[PATCH] aio example should use O_DIRECT IO
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <assert.h>
30 #include <sys/stat.h>
31 #include <sys/wait.h>
32 #include <sys/ipc.h>
33 #include <sys/shm.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51
52 struct io_log *agg_io_log[2];
53
54 #define TERMINATE_ALL           (-1)
55 #define JOB_START_TIMEOUT       (5 * 1000)
56
57 static inline void td_set_runstate(struct thread_data *td, int runstate)
58 {
59         td->runstate = runstate;
60 }
61
62 static void terminate_threads(int group_id, int forced_kill)
63 {
64         struct thread_data *td;
65         int i;
66
67         for_each_td(td, i) {
68                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
69                         td->terminate = 1;
70                         td->start_delay = 0;
71                         if (forced_kill)
72                                 td_set_runstate(td, TD_EXITED);
73                 }
74         }
75 }
76
77 static void sig_handler(int sig)
78 {
79         switch (sig) {
80                 case SIGALRM:
81                         update_io_ticks();
82                         disk_util_timer_arm();
83                         print_thread_status();
84                         break;
85                 case SIGSEGV:
86                         fprintf(stderr, "fio: got segfault, aborting\n");
87                         terminate_threads(TERMINATE_ALL, 1);
88                         fio_abort = 1;
89                         exit(0);
90                 default:
91                         printf("\nfio: terminating on signal %d\n", sig);
92                         fflush(stdout);
93                         terminate_threads(TERMINATE_ALL, 0);
94                         break;
95         }
96 }
97
98 /*
99  * Check if we are above the minimum rate given.
100  */
101 static int check_min_rate(struct thread_data *td, struct timeval *now)
102 {
103         unsigned long spent;
104         unsigned long rate;
105         int ddir = td->ddir;
106
107         /*
108          * allow a 2 second settle period in the beginning
109          */
110         if (mtime_since(&td->start, now) < 2000)
111                 return 0;
112
113         /*
114          * if rate blocks is set, sample is running
115          */
116         if (td->rate_bytes) {
117                 spent = mtime_since(&td->lastrate, now);
118                 if (spent < td->ratecycle)
119                         return 0;
120
121                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
122                 if (rate < td->ratemin) {
123                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
124                         return 1;
125                 }
126         }
127
128         td->rate_bytes = td->this_io_bytes[ddir];
129         memcpy(&td->lastrate, now, sizeof(*now));
130         return 0;
131 }
132
133 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
134 {
135         if (!td->timeout)
136                 return 0;
137         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
138                 return 1;
139
140         return 0;
141 }
142
143 static struct fio_file *get_next_file(struct thread_data *td)
144 {
145         unsigned int old_next_file = td->next_file;
146         struct fio_file *f;
147
148         do {
149                 f = &td->files[td->next_file];
150
151                 td->next_file++;
152                 if (td->next_file >= td->nr_files)
153                         td->next_file = 0;
154
155                 if (f->fd != -1)
156                         break;
157
158                 f = NULL;
159         } while (td->next_file != old_next_file);
160
161         return f;
162 }
163
164 /*
165  * When job exits, we can cancel the in-flight IO if we are using async
166  * io. Attempt to do so.
167  */
168 static void cleanup_pending_aio(struct thread_data *td)
169 {
170         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
171         struct list_head *entry, *n;
172         struct io_completion_data icd;
173         struct io_u *io_u;
174         int r;
175
176         /*
177          * get immediately available events, if any
178          */
179         r = td_io_getevents(td, 0, td->cur_depth, &ts);
180         if (r > 0) {
181                 icd.nr = r;
182                 ios_completed(td, &icd);
183         }
184
185         /*
186          * now cancel remaining active events
187          */
188         if (td->io_ops->cancel) {
189                 list_for_each_safe(entry, n, &td->io_u_busylist) {
190                         io_u = list_entry(entry, struct io_u, list);
191
192                         r = td->io_ops->cancel(td, io_u);
193                         if (!r)
194                                 put_io_u(td, io_u);
195                 }
196         }
197
198         if (td->cur_depth) {
199                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
200                 if (r > 0) {
201                         icd.nr = r;
202                         ios_completed(td, &icd);
203                 }
204         }
205 }
206
207 /*
208  * Helper to handle the final sync of a file. Works just like the normal
209  * io path, just does everything sync.
