
200         } else if (ret == FIO_Q_COMPLETED) {
201                 if (io_u->error) {
202                         td_verror(td, io_u->error);
203                         return 1;
204                 }
205
206                 io_u_sync_complete(td, io_u, NULL);
207         } else if (ret == FIO_Q_BUSY) {
208                 if (td_io_commit(td))
209                         return 1;
210                 goto requeue;
211         }
212
213         return 0;
214 }
215
216 /*
217  * The main verify engine. Runs over the writes we previusly submitted,
218  * reads the blocks back in, and checks the crc/md5 of the data.
219  */
220 static void do_verify(struct thread_data *td)
221 {
222         struct fio_file *f;
223         struct io_u *io_u;
224         int ret, i, min_events;
225
226         /*
227          * sync io first and invalidate cache, to make sure we really
228          * read from disk.
229          */
230         for_each_file(td, f, i) {
231                 fio_io_sync(td, f);
232                 file_invalidate_cache(td, f);
233         }
234
235         td_set_runstate(td, TD_VERIFYING);
236
237         io_u = NULL;
238         while (!td->terminate) {
239                 io_u = __get_io_u(td);
240                 if (!io_u)
241                         break;
242
243                 if (runtime_exceeded(td, &io_u->start_time))
244                         break;
245
246                 if (get_next_verify(td, io_u))
247                         break;
248
249                 if (td_io_prep(td, io_u))
250                         break;
251
252 requeue:
253                 ret = td_io_queue(td, io_u);
254
255                 switch (ret) {
256                 case FIO_Q_COMPLETED:
257                         if (io_u->error)
258                                 ret = -io_u->error;
259                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
260                                 int bytes = io_u->xfer_buflen - io_u->resid;
261
262                                 io_u->xfer_buflen = io_u->resid;
263                                 io_u->xfer_buf += bytes;
264                                 goto requeue;
265                         }
266                         ret = io_u_sync_complete(td, io_u, verify_io_u);
267                         if (ret)
268                                 break;
269                         continue;
270                 case FIO_Q_QUEUED:
271                         break;
272                 case FIO_Q_BUSY:
273                         requeue_io_u(td, &io_u);
274                         ret = td_io_commit(td);
275                         break;
276                 default:
277                         assert(ret < 0);
278                         td_verror(td, -ret);
279                         break;
280                 }
281
282                 if (ret < 0 || td->error)
283                         break;
284
285                 /*
286                  * if we can queue more, do so. but check if there are
287                  * completed io_u's first.
288                  */
289                 min_events = 0;
290                 if (queue_full(td) || ret == FIO_Q_BUSY)
291                         min_events = 1;
292
293                 /*
294                  * Reap required number of io units, if any, and do the
295                  * verification on them through the callback handler
296                  */
297                 if (io_u_queued_complete(td, min_events, verify_io_u))
298                         break;
299         }
300
301         if (io_u)
302                 put_io_u(td, io_u);
303
304         if (td->cur_depth)
305                 cleanup_pending_aio(td);
306
307         td_set_runstate(td, TD_RUNNING);
308 }
309
310 /*
311  * Not really an io thread, all it does is burn CPU cycles in the specified
312  * manner.
313  */
314 static void do_cpuio(struct thread_data *td)
315 {
316         struct timeval e;
317         int split = 100 / td->cpuload;
318         int i = 0;
319
320         while (!td->terminate) {
321                 fio_gettime(&e, NULL);
322
323                 if (runtime_exceeded(td, &e))
324                         break;
325
326                 if (!(i % split))
327                         __usec_sleep(10000);
328                 else
329                         usec_sleep(td, 10000);
330
331                 i++;
332         }
333 }
334
335 /*
336  * Main IO worker function. It retrieves io_u's to process and queues
337  * and reaps them, checking for rate and errors along the way.
