Fix bug with stripping white space at the front of an option
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 unsigned long page_mask;
41 unsigned long page_size;
42 #define ALIGN(buf)      \
43         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45 int groupid = 0;
46 int thread_number = 0;
47 int nr_process = 0;
48 int nr_thread = 0;
49 int shm_id = 0;
50 int temp_stall_ts;
51
52 static struct fio_sem *startup_sem;
53 static volatile int fio_abort;
54 static int exit_value;
55
56 struct io_log *agg_io_log[2];
57
58 #define TERMINATE_ALL           (-1)
59 #define JOB_START_TIMEOUT       (5 * 1000)
60
61 static inline void td_set_runstate(struct thread_data *td, int runstate)
62 {
63         td->runstate = runstate;
64 }
65
66 static void terminate_threads(int group_id)
67 {
68         struct thread_data *td;
69         int i;
70
71         for_each_td(td, i) {
72                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
73                         /*
74                          * if the thread is running, just let it exit
75                          */
76                         if (td->runstate < TD_RUNNING)
77                                 kill(td->pid, SIGQUIT);
78                         td->terminate = 1;
79                         td->o.start_delay = 0;
80                 }
81         }
82 }
83
84 static void sig_handler(int sig)
85 {
86         switch (sig) {
87                 case SIGALRM:
88                         update_io_ticks();
89                         disk_util_timer_arm();
90                         print_thread_status();
91                         break;
92                 default:
93                         printf("\nfio: terminating on signal %d\n", sig);
94                         fflush(stdout);
95                         terminate_threads(TERMINATE_ALL);
96                         break;
97         }
98 }
99
100 /*
101  * Check if we are above the minimum rate given.
102  */
103 static int check_min_rate(struct thread_data *td, struct timeval *now)
104 {
105         unsigned long long bytes = 0;
106         unsigned long iops = 0;
107         unsigned long spent;
108         unsigned long rate;
109
110         /*
111          * No minimum rate set, always ok
112          */
113         if (!td->o.ratemin && !td->o.rate_iops_min)
114                 return 0;
115
116         /*
117          * allow a 2 second settle period in the beginning
118          */
119         if (mtime_since(&td->start, now) < 2000)
120                 return 0;
121
122         if (td_read(td)) {
123                 iops += td->io_blocks[DDIR_READ];
124                 bytes += td->this_io_bytes[DDIR_READ];
125         }
126         if (td_write(td)) {
127                 iops += td->io_blocks[DDIR_WRITE];
128                 bytes += td->this_io_bytes[DDIR_WRITE];
129         }
130
131         /*
132          * if rate blocks is set, sample is running
133          */
134         if (td->rate_bytes || td->rate_blocks) {
135                 spent = mtime_since(&td->lastrate, now);
136                 if (spent < td->o.ratecycle)
137                         return 0;
138
139                 if (td->o.rate) {
140                         /*
141                          * check bandwidth specified rate
142                          */
143                         if (bytes < td->rate_bytes) {
144                                 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
145                                 return 1;
146                         } else {
147                                 rate = (bytes - td->rate_bytes) / spent;
148                                 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
149                                         log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
150                                         return 1;
151                                 }
152                         }
153                 } else {
154                         /*
155                          * checks iops specified rate
156                          */
157                         if (iops < td->o.rate_iops) {
158                                 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
159                                 return 1;
160                         } else {
161                                 rate = (iops - td->rate_blocks) / spent;
162                                 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
163                                         log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
164                                 }
165                         }
166                 }
167         }
168
169         td->rate_bytes = bytes;
170         td->rate_blocks = iops;
171         memcpy(&td->lastrate, now, sizeof(*now));
172         return 0;
173 }
174
175 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
176 {
177         if (!td->o.timeout)
178                 return 0;
179         if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
180                 return 1;
181
182         return 0;
183 }
184
185 /*
186  * When job exits, we can cancel the in-flight IO if we are using async
187  * io. Attempt to do so.
