10625f26afd25fd54d72bb896a17c075f0681401
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <sys/ipc.h>
32 #include <sys/shm.h>
33 #include <sys/mman.h>
34
35 #include "fio.h"
36 #include "os.h"
37
38 static unsigned long page_mask;
39 #define ALIGN(buf)      \
40         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
41
42 int groupid = 0;
43 int thread_number = 0;
44 int shm_id = 0;
45 int temp_stall_ts;
46
47 static volatile int startup_sem;
48 static volatile int fio_abort;
49
50 struct io_log *agg_io_log[2];
51
52 #define TERMINATE_ALL           (-1)
53 #define JOB_START_TIMEOUT       (5 * 1000)
54
55 static inline void td_set_runstate(struct thread_data *td, int runstate)
56 {
57         td->runstate = runstate;
58 }
59
60 static void terminate_threads(int group_id, int forced_kill)
61 {
62         struct thread_data *td;
63         int i;
64
65         for_each_td(td, i) {
66                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
67                         td->terminate = 1;
68                         td->start_delay = 0;
69                         if (forced_kill)
70                                 td_set_runstate(td, TD_EXITED);
71                 }
72         }
73 }
74
75 static void sig_handler(int sig)
76 {
77         switch (sig) {
78                 case SIGALRM:
79                         update_io_ticks();
80                         disk_util_timer_arm();
81                         print_thread_status();
82                         break;
83                 default:
84                         printf("\nfio: terminating on signal %d\n", sig);
85                         fflush(stdout);
86                         terminate_threads(TERMINATE_ALL, 0);
87                         break;
88         }
89 }
90
91 /*
92  * Check if we are above the minimum rate given.
93  */
94 static int check_min_rate(struct thread_data *td, struct timeval *now)
95 {
96         unsigned long spent;
97         unsigned long rate;
98         int ddir = td->ddir;
99
100         /*
101          * allow a 2 second settle period in the beginning
102          */
103         if (mtime_since(&td->start, now) < 2000)
104                 return 0;
105
106         /*
107          * if rate blocks is set, sample is running
108          */
109         if (td->rate_bytes) {
110                 spent = mtime_since(&td->lastrate, now);
111                 if (spent < td->ratecycle)
112                         return 0;
113
114                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
115                 if (rate < td->ratemin) {
116                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
117                         return 1;
118                 }
119         }
120
121         td->rate_bytes = td->this_io_bytes[ddir];
122         memcpy(&td->lastrate, now, sizeof(*now));
123         return 0;
124 }
125
126 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
127 {
128         if (!td->timeout)
129                 return 0;
130         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
131                 return 1;
132
133         return 0;
134 }
135
136 static struct fio_file *get_next_file(struct thread_data *td)
137 {
138         unsigned int old_next_file = td->next_file;
139         struct fio_file *f;
140
141         do {
142                 f = &td->files[td->next_file];
143
144                 td->next_file++;
145                 if (td->next_file >= td->nr_files)
146                         td->next_file = 0;
147
148                 if (f->fd != -1)
149                         break;
150
151                 f = NULL;
152         } while (td->next_file != old_next_file);
153
154         return f;
155 }
156
157 /*
158  * When job exits, we can cancel the in-flight IO if we are using async
159  * io. Attempt to do so.
160  */
161 static void cleanup_pending_aio(struct thread_data *td)
162 {
163         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
164         struct list_head *entry, *n;
165         struct io_completion_data icd;
166         struct io_u *io_u;
167         int r;
168
169         /*
170          * get immediately available events, if any
171          */
172         r = td_io_getevents(td, 0, td->cur_depth, &ts);
173         if (r > 0) {
174                 icd.nr = r;
175                 ios_completed(td, &icd);
176         }
177
178         /*
179          * now cancel remaining active events
180          */
181         if (td->io_ops->cancel) {
182                 list_for_each_safe(entry, n, &td->io_u_busylist) {
183                         io_u = list_entry(entry, struct io_u, list);
184
185                         r = td->io_ops->cancel(td, io_u);
186                         if (!r)
187                                 put_io_u(td, io_u);
188                 }
189         }
190
191         if (td->cur_depth) {
192                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
193                 if (r > 0) {
194                         icd.nr = r;
195                         ios_completed(td, &icd);
196                 }
197         }
198 }
199
200 /*
201  * Helper to handle the final sync of a file. Works just like the normal
202  * io path, just does everything sync.
203  */
204 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
205 {
206         struct io_u *io_u = __get_io_u(td);
207         struct io_completion_data icd;
208         int ret;
209
210         if (!io_u)
211                 return 1;
212
213         io_u->ddir = DDIR_SYNC;
214         io_u->file = f;
215
216         if (td_io_prep(td, io_u)) {
217                 put_io_u(td, io_u);
218                 return 1;
219         }
220
221         ret = td_io_queue(td, io_u);
222         if (ret) {
223                 td_verror(td, io_u->error);
224                 put_io_u(td, io_u);
225                 return 1;
226         }
227
228         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
229         if (ret < 0) {
230                 td_verror(td, ret);
231                 return 1;
232         }
233
234         icd.nr = ret;
235         ios_completed(td, &icd);
236         if (icd.error) {
237                 td_verror(td, icd.error);
238                 return 1;
239         }
240
241         return 0;
242 }
243
244 /*
245  * The main verify engine. Runs over the writes we previusly submitted,
246  * reads the blocks back in, and checks the crc/md5 of the data.