338  */
339 static void do_io(struct thread_data *td)
340 {
341         struct timeval s;
342         unsigned long usec;
343         int i, ret = 0;
344
345         td_set_runstate(td, TD_RUNNING);
346
347         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
348                 struct timeval comp_time;
349                 long bytes_done = 0;
350                 int min_evts = 0;
351                 struct io_u *io_u;
352
353                 if (td->terminate)
354                         break;
355
356                 io_u = get_io_u(td);
357                 if (!io_u)
358                         break;
359
360                 memcpy(&s, &io_u->start_time, sizeof(s));
361
362                 if (runtime_exceeded(td, &s)) {
363                         put_io_u(td, io_u);
364                         break;
365                 }
366 requeue:
367                 ret = td_io_queue(td, io_u);
368
369                 switch (ret) {
370                 case FIO_Q_COMPLETED:
371                         if (io_u->error) {
372                                 ret = io_u->error;
373                                 break;
374                         }
375                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
376                                 int bytes = io_u->xfer_buflen - io_u->resid;
377
378                                 io_u->xfer_buflen = io_u->resid;
379                                 io_u->xfer_buf += bytes;
380                                 goto requeue;
381                         }
382                         fio_gettime(&comp_time, NULL);
383                         bytes_done = io_u_sync_complete(td, io_u, NULL);
384                         if (bytes_done < 0)
385                                 ret = bytes_done;
386                         break;
387                 case FIO_Q_QUEUED:
388                         /*
389                          * if the engine doesn't have a commit hook,
390                          * the io_u is really queued. if it does have such
391                          * a hook, it has to call io_u_queued() itself.
392                          */
393                         if (td->io_ops->commit == NULL)
394                                 io_u_queued(td, io_u);
395                         break;
396                 case FIO_Q_BUSY:
397                         requeue_io_u(td, &io_u);
398                         ret = td_io_commit(td);
399                         break;
400                 default:
401                         assert(ret < 0);
402                         put_io_u(td, io_u);
403                         break;
404                 }
405
406                 if (ret < 0 || td->error)
407                         break;
408
409                 /*
410                  * See if we need to complete some commands
411                  */
412                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
413                         min_evts = 0;
414                         if (queue_full(td) || ret == FIO_Q_BUSY)
415                                 min_evts = 1;
416
417                         fio_gettime(&comp_time, NULL);
418                         bytes_done = io_u_queued_complete(td, min_evts, NULL);
419                         if (bytes_done < 0)
420                                 break;
421                 }
422
423                 if (!bytes_done)
424                         continue;
425
426                 /*
427                  * the rate is batched for now, it should work for batches
428                  * of completions except the very first one which may look
429                  * a little bursty
430                  */
431                 usec = utime_since(&s, &comp_time);
432
433                 rate_throttle(td, usec, bytes_done, td->ddir);
434
435                 if (check_min_rate(td, &comp_time)) {
436                         if (exitall_on_terminate)
437                                 terminate_threads(td->groupid, 0);
438                         td_verror(td, ENODATA);
439                         break;
440                 }
441
442                 if (td->thinktime) {
443                         unsigned long long b;
444
445                         b = td->io_blocks[0] + td->io_blocks[1];
446                         if (!(b % td->thinktime_blocks)) {
447                                 int left;
448
449                                 if (td->thinktime_spin)
450                                         __usec_sleep(td->thinktime_spin);
451
452                                 left = td->thinktime - td->thinktime_spin;
453                                 if (left)
454                                         usec_sleep(td, left);
455                         }
456                 }
457         }
458