188  */
189 static void cleanup_pending_aio(struct thread_data *td)
190 {
191         struct list_head *entry, *n;
192         struct io_u *io_u;
193         int r;
194
195         /*
196          * get immediately available events, if any
197          */
198         r = io_u_queued_complete(td, 0);
199         if (r < 0)
200                 return;
201
202         /*
203          * now cancel remaining active events
204          */
205         if (td->io_ops->cancel) {
206                 list_for_each_safe(entry, n, &td->io_u_busylist) {
207                         io_u = list_entry(entry, struct io_u, list);
208
209                         /*
210                          * if the io_u isn't in flight, then that generally
211                          * means someone leaked an io_u. complain but fix
212                          * it up, so we don't stall here.
213                          */
214                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
215                                 log_err("fio: non-busy IO on busy list\n");
216                                 put_io_u(td, io_u);
217                         } else {
218                                 r = td->io_ops->cancel(td, io_u);
219                                 if (!r)
220                                         put_io_u(td, io_u);
221                         }
222                 }
223         }
224
225         if (td->cur_depth)
226                 r = io_u_queued_complete(td, td->cur_depth);
227 }
228
229 /*
230  * Helper to handle the final sync of a file. Works just like the normal
231  * io path, just does everything sync.
232  */
233 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
234 {
235         struct io_u *io_u = __get_io_u(td);
236         int ret;
237
238         if (!io_u)
239                 return 1;
240
241         io_u->ddir = DDIR_SYNC;
242         io_u->file = f;
243
244         if (td_io_prep(td, io_u)) {
245                 put_io_u(td, io_u);
246                 return 1;
247         }
248
249 requeue:
250         ret = td_io_queue(td, io_u);
251         if (ret < 0) {
252                 td_verror(td, io_u->error, "td_io_queue");
253                 put_io_u(td, io_u);
254                 return 1;
255         } else if (ret == FIO_Q_QUEUED) {
256                 if (io_u_queued_complete(td, 1) < 0)
257                         return 1;
258         } else if (ret == FIO_Q_COMPLETED) {
259                 if (io_u->error) {
260                         td_verror(td, io_u->error, "td_io_queue");
261                         return 1;
262                 }
263
264                 if (io_u_sync_complete(td, io_u) < 0)
265                         return 1;
266         } else if (ret == FIO_Q_BUSY) {
267                 if (td_io_commit(td))
268                         return 1;
269                 goto requeue;
270         }
271
272         return 0;
273 }
274
275 /*
276  * The main verify engine. Runs over the writes we previously submitted,
277  * reads the blocks back in, and checks the crc/md5 of the data.
278  */
279 static void do_verify(struct thread_data *td)
280 {
281         struct fio_file *f;
282         struct io_u *io_u;
283         int ret, min_events;
284         unsigned int i;
285
286         /*
287          * sync io first and invalidate cache, to make sure we really
288          * read from disk.
289          */
290         for_each_file(td, f, i) {
291                 if (!(f->flags & FIO_FILE_OPEN))
292                         continue;
293                 if (fio_io_sync(td, f))
294                         break;
295                 if (file_invalidate_cache(td, f))
296                         break;
297         }
298
299         if (td->error)
300                 return;
301
302         td_set_runstate(td, TD_VERIFYING);
303
304         io_u = NULL;
305         while (!td->terminate) {
306                 int ret2;
307
308                 io_u = __get_io_u(td);
309                 if (!io_u)
310                         break;
311
312                 if (runtime_exceeded(td, &io_u->start_time)) {
313                         put_io_u(td, io_u);
314                         break;
315                 }
316
317                 if (get_next_verify(td, io_u)) {
318                         put_io_u(td, io_u);
319                         break;
320                 }
321
322                 if (td_io_prep(td, io_u)) {
323                         put_io_u(td, io_u);
324                         break;
325                 }
326
327                 io_u->end_io = verify_io_u;
328
329                 ret = td_io_queue(td, io_u);
330                 switch (ret) {
331                 case FIO_Q_COMPLETED:
332                         if (io_u->error)
333                                 ret = -io_u->error;
334                         else if (io_u->resid) {
335                                 int bytes = io_u->xfer_buflen - io_u->resid;
336
337                                 /*
338                                  * zero read, fail
339                                  */
340                                 if (!bytes) {
341                                         td_verror(td, ENODATA, "full resid");
342                                         put_io_u(td, io_u);
343                                         break;
344                                 }
345
346                                 io_u->xfer_buflen = io_u->resid;
347                                 io_u->xfer_buf += bytes;
348                                 io_u->offset += bytes;
349
350                                 if (io_u->offset == io_u->file->real_file_size)
351                                         goto sync_done;
352
353                                 requeue_io_u(td, &io_u);
354                         } else {
355 sync_done:
356                                 ret = io_u_sync_complete(td, io_u);
357                                 if (ret < 0)
358                                         break;
359                         }
360                         continue;
361                 case FIO_Q_QUEUED:
362                         break;
363                 case FIO_Q_BUSY:
364                         requeue_io_u(td, &io_u);
365                         ret2 = td_io_commit(td);
366                         if (ret2 < 0)
367                                 ret = ret2;
368                         break;
369                 default:
370                         assert(ret < 0);
371                         td_verror(td, -ret, "td_io_queue");
372                         break;
373                 }
374
375                 if (ret < 0 || td->error)
376                         break;
377
378                 /*
379                  * if we can queue more, do so. but check if there are
380                  * completed io_u's first.