247  */
248 static void do_verify(struct thread_data *td)
249 {
250         struct io_u *io_u, *v_io_u = NULL;
251         struct io_completion_data icd;
252         struct fio_file *f;
253         int ret, i;
254
255         /*
256          * sync io first and invalidate cache, to make sure we really
257          * read from disk.
258          */
259         for_each_file(td, f, i) {
260                 fio_io_sync(td, f);
261                 file_invalidate_cache(td, f);
262         }
263
264         td_set_runstate(td, TD_VERIFYING);
265
266         do {
267                 if (td->terminate)
268                         break;
269
270                 io_u = __get_io_u(td);
271                 if (!io_u)
272                         break;
273
274                 if (runtime_exceeded(td, &io_u->start_time)) {
275                         put_io_u(td, io_u);
276                         break;
277                 }
278
279                 if (get_next_verify(td, io_u)) {
280                         put_io_u(td, io_u);
281                         break;
282                 }
283
284                 f = get_next_file(td);
285                 if (!f)
286                         break;
287
288                 io_u->file = f;
289
290                 if (td_io_prep(td, io_u)) {
291                         put_io_u(td, io_u);
292                         break;
293                 }
294
295                 ret = td_io_queue(td, io_u);
296                 if (ret) {
297                         td_verror(td, io_u->error);
298                         put_io_u(td, io_u);
299                         break;
300                 }
301
302                 /*
303                  * we have one pending to verify, do that while
304                  * we are doing io on the next one
305                  */
306                 if (do_io_u_verify(td, &v_io_u))
307                         break;
308
309                 ret = td_io_getevents(td, 1, 1, NULL);
310                 if (ret != 1) {
311                         if (ret < 0)
312                                 td_verror(td, ret);
313                         break;
314                 }
315
316                 v_io_u = td->io_ops->event(td, 0);
317                 icd.nr = 1;
318                 icd.error = 0;
319                 fio_gettime(&icd.time, NULL);
320                 io_completed(td, v_io_u, &icd);
321
322                 if (icd.error) {
323                         td_verror(td, icd.error);
324                         put_io_u(td, v_io_u);
325                         v_io_u = NULL;
326                         break;
327                 }
328
329                 /*
330                  * if we can't submit more io, we need to verify now
331                  */
332                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
333                         break;
334
335         } while (1);
336
337         do_io_u_verify(td, &v_io_u);
338
339         if (td->cur_depth)
340                 cleanup_pending_aio(td);
341
342         td_set_runstate(td, TD_RUNNING);
343 }
344
345 /*
346  * Not really an io thread, all it does is burn CPU cycles in the specified
347  * manner.
348  */
349 static void do_cpuio(struct thread_data *td)
350 {
351         struct timeval e;
352         int split = 100 / td->cpuload;
353         int i = 0;
354
355         while (!td->terminate) {
356                 fio_gettime(&e, NULL);
357
358                 if (runtime_exceeded(td, &e))
359                         break;
360
361                 if (!(i % split))
362                         __usec_sleep(10000);
363                 else
364                         usec_sleep(td, 10000);
365
366                 i++;
367         }
368 }
369
370 /*
371  * Main IO worker function. It retrieves io_u's to process and queues
372  * and reaps them, checking for rate and errors along the way.
373  */
374 static void do_io(struct thread_data *td)
375 {
376         struct io_completion_data icd;
377         struct timeval s;
378         unsigned long usec;
379         struct fio_file *f;
380         int i, ret = 0;
381
382         td_set_runstate(td, TD_RUNNING);
383
384         while (td->this_io_bytes[td->ddir] < td->io_size) {
385                 struct timespec *timeout;
386                 int min_evts = 0;
387                 struct io_u *io_u;
388
389                 if (td->terminate)
390                         break;
391
392                 f = get_next_file(td);
393                 if (!f)
394                         break;
395
396                 io_u = get_io_u(td, f);
397                 if (!io_u)
398                         break;
399
400                 memcpy(&s, &io_u->start_time, sizeof(s));
401
402 requeue:
403                 ret = td_io_queue(td, io_u);
404                 if (ret) {
405                         if (ret > 0 && (io_u->xfer_buflen != io_u->resid) &&
406                             io_u->resid) {
407                                 /*
408                                  * short read/write. requeue.