210  */
211 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
212 {
213         struct io_u *io_u = __get_io_u(td);
214         struct io_completion_data icd;
215         int ret;
216
217         if (!io_u)
218                 return 1;
219
220         io_u->ddir = DDIR_SYNC;
221         io_u->file = f;
222
223         if (td_io_prep(td, io_u)) {
224                 put_io_u(td, io_u);
225                 return 1;
226         }
227
228         ret = td_io_queue(td, io_u);
229         if (ret) {
230                 td_verror(td, io_u->error);
231                 put_io_u(td, io_u);
232                 return 1;
233         }
234
235         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
236         if (ret < 0) {
237                 td_verror(td, ret);
238                 return 1;
239         }
240
241         icd.nr = ret;
242         ios_completed(td, &icd);
243         if (icd.error) {
244                 td_verror(td, icd.error);
245                 return 1;
246         }
247
248         return 0;
249 }
250
251 /*
252  * The main verify engine. Runs over the writes we previusly submitted,
253  * reads the blocks back in, and checks the crc/md5 of the data.
254  */
255 static void do_verify(struct thread_data *td)
256 {
257         struct io_u *io_u, *v_io_u = NULL;
258         struct io_completion_data icd;
259         struct fio_file *f;
260         int ret, i;
261
262         /*
263          * sync io first and invalidate cache, to make sure we really
264          * read from disk.
265          */
266         for_each_file(td, f, i) {
267                 fio_io_sync(td, f);
268                 file_invalidate_cache(td, f);
269         }
270
271         td_set_runstate(td, TD_VERIFYING);
272
273         do {
274                 if (td->terminate)
275                         break;
276
277                 io_u = __get_io_u(td);
278                 if (!io_u)
279                         break;
280
281                 if (runtime_exceeded(td, &io_u->start_time)) {
282                         put_io_u(td, io_u);
283                         break;
284                 }
285
286                 if (get_next_verify(td, io_u)) {
287                         put_io_u(td, io_u);
288                         break;
289                 }
290
291                 f = get_next_file(td);
292                 if (!f)
293                         break;
294
295                 io_u->file = f;
296
297                 if (td_io_prep(td, io_u)) {
298                         put_io_u(td, io_u);
299                         break;
300                 }
301
302                 ret = td_io_queue(td, io_u);
303                 if (ret) {
304                         td_verror(td, io_u->error);
305                         put_io_u(td, io_u);
306                         break;
307                 }
308
309                 /*
310                  * we have one pending to verify, do that while
311                  * we are doing io on the next one
312                  */
313                 if (do_io_u_verify(td, &v_io_u))
314                         break;
315
316                 ret = td_io_getevents(td, 1, 1, NULL);
317                 if (ret != 1) {
318                         if (ret < 0)
319                                 td_verror(td, ret);
320                         break;
321                 }
322
323                 v_io_u = td->io_ops->event(td, 0);
324                 icd.nr = 1;
325                 icd.error = 0;
326                 fio_gettime(&icd.time, NULL);
327                 io_completed(td, v_io_u, &icd);
328
329                 if (icd.error) {
330                         td_verror(td, icd.error);
331                         put_io_u(td, v_io_u);
332                         v_io_u = NULL;
333                         break;
334                 }
335
336                 /*
337                  * if we can't submit more io, we need to verify now
338                  */
339                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
340                         break;
341
342         } while (1);
343
344         do_io_u_verify(td, &v_io_u);
345
346         if (td->cur_depth)
347                 cleanup_pending_aio(td);
348
349         td_set_runstate(td, TD_RUNNING);
350 }
351
352 /*
353  * Not really an io thread, all it does is burn CPU cycles in the specified
354  * manner.
355  */
356 static void do_cpuio(struct thread_data *td)
357 {
358         struct timeval e;
359         int split = 100 / td->cpuload;
360         int i = 0;
361
362         while (!td->terminate) {
363                 fio_gettime(&e, NULL);
364
365                 if (runtime_exceeded(td, &e))
366                         break;
367
368                 if (!(i % split))
369                         __usec_sleep(10000);
370                 else
371                         usec_sleep(td, 10000);
372
373                 i++;
374         }
375 }
376
377 /*
378  * Main IO worker function. It retrieves io_u's to process and queues
379  * and reaps them, checking for rate and errors along the way.