381                  */
382                 min_events = 0;
383                 if (queue_full(td) || ret == FIO_Q_BUSY) {
384                         min_events = 1;
385
386                         if (td->cur_depth > td->o.iodepth_low)
387                                 min_events = td->cur_depth - td->o.iodepth_low;
388                 }
389
390                 /*
391                  * Reap required number of io units, if any, and do the
392                  * verification on them through the callback handler
393                  */
394                 if (io_u_queued_complete(td, min_events) < 0)
395                         break;
396         }
397
398         if (!td->error) {
399                 min_events = td->cur_depth;
400
401                 if (min_events)
402                         ret = io_u_queued_complete(td, min_events);
403         } else
404                 cleanup_pending_aio(td);
405
406         td_set_runstate(td, TD_RUNNING);
407 }
408
409 /*
410  * Main IO worker function. It retrieves io_u's to process and queues
411  * and reaps them, checking for rate and errors along the way.
412  */
413 static void do_io(struct thread_data *td)
414 {
415         struct timeval s;
416         unsigned long usec;
417         unsigned int i;
418         int ret = 0;
419
420         td_set_runstate(td, TD_RUNNING);
421
422         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
423                 struct timeval comp_time;
424                 long bytes_done = 0;
425                 int min_evts = 0;
426                 struct io_u *io_u;
427                 int ret2;
428
429                 if (td->terminate)
430                         break;
431
432                 io_u = get_io_u(td);
433                 if (!io_u)
434                         break;
435
436                 memcpy(&s, &io_u->start_time, sizeof(s));
437
438                 if (runtime_exceeded(td, &s)) {
439                         put_io_u(td, io_u);
440                         break;
441                 }
442
443                 ret = td_io_queue(td, io_u);
444                 switch (ret) {
445                 case FIO_Q_COMPLETED:
446                         if (io_u->error)
447                                 ret = -io_u->error;
448                         else if (io_u->resid) {
449                                 int bytes = io_u->xfer_buflen - io_u->resid;
450
451                                 /*
452                                  * zero read, fail
453                                  */
454                                 if (!bytes) {
455                                         td_verror(td, ENODATA, "full resid");
456                                         put_io_u(td, io_u);
457                                         break;
458                                 }
459
460                                 io_u->xfer_buflen = io_u->resid;
461                                 io_u->xfer_buf += bytes;
462                                 io_u->offset += bytes;
463
464                                 if (io_u->offset == io_u->file->real_file_size)
465                                         goto sync_done;
466
467                                 requeue_io_u(td, &io_u);
468                         } else {
469 sync_done:
470                                 fio_gettime(&comp_time, NULL);
471                                 bytes_done = io_u_sync_complete(td, io_u);
472                                 if (bytes_done < 0)
473                                         ret = bytes_done;
474                         }
475                         break;
476                 case FIO_Q_QUEUED:
477                         /*
478                          * if the engine doesn't have a commit hook,
479                          * the io_u is really queued. if it does have such
480                          * a hook, it has to call io_u_queued() itself.