459         if (!td->error) {
460                 struct fio_file *f;
461
462                 if (td->cur_depth)
463                         cleanup_pending_aio(td);
464
465                 if (should_fsync(td) && td->end_fsync) {
466                         td_set_runstate(td, TD_FSYNCING);
467                         for_each_file(td, f, i)
468                                 fio_io_sync(td, f);
469                 }
470         }
471 }
472
473 static void cleanup_io_u(struct thread_data *td)
474 {
475         struct list_head *entry, *n;
476         struct io_u *io_u;
477
478         list_for_each_safe(entry, n, &td->io_u_freelist) {
479                 io_u = list_entry(entry, struct io_u, list);
480
481                 list_del(&io_u->list);
482                 free(io_u);
483         }
484
485         free_io_mem(td);
486 }
487
488 /*
489  * "randomly" fill the buffer contents
490  */
491 static void fill_rand_buf(struct io_u *io_u, int max_bs)
492 {
493         int *ptr = io_u->buf;
494
495         while ((void *) ptr - io_u->buf < max_bs) {
496                 *ptr = rand() * 0x9e370001;
497                 ptr++;
498         }
499 }
500
501 static int init_io_u(struct thread_data *td)
502 {
503         struct io_u *io_u;
504         unsigned int max_bs;
505         int i, max_units;
506         char *p;
507
508         if (td->io_ops->flags & FIO_CPUIO)
509                 return 0;
510
511         if (td->io_ops->flags & FIO_SYNCIO)
512                 max_units = 1;
513         else
514                 max_units = td->iodepth;
515
516         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
517         td->orig_buffer_size = max_bs * max_units;
518
519         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
520                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
521         else
522                 td->orig_buffer_size += page_mask;
523
524         if (allocate_io_mem(td))
525                 return 1;
526
527         p = ALIGN(td->orig_buffer);
528         for (i = 0; i < max_units; i++) {
529                 io_u = malloc(sizeof(*io_u));
530                 memset(io_u, 0, sizeof(*io_u));
531                 INIT_LIST_HEAD(&io_u->list);
532
533                 io_u->buf = p + max_bs * i;
534                 if (td_write(td) || td_rw(td))
535                         fill_rand_buf(io_u, max_bs);
536
537                 io_u->index = i;
538                 list_add(&io_u->list, &td->io_u_freelist);
539         }
540
541         return 0;
542 }
543
544 static int switch_ioscheduler(struct thread_data *td)
545 {
546         char tmp[256], tmp2[128];
547         FILE *f;
548         int ret;
549
550         if (td->io_ops->flags & FIO_CPUIO)
551                 return 0;
552
553         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
554
555         f = fopen(tmp, "r+");
556         if (!f) {
557                 td_verror(td, errno);
558                 return 1;
559         }
560
561         /*
562          * Set io scheduler.
563          */
564         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
565         if (ferror(f) || ret != 1) {
566                 td_verror(td, errno);
567                 fclose(f);
568                 return 1;
569         }
570
571         rewind(f);
572
573         /*
574          * Read back and check that the selected scheduler is now the default.
575          */
576         ret = fread(tmp, 1, sizeof(tmp), f);
577         if (ferror(f) || ret < 0) {
578                 td_verror(td, errno);
579                 fclose(f);
580                 return 1;
581         }
582
583         sprintf(tmp2, "[%s]", td->ioscheduler);
584         if (!strstr(tmp, tmp2)) {
585                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
586                 td_verror(td, EINVAL);
587                 fclose(f);
588                 return 1;
589         }
590
591         fclose(f);
592         return 0;
593 }
594
595 static void clear_io_state(struct thread_data *td)
596 {
597         struct fio_file *f;
598         int i;
599
600         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
601         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
602         td->zone_bytes = 0;
603
604         td->last_was_sync = 0;
605
606         for_each_file(td, f, i) {
607                 f->last_completed_pos = 0;
608
609                 f->last_pos = 0;
610                 if (td->io_ops->flags & FIO_SYNCIO)
611                         lseek(f->fd, SEEK_SET, 0);
612
613                 if (f->file_map)
614                         memset(f->file_map, 0, f->num_maps * sizeof(long));
615         }
616 }
617
618 /*
619  * Entry point for the thread based jobs. The process based jobs end up
620  * here as well, after a little setup.