380  */
381 static void do_io(struct thread_data *td)
382 {
383         struct io_completion_data icd;
384         struct timeval s;
385         unsigned long usec;
386         struct fio_file *f;
387         int i, ret = 0;
388
389         td_set_runstate(td, TD_RUNNING);
390
391         while (td->this_io_bytes[td->ddir] < td->io_size) {
392                 struct timespec *timeout;
393                 int min_evts = 0;
394                 struct io_u *io_u;
395
396                 if (td->terminate)
397                         break;
398
399                 f = get_next_file(td);
400                 if (!f)
401                         break;
402
403                 io_u = get_io_u(td, f);
404                 if (!io_u)
405                         break;
406
407                 memcpy(&s, &io_u->start_time, sizeof(s));
408
409 requeue:
410                 ret = td_io_queue(td, io_u);
411                 if (ret) {
412                         if (ret > 0 && (io_u->xfer_buflen != io_u->resid) &&
413                             io_u->resid) {
414                                 /*
415                                  * short read/write. requeue.
416                                  */
417                                 io_u->xfer_buflen = io_u->resid;
418                                 io_u->xfer_buf += ret;
419                                 goto requeue;
420                         } else {
421                                 td_verror(td, io_u->error);
422                                 put_io_u(td, io_u);
423                                 break;
424                         }
425                 }
426
427                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
428
429                 if (td->cur_depth < td->iodepth) {
430                         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
431
432                         timeout = &ts;
433                         min_evts = 0;
434                 } else {
435                         timeout = NULL;
436                         min_evts = 1;
437                 }
438
439                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
440                 if (ret < 0) {
441                         td_verror(td, ret);
442                         break;
443                 } else if (!ret)
444                         continue;
445
446                 icd.nr = ret;
447                 ios_completed(td, &icd);
448                 if (icd.error) {
449                         td_verror(td, icd.error);
450                         break;
451                 }
452
453                 /*
454                  * the rate is batched for now, it should work for batches
455                  * of completions except the very first one which may look
456                  * a little bursty
457                  */
458                 usec = utime_since(&s, &icd.time);
459
460                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
461
462                 if (check_min_rate(td, &icd.time)) {
463                         if (exitall_on_terminate)
464                                 terminate_threads(td->groupid, 0);
465                         td_verror(td, ENODATA);
466                         break;
467                 }
468
469                 if (runtime_exceeded(td, &icd.time))
470                         break;
471
472                 if (td->thinktime) {
473                         unsigned long long b;
474
475                         b = td->io_blocks[0] + td->io_blocks[1];
476                         if (!(b % td->thinktime_blocks))
477                                 usec_sleep(td, td->thinktime);
478                 }
479         }
480
481         if (!td->error) {
482                 if (td->cur_depth)
483                         cleanup_pending_aio(td);
484
485                 if (should_fsync(td) && td->end_fsync) {
486                         td_set_runstate(td, TD_FSYNCING);
487                         for_each_file(td, f, i)
488                                 fio_io_sync(td, f);
489                 }
490         }
491 }
492
493 static void cleanup_io_u(struct thread_data *td)
494 {
495         struct list_head *entry, *n;
496         struct io_u *io_u;
497
498         list_for_each_safe(entry, n, &td->io_u_freelist) {
499                 io_u = list_entry(entry, struct io_u, list);
500
501                 list_del(&io_u->list);
502                 free(io_u);
503         }
504
505         free_io_mem(td);
506 }
507
508 /*
509  * "randomly" fill the buffer contents
510  */
511 static void fill_rand_buf(struct io_u *io_u, int max_bs)
512 {
513         int *ptr = io_u->buf;
514
515         while ((void *) ptr - io_u->buf < max_bs) {
516                 *ptr = rand() * 0x9e370001;
517                 ptr++;
518         }
519 }
520
521 static int init_io_u(struct thread_data *td)
522 {
523         struct io_u *io_u;
524         unsigned int max_bs;
525         int i, max_units;
526         char *p;
527
528         if (td->io_ops->flags & FIO_CPUIO)
529                 return 0;
530
531         if (td->io_ops->flags & FIO_SYNCIO)
532                 max_units = 1;
533         else
534                 max_units = td->iodepth;
535
536         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
537         td->orig_buffer_size = max_bs * max_units;
538
539         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
540                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
541         else
542                 td->orig_buffer_size += page_mask;
543
544         if (allocate_io_mem(td))
545                 return 1;
546
547         p = ALIGN(td->orig_buffer);
548         for (i = 0; i < max_units; i++) {
549                 io_u = malloc(sizeof(*io_u));
550                 memset(io_u, 0, sizeof(*io_u));
551                 INIT_LIST_HEAD(&io_u->list);
552
553                 io_u->buf = p + max_bs * i;
554                 if (td_write(td) || td_rw(td))
555                         fill_rand_buf(io_u, max_bs);
556
557                 io_u->index = i;
558                 list_add(&io_u->list, &td->io_u_freelist);
559         }
560
561         return 0;
562 }
563
564 static int switch_ioscheduler(struct thread_data *td)
565 {
566         char tmp[256], tmp2[128];
567         FILE *f;
568         int ret;
569
570         if (td->io_ops->flags & FIO_CPUIO)
571                 return 0;
572
573         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
574
575         f = fopen(tmp, "r+");
576         if (!f) {
577                 td_verror(td, errno);
578                 return 1;
579         }
580
581         /*
582          * Set io scheduler.