481                          */
482                         if (td->io_ops->commit == NULL)
483                                 io_u_queued(td, io_u);
484                         break;
485                 case FIO_Q_BUSY:
486                         requeue_io_u(td, &io_u);
487                         ret2 = td_io_commit(td);
488                         if (ret2 < 0)
489                                 ret = ret2;
490                         break;
491                 default:
492                         assert(ret < 0);
493                         put_io_u(td, io_u);
494                         break;
495                 }
496
497                 if (ret < 0 || td->error)
498                         break;
499
500                 /*
501                  * See if we need to complete some commands
502                  */
503                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
504                         min_evts = 0;
505                         if (queue_full(td) || ret == FIO_Q_BUSY) {
506                                 min_evts = 1;
507
508                                 if (td->cur_depth > td->o.iodepth_low)
509                                         min_evts = td->cur_depth - td->o.iodepth_low;
510                         }
511
512                         fio_gettime(&comp_time, NULL);
513                         bytes_done = io_u_queued_complete(td, min_evts);
514                         if (bytes_done < 0)
515                                 break;
516                 }
517
518                 if (!bytes_done)
519                         continue;
520
521                 /*
522                  * the rate is batched for now, it should work for batches
523                  * of completions except the very first one which may look
524                  * a little bursty
525                  */
526                 usec = utime_since(&s, &comp_time);
527
528                 rate_throttle(td, usec, bytes_done);
529
530                 if (check_min_rate(td, &comp_time)) {
531                         if (exitall_on_terminate)
532                                 terminate_threads(td->groupid);
533                         td_verror(td, ENODATA, "check_min_rate");
534                         break;
535                 }
536
537                 if (td->o.thinktime) {
538                         unsigned long long b;
539
540                         b = td->io_blocks[0] + td->io_blocks[1];
541                         if (!(b % td->o.thinktime_blocks)) {
542                                 int left;
543
544                                 if (td->o.thinktime_spin)
545                                         __usec_sleep(td->o.thinktime_spin);
546
547                                 left = td->o.thinktime - td->o.thinktime_spin;
548                                 if (left)
549                                         usec_sleep(td, left);
550                         }
551                 }
552         }
553
554         if (!td->error) {
555                 struct fio_file *f;
556
557                 i = td->cur_depth;
558                 if (i)
559                         ret = io_u_queued_complete(td, i);
560
561                 if (should_fsync(td) && td->o.end_fsync) {
562                         td_set_runstate(td, TD_FSYNCING);
563
564                         for_each_file(td, f, i) {
565                                 if (!(f->flags & FIO_FILE_OPEN))
566                                         continue;
567                                 fio_io_sync(td, f);
568                         }
569                 }
570         } else
571                 cleanup_pending_aio(td);
572 }
573
574 static void cleanup_io_u(struct thread_data *td)
575 {
576         struct list_head *entry, *n;
577         struct io_u *io_u;
578
579         list_for_each_safe(entry, n, &td->io_u_freelist) {
580                 io_u = list_entry(entry, struct io_u, list);
581
582                 list_del(&io_u->list);
583                 free(io_u);
584         }
585
586         free_io_mem(td);
587 }
588
589 /*
590  * "randomly" fill the buffer contents
591  */
592 static void fill_rand_buf(struct io_u *io_u, int max_bs)
593 {
594         int *ptr = io_u->buf;
595
596         while ((void *) ptr - io_u->buf < max_bs) {
597                 *ptr = rand() * 0x9e370001;
598                 ptr++;
599         }
600 }
601
602 static int init_io_u(struct thread_data *td)
603 {
604         unsigned long long buf_size;
605         struct io_u *io_u;
606         unsigned int max_bs;
607         int i, max_units;
608         char *p;
609
610         if (td->io_ops->flags & FIO_SYNCIO)
611                 max_units = 1;
612         else
613                 max_units = td->o.iodepth;
614
615         max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
616         buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
617         buf_size += page_mask;
618         if (buf_size != (size_t) buf_size) {
619                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
620                 return 1;
621         }
622
623         td->orig_buffer_size = buf_size;
624
625         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
626                 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
627         else if (td->orig_buffer_size & page_mask)
628                 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
629
630         if (allocate_io_mem(td))
631                 return 1;
632
633         p = ALIGN(td->orig_buffer);
634         for (i = 0; i < max_units; i++) {
635                 io_u = malloc(sizeof(*io_u));
636                 memset(io_u, 0, sizeof(*io_u));
637                 INIT_LIST_HEAD(&io_u->list);
638
639                 io_u->buf = p + max_bs * i;
640                 if (td_write(td) || td_rw(td))
641                         fill_rand_buf(io_u, max_bs);
642
643                 io_u->index = i;
644                 io_u->flags = IO_U_F_FREE;
645                 list_add(&io_u->list, &td->io_u_freelist);
646         }
647
648         io_u_init_timeout();
649
650         return 0;
651 }
652
653 static int switch_ioscheduler(struct thread_data *td)
654 {
655         char tmp[256], tmp2[128];
656         FILE *f;
657         int ret;
658
659         if (td->io_ops->flags & FIO_DISKLESSIO)
660                 return 0;
661
662         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
663
664         f = fopen(tmp, "r+");
665         if (!f) {
666                 td_verror(td, errno, "fopen");
667                 return 1;
668         }
669
670         /*
671          * Set io scheduler.