621  */
622 static void *thread_main(void *data)
623 {
624         unsigned long long runtime[2];
625         struct thread_data *td = data;
626
627         if (!td->use_thread)
628                 setsid();
629
630         td->pid = getpid();
631
632         INIT_LIST_HEAD(&td->io_u_freelist);
633         INIT_LIST_HEAD(&td->io_u_busylist);
634         INIT_LIST_HEAD(&td->io_u_requeues);
635         INIT_LIST_HEAD(&td->io_hist_list);
636         INIT_LIST_HEAD(&td->io_log_list);
637
638         if (init_io_u(td))
639                 goto err;
640
641         if (fio_setaffinity(td) == -1) {
642                 td_verror(td, errno);
643                 goto err;
644         }
645
646         if (init_iolog(td))
647                 goto err;
648
649         if (td->ioprio) {
650                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
651                         td_verror(td, errno);
652                         goto err;
653                 }
654         }
655
656         if (nice(td->nice) == -1) {
657                 td_verror(td, errno);
658                 goto err;
659         }
660
661         if (init_random_state(td))
662                 goto err;
663
664         if (td->ioscheduler && switch_ioscheduler(td))
665                 goto err;
666
667         td_set_runstate(td, TD_INITIALIZED);
668         fio_sem_up(&startup_sem);
669         fio_sem_down(&td->mutex);
670
671         if (!td->create_serialize && setup_files(td))
672                 goto err;
673         if (open_files(td))
674                 goto err;
675
676         /*
677          * Do this late, as some IO engines would like to have the
678          * files setup prior to initializing structures.
679          */
680         if (td_io_init(td))
681                 goto err;
682
683         if (td->exec_prerun) {
684                 if (system(td->exec_prerun) < 0)
685                         goto err;
686         }
687
688         fio_gettime(&td->epoch, NULL);
689         getrusage(RUSAGE_SELF, &td->ru_start);
690
691         runtime[0] = runtime[1] = 0;
692         while (td->loops--) {
693                 fio_gettime(&td->start, NULL);
694                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
695
696                 if (td->ratemin)
697                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
698
699                 clear_io_state(td);
700                 prune_io_piece_log(td);
701
702                 if (td->io_ops->flags & FIO_CPUIO)
703                         do_cpuio(td);
704                 else
705                         do_io(td);
706
707                 runtime[td->ddir] += utime_since_now(&td->start);
708                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
709                         runtime[td->ddir ^ 1] = runtime[td->ddir];
710
711                 if (td->error || td->terminate)
712                         break;
713
714                 if (td->verify == VERIFY_NONE)
715                         continue;
716
717                 clear_io_state(td);
718                 fio_gettime(&td->start, NULL);
719
720                 do_verify(td);
721
722                 runtime[DDIR_READ] += utime_since_now(&td->start);
723
724                 if (td->error || td->terminate)
725                         break;
726         }
727
728         update_rusage_stat(td);
729         fio_gettime(&td->end_time, NULL);
730         td->runtime[0] = runtime[0] / 1000;
731         td->runtime[1] = runtime[1] / 1000;
732
733         if (td->bw_log)
734                 finish_log(td, td->bw_log, "bw");
735         if (td->slat_log)
736                 finish_log(td, td->slat_log, "slat");
737         if (td->clat_log)
738                 finish_log(td, td->clat_log, "clat");
739         if (td->write_iolog_file)
740                 write_iolog_close(td);
741         if (td->exec_postrun) {
742                 if (system(td->exec_postrun) < 0)
743                         log_err("fio: postrun %s failed\n", td->exec_postrun);
744         }
745
746         if (exitall_on_terminate)
747                 terminate_threads(td->groupid, 0);
748
749 err:
750         if (td->error)
751                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
752         close_files(td);
753         close_ioengine(td);
754         cleanup_io_u(td);
755         td_set_runstate(td, TD_EXITED);
756         return (void *) td->error;
757 }
758
759 /*
760  * We cannot pass the td data into a forked process, so attach the td and
761  * pass it to the thread worker.
762  */
763 static int fork_main(int shmid, int offset)
764 {
765         struct thread_data *td;
766         void *data, *ret;
767
768         data = shmat(shmid, NULL, 0);
769         if (data == (void *) -1) {
770                 int __err = errno;
771
772                 perror("shmat");
773                 return __err;
774         }
775
776         td = data + offset * sizeof(struct thread_data);
777         ret = thread_main(td);
778         shmdt(data);
779         return (int) ret;
780 }
781
782 /*
783  * Run over the job map and reap the threads that have exited, if any.