583          */
584         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
585         if (ferror(f) || ret != 1) {
586                 td_verror(td, errno);
587                 fclose(f);
588                 return 1;
589         }
590
591         rewind(f);
592
593         /*
594          * Read back and check that the selected scheduler is now the default.
595          */
596         ret = fread(tmp, 1, sizeof(tmp), f);
597         if (ferror(f) || ret < 0) {
598                 td_verror(td, errno);
599                 fclose(f);
600                 return 1;
601         }
602
603         sprintf(tmp2, "[%s]", td->ioscheduler);
604         if (!strstr(tmp, tmp2)) {
605                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
606                 td_verror(td, EINVAL);
607                 fclose(f);
608                 return 1;
609         }
610
611         fclose(f);
612         return 0;
613 }
614
615 static void clear_io_state(struct thread_data *td)
616 {
617         struct fio_file *f;
618         int i;
619
620         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
621         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
622         td->zone_bytes = 0;
623
624         for_each_file(td, f, i) {
625                 f->last_pos = 0;
626                 if (td->io_ops->flags & FIO_SYNCIO)
627                         lseek(f->fd, SEEK_SET, 0);
628
629                 if (f->file_map)
630                         memset(f->file_map, 0, f->num_maps * sizeof(long));
631         }
632 }
633
634 /*
635  * Entry point for the thread based jobs. The process based jobs end up
636  * here as well, after a little setup.
637  */
638 static void *thread_main(void *data)
639 {
640         unsigned long long runtime[2];
641         struct thread_data *td = data;
642
643         if (!td->use_thread)
644                 setsid();
645
646         td->pid = getpid();
647
648         INIT_LIST_HEAD(&td->io_u_freelist);
649         INIT_LIST_HEAD(&td->io_u_busylist);
650         INIT_LIST_HEAD(&td->io_hist_list);
651         INIT_LIST_HEAD(&td->io_log_list);
652
653         if (init_io_u(td))
654                 goto err;
655
656         if (fio_setaffinity(td) == -1) {
657                 td_verror(td, errno);
658                 goto err;
659         }
660
661         if (init_iolog(td))
662                 goto err;
663
664         if (td->ioprio) {
665                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
666                         td_verror(td, errno);
667                         goto err;
668                 }
669         }
670
671         if (nice(td->nice) == -1) {
672                 td_verror(td, errno);
673                 goto err;
674         }
675
676         if (init_random_state(td))
677                 goto err;
678
679         if (td->ioscheduler && switch_ioscheduler(td))
680                 goto err;
681
682         td_set_runstate(td, TD_INITIALIZED);
683         fio_sem_up(&startup_sem);
684         fio_sem_down(&td->mutex);
685
686         if (!td->create_serialize && setup_files(td))
687                 goto err;
688         if (open_files(td))
689                 goto err;
690
691         /*
692          * Do this late, as some IO engines would like to have the
693          * files setup prior to initializing structures.