672          */
673         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
674         if (ferror(f) || ret != 1) {
675                 td_verror(td, errno, "fwrite");
676                 fclose(f);
677                 return 1;
678         }
679
680         rewind(f);
681
682         /*
683          * Read back and check that the selected scheduler is now the default.
684          */
685         ret = fread(tmp, 1, sizeof(tmp), f);
686         if (ferror(f) || ret < 0) {
687                 td_verror(td, errno, "fread");
688                 fclose(f);
689                 return 1;
690         }
691
692         sprintf(tmp2, "[%s]", td->o.ioscheduler);
693         if (!strstr(tmp, tmp2)) {
694                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
695                 td_verror(td, EINVAL, "iosched_switch");
696                 fclose(f);
697                 return 1;
698         }
699
700         fclose(f);
701         return 0;
702 }
703
704 static int clear_io_state(struct thread_data *td)
705 {
706         struct fio_file *f;
707         unsigned int i;
708         int ret;
709
710         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
711         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
712         td->zone_bytes = 0;
713         td->rate_bytes = 0;
714         td->rate_blocks = 0;
715         td->rw_end_set[0] = td->rw_end_set[1] = 0;
716
717         td->last_was_sync = 0;
718
719         for_each_file(td, f, i)
720                 td_io_close_file(td, f);
721
722         ret = 0;
723         for_each_file(td, f, i) {
724                 ret = td_io_open_file(td, f);
725                 if (ret)
726                         break;
727         }
728
729         return ret;
730 }
731
732 /*
733  * Entry point for the thread based jobs. The process based jobs end up
734  * here as well, after a little setup.
735  */
736 static void *thread_main(void *data)
737 {
738         unsigned long long runtime[2];
739         struct thread_data *td = data;
740         unsigned long elapsed;
741         int clear_state;
742
743         if (!td->o.use_thread)
744                 setsid();
745
746         td->pid = getpid();
747
748         INIT_LIST_HEAD(&td->io_u_freelist);
749         INIT_LIST_HEAD(&td->io_u_busylist);
750         INIT_LIST_HEAD(&td->io_u_requeues);
751         INIT_LIST_HEAD(&td->io_log_list);
752         INIT_LIST_HEAD(&td->io_hist_list);
753         td->io_hist_tree = RB_ROOT;
754
755         if (init_io_u(td))
756                 goto err_sem;
757
758         if (fio_setaffinity(td) == -1) {
759                 td_verror(td, errno, "cpu_set_affinity");
760                 goto err_sem;
761         }
762
763         if (init_iolog(td))
764                 goto err_sem;
765
766         if (td->ioprio) {
767                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
768                         td_verror(td, errno, "ioprio_set");
769                         goto err_sem;
770                 }
771         }
772
773         if (nice(td->o.nice) == -1) {
774                 td_verror(td, errno, "nice");
775                 goto err_sem;
776         }
777
778         if (td->o.ioscheduler && switch_ioscheduler(td))
779                 goto err_sem;
780
781         td_set_runstate(td, TD_INITIALIZED);
782         fio_sem_up(startup_sem);
783         fio_sem_down(td->mutex);
784
785         /*
786          * the ->mutex semaphore is now no longer used, close it to avoid
787          * eating a file descriptor
788          */
789         fio_sem_remove(td->mutex);
790
791         if (!td->o.create_serialize && setup_files(td))
792                 goto err;
793
794         if (td_io_init(td))
795                 goto err;
796
797         if (open_files(td))
798                 goto err;
799
800         if (init_random_map(td))
801                 goto err;
802
803         if (td->o.exec_prerun) {
804                 if (system(td->o.exec_prerun) < 0)
805                         goto err;
806         }
807
808         fio_gettime(&td->epoch, NULL);
809         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