784  */
785 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
786 {
787         struct thread_data *td;
788         int i, cputhreads, pending, status, ret;
789
790         /*
791          * reap exited threads (TD_EXITED -> TD_REAPED)
792          */
793         pending = cputhreads = 0;
794         for_each_td(td, i) {
795                 /*
796                  * ->io_ops is NULL for a thread that has closed its
797                  * io engine
798                  */
799                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
800                         cputhreads++;
801
802                 if (td->runstate < TD_EXITED) {
803                         /*
804                          * check if someone quit or got killed in an unusual way
805                          */
806                         ret = waitpid(td->pid, &status, WNOHANG);
807                         if (ret < 0)
808                                 perror("waitpid");
809                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
810                                 int sig = WTERMSIG(status);
811
812                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
813                                 td_set_runstate(td, TD_REAPED);
814                                 goto reaped;
815                         }
816                 }
817
818                 if (td->runstate != TD_EXITED) {
819                         if (td->runstate < TD_RUNNING)
820                                 pending++;
821
822                         continue;
823                 }
824
825                 if (td->error)
826                         exit_value++;
827
828                 td_set_runstate(td, TD_REAPED);
829
830                 if (td->use_thread) {
831                         long ret;
832
833                         if (pthread_join(td->thread, (void *) &ret))
834                                 perror("thread_join");
835                 } else {
836                         int status;
837
838                         ret = waitpid(td->pid, &status, 0);
839                         if (ret < 0)
840                                 perror("waitpid");
841                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
842                                 if (!exit_value)
843                                         exit_value++;
844                         }
845                 }
846
847 reaped:
848                 (*nr_running)--;
849                 (*m_rate) -= td->ratemin;
850                 (*t_rate) -= td->rate;
851         }
852
853         if (*nr_running == cputhreads && !pending)
854                 terminate_threads(TERMINATE_ALL, 0);
855 }
856
857 /*
858  * Main function for kicking off and reaping jobs, as needed.
859  */
860 static void run_threads(void)
861 {
862         struct thread_data *td;
863         unsigned long spent;
864         int i, todo, nr_running, m_rate, t_rate, nr_started;
865
866         if (fio_pin_memory())
867                 return;
868
869         if (!terse_output) {
870                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
871                 fflush(stdout);
872         }
873
874         signal(SIGINT, sig_handler);
875         signal(SIGALRM, sig_handler);
876
877         todo = thread_number;
878         nr_running = 0;
879         nr_started = 0;
880         m_rate = t_rate = 0;
881
882         for_each_td(td, i) {
883                 print_status_init(td->thread_number - 1);
884
885                 if (!td->create_serialize) {
886                         init_disk_util(td);
887                         continue;
888                 }
889
890                 /*
891                  * do file setup here so it happens sequentially,
892                  * we don't want X number of threads getting their
893                  * client data interspersed on disk
894                  */
895                 if (setup_files(td)) {
896                         exit_value++;
897                         if (td->error)
898                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
899                         td_set_runstate(td, TD_REAPED);
900                         todo--;
901                 }
902
903                 init_disk_util(td);
904         }
905
906         while (todo) {
907                 struct thread_data *map[MAX_JOBS];
908                 struct timeval this_start;
909                 int this_jobs = 0, left;
910
911                 /*
912                  * create threads (TD_NOT_CREATED -> TD_CREATED)
913                  */
914                 for_each_td(td, i) {
915                         if (td->runstate != TD_NOT_CREATED)
916                                 continue;
917
918                         /*
919                          * never got a chance to start, killed by other
920                          * thread for some reason
921                          */
922                         if (td->terminate) {
923                                 todo--;
924                                 continue;
925                         }
926
927                         if (td->start_delay) {
928                                 spent = mtime_since_genesis();
929
930                                 if (td->start_delay * 1000 > spent)
931                                         continue;
932                         }
933
934                         if (td->stonewall && (nr_started || nr_running))
935                                 break;
936
937                         /*
938                          * Set state to created. Thread will transition
939                          * to TD_INITIALIZED when it's done setting up.