694          */
695         if (td_io_init(td))
696                 goto err;
697
698         if (td->exec_prerun)
699                 system(td->exec_prerun);
700
701         fio_gettime(&td->epoch, NULL);
702         getrusage(RUSAGE_SELF, &td->ru_start);
703
704         runtime[0] = runtime[1] = 0;
705         while (td->loops--) {
706                 fio_gettime(&td->start, NULL);
707                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
708
709                 if (td->ratemin)
710                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
711
712                 clear_io_state(td);
713                 prune_io_piece_log(td);
714
715                 if (td->io_ops->flags & FIO_CPUIO)
716                         do_cpuio(td);
717                 else
718                         do_io(td);
719
720                 runtime[td->ddir] += utime_since_now(&td->start);
721                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
722                         runtime[td->ddir ^ 1] = runtime[td->ddir];
723
724                 if (td->error || td->terminate)
725                         break;
726
727                 if (td->verify == VERIFY_NONE)
728                         continue;
729
730                 clear_io_state(td);
731                 fio_gettime(&td->start, NULL);
732
733                 do_verify(td);
734
735                 runtime[DDIR_READ] += utime_since_now(&td->start);
736
737                 if (td->error || td->terminate)
738                         break;
739         }
740
741         update_rusage_stat(td);
742         fio_gettime(&td->end_time, NULL);
743         td->runtime[0] = runtime[0] / 1000;
744         td->runtime[1] = runtime[1] / 1000;
745
746         if (td->bw_log)
747                 finish_log(td, td->bw_log, "bw");
748         if (td->slat_log)
749                 finish_log(td, td->slat_log, "slat");
750         if (td->clat_log)
751                 finish_log(td, td->clat_log, "clat");
752         if (td->write_iolog_file)
753                 write_iolog_close(td);
754         if (td->exec_postrun)
755                 system(td->exec_postrun);
756
757         if (exitall_on_terminate)
758                 terminate_threads(td->groupid, 0);
759
760 err:
761         close_files(td);
762         close_ioengine(td);
763         cleanup_io_u(td);
764         td_set_runstate(td, TD_EXITED);
765         return NULL;
766
767 }
768
769 /*
770  * We cannot pass the td data into a forked process, so attach the td and
771  * pass it to the thread worker.
772  */
773 static void *fork_main(int shmid, int offset)
774 {
775         struct thread_data *td;
776         void *data;
777
778         data = shmat(shmid, NULL, 0);
779         if (data == (void *) -1) {
780                 perror("shmat");
781                 return NULL;
782         }
783
784         td = data + offset * sizeof(struct thread_data);
785         thread_main(td);
786         shmdt(data);
787         return NULL;
788 }
789
790 /*
791  * Run over the job map and reap the threads that have exited, if any.
792  */
793 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
794 {
795         struct thread_data *td;
796         int i, cputhreads, pending;
797
798         /*
799          * reap exited threads (TD_EXITED -> TD_REAPED)
800          */
801         pending = cputhreads = 0;
802         for_each_td(td, i) {
803                 /*
804                  * ->io_ops is NULL for a thread that has closed its
805                  * io engine
806                  */
807                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
808                         cputhreads++;
809
810                 if (td->runstate != TD_EXITED) {
811                         if (td->runstate < TD_RUNNING)
812                                 pending++;
813
814                         continue;
815                 }
816
817                 td_set_runstate(td, TD_REAPED);
818
819                 if (td->use_thread) {
820                         long ret;
821
822                         if (pthread_join(td->thread, (void *) &ret))
823                                 perror("thread_join");
824                 } else
825                         waitpid(td->pid, NULL, 0);
826
827                 (*nr_running)--;
828                 (*m_rate) -= td->ratemin;
829                 (*t_rate) -= td->rate;
830         }
831
832         if (*nr_running == cputhreads && !pending)
833                 terminate_threads(TERMINATE_ALL, 0);
834 }
835
836 /*
837  * Main function for kicking off and reaping jobs, as needed.
838  */
839 static void run_threads(void)
840 {
841         struct thread_data *td;
842         unsigned long spent;
843         int i, todo, nr_running, m_rate, t_rate, nr_started;
844
845         if (fio_pin_memory())
846                 return;
847
848         if (!terse_output) {
849                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
850                 fflush(stdout);
851         }
852
853         signal(SIGINT, sig_handler);
854         signal(SIGALRM, sig_handler);
855
856         todo = thread_number;
857         nr_running = 0;
858         nr_started = 0;
859         m_rate = t_rate = 0;
860
861         for_each_td(td, i) {
862                 print_status_init(td->thread_number - 1);
863
864                 if (!td->create_serialize) {
865                         init_disk_util(td);
866                         continue;
867                 }
868
869                 /*
870                  * do file setup here so it happens sequentially,
871                  * we don't want X number of threads getting their
872                  * client data interspersed on disk
873                  */
874                 if (setup_files(td)) {
875                         td_set_runstate(td, TD_REAPED);
876                         todo--;
877                 }
878
879                 init_disk_util(td);
880         }
881
882         while (todo) {
883                 struct thread_data *map[MAX_JOBS];
884                 struct timeval this_start;
885                 int this_jobs = 0, left;
886
887                 /*
888                  * create threads (TD_NOT_CREATED -> TD_CREATED)
889                  */
890                 for_each_td(td, i) {
891                         if (td->runstate != TD_NOT_CREATED)
892                                 continue;
893
894                         /*
895                          * never got a chance to start, killed by other
896                          * thread for some reason
897                          */
898                         if (td->terminate) {
899                                 todo--;
900                                 continue;
901                         }
902
903                         if (td->start_delay) {
904                                 spent = mtime_since_genesis();
905
906                                 if (td->start_delay * 1000 > spent)
907                                         continue;
908                         }
909
910                         if (td->stonewall && (nr_started || nr_running))
911                                 break;
912
913                         /*
914                          * Set state to created. Thread will transition
915                          * to TD_INITIALIZED when it's done setting up.