810         getrusage(RUSAGE_SELF, &td->ts.ru_start);
811
812         runtime[0] = runtime[1] = 0;
813         clear_state = 0;
814         while (td->o.loops--) {
815                 fio_gettime(&td->start, NULL);
816                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
817
818                 if (td->o.ratemin)
819                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
820
821                 if (clear_state && clear_io_state(td))
822                         break;
823
824                 prune_io_piece_log(td);
825
826                 do_io(td);
827
828                 clear_state = 1;
829
830                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
831                         if (td->rw_end_set[DDIR_READ])
832                                 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
833                         else
834                                 elapsed = utime_since_now(&td->start);
835
836                         runtime[DDIR_READ] += elapsed;
837                 }
838                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
839                         if (td->rw_end_set[DDIR_WRITE])
840                                 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
841                         else
842                                 elapsed = utime_since_now(&td->start);
843
844                         runtime[DDIR_WRITE] += elapsed;
845                 }
846                 
847                 if (td->error || td->terminate)
848                         break;
849
850                 if (td->o.verify == VERIFY_NONE)
851                         continue;
852
853                 if (clear_io_state(td))
854                         break;
855
856                 fio_gettime(&td->start, NULL);
857
858                 do_verify(td);
859
860                 runtime[DDIR_READ] += utime_since_now(&td->start);
861
862                 if (td->error || td->terminate)
863                         break;
864         }
865
866         update_rusage_stat(td);
867         td->ts.runtime[0] = runtime[0] / 1000;
868         td->ts.runtime[1] = runtime[1] / 1000;
869         td->ts.total_run_time = mtime_since_now(&td->epoch);
870         td->ts.io_bytes[0] = td->io_bytes[0];
871         td->ts.io_bytes[1] = td->io_bytes[1];
872
873         if (td->ts.bw_log)
874                 finish_log(td, td->ts.bw_log, "bw");
875         if (td->ts.slat_log)
876                 finish_log(td, td->ts.slat_log, "slat");
877         if (td->ts.clat_log)
878                 finish_log(td, td->ts.clat_log, "clat");
879         if (td->o.write_iolog_file)
880                 write_iolog_close(td);
881         if (td->o.exec_postrun) {
882                 if (system(td->o.exec_postrun) < 0)
883                         log_err("fio: postrun %s failed\n", td->o.exec_postrun);
884         }
885
886         if (exitall_on_terminate)
887                 terminate_threads(td->groupid);
888
889 err:
890         if (td->error)
891                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
892         close_files(td);
893         close_ioengine(td);
894         cleanup_io_u(td);
895         options_mem_free(td);
896         td_set_runstate(td, TD_EXITED);
897         return (void *) (unsigned long) td->error;
898 err_sem:
899         fio_sem_up(startup_sem);
900         goto err;
901 }
902
903 /*
904  * We cannot pass the td data into a forked process, so attach the td and
905  * pass it to the thread worker.
906  */
907 static int fork_main(int shmid, int offset)
908 {
909         struct thread_data *td;
910         void *data, *ret;
911
912         data = shmat(shmid, NULL, 0);
913         if (data == (void *) -1) {
914                 int __err = errno;
915
916                 perror("shmat");
917                 return __err;
918         }
919
920         td = data + offset * sizeof(struct thread_data);
921         ret = thread_main(td);
922         shmdt(data);
923         return (int) (unsigned long) ret;
924 }
925
926 /*
927  * Run over the job map and reap the threads that have exited, if any.