940                          */
941                         td_set_runstate(td, TD_CREATED);
942                         map[this_jobs++] = td;
943                         fio_sem_init(&startup_sem, 1);
944                         nr_started++;
945
946                         if (td->use_thread) {
947                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
948                                         perror("thread_create");
949                                         nr_started--;
950                                 }
951                         } else {
952                                 if (fork())
953                                         fio_sem_down(&startup_sem);
954                                 else {
955                                         int ret = fork_main(shm_id, i);
956
957                                         exit(ret);
958                                 }
959                         }
960                 }
961
962                 /*
963                  * Wait for the started threads to transition to
964                  * TD_INITIALIZED.
965                  */
966                 fio_gettime(&this_start, NULL);
967                 left = this_jobs;
968                 while (left && !fio_abort) {
969                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
970                                 break;
971
972                         usleep(100000);
973
974                         for (i = 0; i < this_jobs; i++) {
975                                 td = map[i];
976                                 if (!td)
977                                         continue;
978                                 if (td->runstate == TD_INITIALIZED) {
979                                         map[i] = NULL;
980                                         left--;
981                                 } else if (td->runstate >= TD_EXITED) {
982                                         map[i] = NULL;
983                                         left--;
984                                         todo--;
985                                         nr_running++; /* work-around... */
986                                 }
987                         }
988                 }
989
990                 if (left) {
991                         log_err("fio: %d jobs failed to start\n", left);
992                         for (i = 0; i < this_jobs; i++) {
993                                 td = map[i];
994                                 if (!td)
995                                         continue;
996                                 kill(td->pid, SIGTERM);
997                         }
998                         break;
999                 }
1000
1001                 /*
1002                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1003                  */
1004                 for_each_td(td, i) {
1005                         if (td->runstate != TD_INITIALIZED)
1006                                 continue;
1007
1008                         td_set_runstate(td, TD_RUNNING);
1009                         nr_running++;
1010                         nr_started--;
1011                         m_rate += td->ratemin;
1012                         t_rate += td->rate;
1013                         todo--;
1014                         fio_sem_up(&td->mutex);
1015                 }
1016
1017                 reap_threads(&nr_running, &t_rate, &m_rate);
1018
1019                 if (todo)
1020                         usleep(100000);
1021         }
1022
1023         while (nr_running) {
1024                 reap_threads(&nr_running, &t_rate, &m_rate);
1025                 usleep(10000);
1026         }
1027
1028         update_io_ticks();
1029         fio_unpin_memory();
1030 }
1031
1032 int main(int argc, char *argv[])
1033 {
1034         long ps;
1035
1036         /*
1037          * We need locale for number printing, if it isn't set then just
1038          * go with the US format.
1039          */
1040         if (!getenv("LC_NUMERIC"))
1041                 setlocale(LC_NUMERIC, "en_US");
1042
1043         if (parse_options(argc, argv))
1044                 return 1;
1045
1046         if (!thread_number) {
1047                 log_err("Nothing to do\n");
1048                 return 1;
1049         }
1050
1051         ps = sysconf(_SC_PAGESIZE);
1052         if (ps < 0) {
1053                 log_err("Failed to get page size\n");
1054                 return 1;
1055         }
1056
1057         page_mask = ps - 1;
1058
1059         if (write_bw_log) {
1060                 setup_log(&agg_io_log[DDIR_READ]);
1061                 setup_log(&agg_io_log[DDIR_WRITE]);
1062         }
1063
1064         disk_util_timer_arm();
1065
1066         run_threads();
1067
1068         if (!fio_abort) {
1069                 show_run_stats();
1070                 if (write_bw_log) {
1071                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1072                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1073                 }
1074         }
1075
1076         return exit_value;
1077 }