916                          */
917                         td_set_runstate(td, TD_CREATED);
918                         map[this_jobs++] = td;
919                         fio_sem_init(&startup_sem, 1);
920                         nr_started++;
921
922                         if (td->use_thread) {
923                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
924                                         perror("thread_create");
925                                         nr_started--;
926                                 }
927                         } else {
928                                 if (fork())
929                                         fio_sem_down(&startup_sem);
930                                 else {
931                                         fork_main(shm_id, i);
932                                         exit(0);
933                                 }
934                         }
935                 }
936
937                 /*
938                  * Wait for the started threads to transition to
939                  * TD_INITIALIZED.
940                  */
941                 fio_gettime(&this_start, NULL);
942                 left = this_jobs;
943                 while (left && !fio_abort) {
944                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
945                                 break;
946
947                         usleep(100000);
948
949                         for (i = 0; i < this_jobs; i++) {
950                                 td = map[i];
951                                 if (!td)
952                                         continue;
953                                 if (td->runstate == TD_INITIALIZED) {
954                                         map[i] = NULL;
955                                         left--;
956                                 } else if (td->runstate >= TD_EXITED) {
957                                         map[i] = NULL;
958                                         left--;
959                                         todo--;
960                                         nr_running++; /* work-around... */
961                                 }
962                         }
963                 }
964
965                 if (left) {
966                         log_err("fio: %d jobs failed to start\n", left);
967                         for (i = 0; i < this_jobs; i++) {
968                                 td = map[i];
969                                 if (!td)
970                                         continue;
971                                 kill(td->pid, SIGTERM);
972                         }
973                         break;
974                 }
975
976                 /*
977                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
978                  */
979                 for_each_td(td, i) {
980                         if (td->runstate != TD_INITIALIZED)
981                                 continue;
982
983                         td_set_runstate(td, TD_RUNNING);
984                         nr_running++;
985                         nr_started--;
986                         m_rate += td->ratemin;
987                         t_rate += td->rate;
988                         todo--;
989                         fio_sem_up(&td->mutex);
990                 }
991
992                 reap_threads(&nr_running, &t_rate, &m_rate);
993
994                 if (todo)
995                         usleep(100000);
996         }
997
998         while (nr_running) {
999                 reap_threads(&nr_running, &t_rate, &m_rate);
1000                 usleep(10000);
1001         }
1002
1003         update_io_ticks();
1004         fio_unpin_memory();
1005 }
1006
1007 int main(int argc, char *argv[])
1008 {
1009         long ps;
1010
1011         if (parse_options(argc, argv))
1012                 return 1;
1013
1014         if (!thread_number) {
1015                 log_err("Nothing to do\n");
1016                 return 1;
1017         }
1018
1019         ps = sysconf(_SC_PAGESIZE);
1020         if (ps < 0) {
1021                 log_err("Failed to get page size\n");
1022                 return 1;
1023         }
1024
1025         page_mask = ps - 1;
1026
1027         if (write_bw_log) {
1028                 setup_log(&agg_io_log[DDIR_READ]);
1029                 setup_log(&agg_io_log[DDIR_WRITE]);
1030         }
1031
1032         disk_util_timer_arm();
1033
1034         run_threads();
1035
1036         if (!fio_abort) {
1037                 show_run_stats();
1038                 if (write_bw_log) {
1039                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1040                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1041                 }
1042         }
1043
1044         return 0;
1045 }