928  */
929 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
930 {
931         struct thread_data *td;
932         int i, cputhreads, pending, status, ret;
933
934         /*
935          * reap exited threads (TD_EXITED -> TD_REAPED)
936          */
937         pending = cputhreads = 0;
938         for_each_td(td, i) {
939                 int flags = 0;
940
941                 /*
942                  * ->io_ops is NULL for a thread that has closed its
943                  * io engine
944                  */
945                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
946                         cputhreads++;
947
948                 if (!td->pid || td->runstate == TD_REAPED)
949                         continue;
950                 if (td->o.use_thread) {
951                         if (td->runstate == TD_EXITED) {
952                                 td_set_runstate(td, TD_REAPED);
953                                 goto reaped;
954                         }
955                         continue;
956                 }
957
958                 flags = WNOHANG;
959                 if (td->runstate == TD_EXITED)
960                         flags = 0;
961
962                 /*
963                  * check if someone quit or got killed in an unusual way
964                  */
965                 ret = waitpid(td->pid, &status, flags);
966                 if (ret < 0) {
967                         if (errno == ECHILD) {
968                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
969                                 td_set_runstate(td, TD_REAPED);
970                                 goto reaped;
971                         }
972                         perror("waitpid");
973                 } else if (ret == td->pid) {
974                         if (WIFSIGNALED(status)) {
975                                 int sig = WTERMSIG(status);
976
977                                 if (sig != SIGQUIT)
978                                         log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
979                                 td_set_runstate(td, TD_REAPED);
980                                 goto reaped;
981                         }
982                         if (WIFEXITED(status)) {
983                                 if (WEXITSTATUS(status) && !td->error)
984                                         td->error = WEXITSTATUS(status);
985
986                                 td_set_runstate(td, TD_REAPED);
987                                 goto reaped;
988                         }
989                 }
990
991                 /*
992                  * thread is not dead, continue
993                  */
994                 continue;
995 reaped:
996                 if (td->o.use_thread) {
997                         long ret;
998
999                         if (pthread_join(td->thread, (void *) &ret))
1000                                 perror("pthread_join");
1001                 }
1002
1003                 (*nr_running)--;
1004                 (*m_rate) -= td->o.ratemin;
1005                 (*t_rate) -= td->o.rate;
1006
1007                 if (td->error)
1008                         exit_value++;
1009         }
1010
1011         if (*nr_running == cputhreads && !pending)
1012                 terminate_threads(TERMINATE_ALL);
1013 }
1014
1015 /*
1016  * Main function for kicking off and reaping jobs, as needed.
1017  */
1018 static void run_threads(void)
1019 {
1020         struct thread_data *td;
1021         unsigned long spent;
1022         int i, todo, nr_running, m_rate, t_rate, nr_started;
1023
1024         if (fio_pin_memory())
1025                 return;
1026
1027         if (!terse_output) {
1028                 printf("Starting ");
1029                 if (nr_thread)
1030                         printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1031                 if (nr_process) {
1032                         if (nr_thread)
1033                                 printf(" and ");
1034                         printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1035                 }
1036                 printf("\n");
1037                 fflush(stdout);
1038         }
1039
1040         signal(SIGINT, sig_handler);
1041         signal(SIGALRM, sig_handler);
1042
1043         todo = thread_number;
1044         nr_running = 0;
1045         nr_started = 0;
1046         m_rate = t_rate = 0;
1047
1048         for_each_td(td, i) {
1049                 print_status_init(td->thread_number - 1);
1050
1051                 if (!td->o.create_serialize) {
1052                         init_disk_util(td);
1053                         continue;
1054                 }
1055
1056                 /*
1057                  * do file setup here so it happens sequentially,
1058                  * we don't want X number of threads getting their
1059                  * client data interspersed on disk
1060                  */
1061                 if (setup_files(td)) {
1062                         exit_value++;
1063                         if (td->error)
1064                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1065                         td_set_runstate(td, TD_REAPED);
1066                         todo--;
1067                 }
1068
1069                 init_disk_util(td);
1070         }
1071
1072         set_genesis_time();
1073
1074         while (todo) {
1075                 struct thread_data *map[MAX_JOBS];
1076                 struct timeval this_start;
1077                 int this_jobs = 0, left;
1078
1079                 /*
1080                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1081                  */
1082                 for_each_td(td, i) {
1083                         if (td->runstate != TD_NOT_CREATED)
1084                                 continue;
1085
1086                         /*
1087                          * never got a chance to start, killed by other
1088                          * thread for some reason
1089                          */
1090                         if (td->terminate) {
1091                                 todo--;
1092                                 continue;
1093                         }
1094
1095                         if (td->o.start_delay) {
1096                                 spent = mtime_since_genesis();
1097
1098                                 if (td->o.start_delay * 1000 > spent)
1099                                         continue;
1100                         }
1101
1102                         if (td->o.stonewall && (nr_started || nr_running))
1103                                 break;
1104
1105                         /*
1106                          * Set state to created. Thread will transition
1107                          * to TD_INITIALIZED when it's done setting up.
1108                          */
1109                         td_set_runstate(td, TD_CREATED);
1110                         map[this_jobs++] = td;
1111                         nr_started++;
1112
1113                         if (td->o.use_thread) {
1114                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1115                                         perror("thread_create");
1116                                         nr_started--;
1117                                         break;
1118                                 }
1119                         } else {
1120                                 if (!fork()) {
1121                                         int ret = fork_main(shm_id, i);
1122
1123                                         exit(ret);
1124                                 }
1125                         }
1126                         fio_sem_down(startup_sem);
1127                 }
1128
1129                 /*
1130                  * Wait for the started threads to transition to
1131                  * TD_INITIALIZED.
1132                  */
1133                 fio_gettime(&this_start, NULL);
1134                 left = this_jobs;
1135                 while (left && !fio_abort) {
1136                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1137                                 break;
1138
1139                         usleep(100000);
1140
1141                         for (i = 0; i < this_jobs; i++) {
1142                                 td = map[i];
1143                                 if (!td)
1144                                         continue;
1145                                 if (td->runstate == TD_INITIALIZED) {
1146                                         map[i] = NULL;
1147                                         left--;
1148                                 } else if (td->runstate >= TD_EXITED) {
1149                                         map[i] = NULL;
1150                                         left--;
1151                                         todo--;
1152                                         nr_running++; /* work-around... */
1153                                 }
1154                         }
1155                 }
1156
1157                 if (left) {
1158                         log_err("fio: %d jobs failed to start\n", left);
1159                         for (i = 0; i < this_jobs; i++) {
1160                                 td = map[i];
1161                                 if (!td)
1162                                         continue;
1163                                 kill(td->pid, SIGTERM);
1164                         }
1165                         break;
1166                 }
1167
1168                 /*
1169                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1170                  */
1171                 for_each_td(td, i) {
1172                         if (td->runstate != TD_INITIALIZED)
1173                                 continue;
1174
1175                         td_set_runstate(td, TD_RUNNING);
1176                         nr_running++;
1177                         nr_started--;
1178                         m_rate += td->o.ratemin;
1179                         t_rate += td->o.rate;
1180                         todo--;
1181                         fio_sem_up(td->mutex);
1182                 }
1183
1184                 reap_threads(&nr_running, &t_rate, &m_rate);
1185
1186                 if (todo)
1187                         usleep(100000);
1188         }
1189
1190         while (nr_running) {
1191                 reap_threads(&nr_running, &t_rate, &m_rate);
1192                 usleep(10000);
1193         }
1194
1195         update_io_ticks();
1196         fio_unpin_memory();
1197 }
1198
1199 int main(int argc, char *argv[])
1200 {
1201         long ps;
1202
1203         /*
1204          * We need locale for number printing, if it isn't set then just
1205          * go with the US format.
1206          */
1207         if (!getenv("LC_NUMERIC"))
1208                 setlocale(LC_NUMERIC, "en_US");
1209
1210         if (parse_options(argc, argv))
1211                 return 1;
1212
1213         if (!thread_number) {
1214                 log_err("Nothing to do\n");
1215                 return 1;
1216         }
1217
1218         ps = sysconf(_SC_PAGESIZE);
1219         if (ps < 0) {
1220                 log_err("Failed to get page size\n");
1221                 return 1;
1222         }
1223
1224         page_size = ps;
1225         page_mask = ps - 1;
1226
1227         if (write_bw_log) {
1228                 setup_log(&agg_io_log[DDIR_READ]);
1229                 setup_log(&agg_io_log[DDIR_WRITE]);
1230         }
1231
1232         startup_sem = fio_sem_init(0);
1233
1234         set_genesis_time();
1235
1236         disk_util_timer_arm();
1237
1238         run_threads();
1239
1240         if (!fio_abort) {
1241                 show_run_stats();
1242                 if (write_bw_log) {
1243                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1244                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1245                 }
1246         }
1247
1248         fio_sem_remove(startup_sem);
1249         return exit_value;
1250 }