409                                  */
410                                 io_u->xfer_buflen = io_u->resid;
411                                 io_u->xfer_buf += ret;
412                                 goto requeue;
413                         } else {
414                                 td_verror(td, io_u->error);
415                                 put_io_u(td, io_u);
416                                 break;
417                         }
418                 }
419
420                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
421
422                 if (td->cur_depth < td->iodepth) {
423                         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
424
425                         timeout = &ts;
426                         min_evts = 0;
427                 } else {
428                         timeout = NULL;
429                         min_evts = 1;
430                 }
431
432                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
433                 if (ret < 0) {
434                         td_verror(td, ret);
435                         break;
436                 } else if (!ret)
437                         continue;
438
439                 icd.nr = ret;
440                 ios_completed(td, &icd);
441                 if (icd.error) {
442                         td_verror(td, icd.error);
443                         break;
444                 }
445
446                 /*
447                  * the rate is batched for now, it should work for batches
448                  * of completions except the very first one which may look
449                  * a little bursty
450                  */
451                 usec = utime_since(&s, &icd.time);
452
453                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
454
455                 if (check_min_rate(td, &icd.time)) {
456                         if (exitall_on_terminate)
457                                 terminate_threads(td->groupid, 0);
458                         td_verror(td, ENODATA);
459                         break;
460                 }
461
462                 if (runtime_exceeded(td, &icd.time))
463                         break;
464
465                 if (td->thinktime) {
466                         unsigned long long b;
467
468                         b = td->io_blocks[0] + td->io_blocks[1];
469                         if (!(b % td->thinktime_blocks))
470                                 usec_sleep(td, td->thinktime);
471                 }
472         }
473
474         if (!td->error) {
475                 if (td->cur_depth)
476                         cleanup_pending_aio(td);
477
478                 if (should_fsync(td) && td->end_fsync) {
479                         td_set_runstate(td, TD_FSYNCING);
480                         for_each_file(td, f, i)
481                                 fio_io_sync(td, f);
482                 }
483         }
484 }
485
486 static void cleanup_io_u(struct thread_data *td)
487 {
488         struct list_head *entry, *n;
489         struct io_u *io_u;
490
491         list_for_each_safe(entry, n, &td->io_u_freelist) {
492                 io_u = list_entry(entry, struct io_u, list);
493
494                 list_del(&io_u->list);
495                 free(io_u);
496         }
497
498         free_io_mem(td);
499 }
500
501 /*
502  * "randomly" fill the buffer contents
503  */
504 static void fill_rand_buf(struct io_u *io_u, int max_bs)
505 {
506         int *ptr = io_u->buf;
507
508         while ((void *) ptr - io_u->buf < max_bs) {
509                 *ptr = rand() * 0x9e370001;
510                 ptr++;
511         }
512 }
513
514 static int init_io_u(struct thread_data *td)
515 {
516         struct io_u *io_u;
517         unsigned int max_bs;
518         int i, max_units;
519         char *p;
520
521         if (td->io_ops->flags & FIO_CPUIO)
522                 return 0;
523
524         if (td->io_ops->flags & FIO_SYNCIO)
525                 max_units = 1;
526         else
527                 max_units = td->iodepth;
528
529         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
530         td->orig_buffer_size = max_bs * max_units;
531
532         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
533                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
534         else
535                 td->orig_buffer_size += page_mask;
536
537         if (allocate_io_mem(td))
538                 return 1;
539
540         p = ALIGN(td->orig_buffer);
541         for (i = 0; i < max_units; i++) {
542                 io_u = malloc(sizeof(*io_u));
543                 memset(io_u, 0, sizeof(*io_u));
544                 INIT_LIST_HEAD(&io_u->list);
545
546                 io_u->buf = p + max_bs * i;
547                 if (td_write(td) || td_rw(td))
548                         fill_rand_buf(io_u, max_bs);
549
550                 io_u->index = i;
551                 list_add(&io_u->list, &td->io_u_freelist);
552         }
553
554         return 0;
555 }
556
557 static int switch_ioscheduler(struct thread_data *td)
558 {
559         char tmp[256], tmp2[128];
560         FILE *f;
561         int ret;
562
563         if (td->io_ops->flags & FIO_CPUIO)
564                 return 0;
565
566         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
567
568         f = fopen(tmp, "r+");
569         if (!f) {
570                 td_verror(td, errno);
571                 return 1;
572         }
573
574         /*
575          * Set io scheduler.
576          */
577         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
578         if (ferror(f) || ret != 1) {
579                 td_verror(td, errno);
580                 fclose(f);
581                 return 1;
582         }
583
584         rewind(f);
585
586         /*
587          * Read back and check that the selected scheduler is now the default.
588          */
589         ret = fread(tmp, 1, sizeof(tmp), f);
590         if (ferror(f) || ret < 0) {
591                 td_verror(td, errno);
592                 fclose(f);
593                 return 1;
594         }
595
596         sprintf(tmp2, "[%s]", td->ioscheduler);
597         if (!strstr(tmp, tmp2)) {
598                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
599                 td_verror(td, EINVAL);
600                 fclose(f);
601                 return 1;
602         }
603
604         fclose(f);
605         return 0;
606 }
607
608 static void clear_io_state(struct thread_data *td)
609 {
610         struct fio_file *f;
611         int i;
612
613         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
614         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
615         td->zone_bytes = 0;
616
617         for_each_file(td, f, i) {
618                 f->last_pos = 0;
619                 if (td->io_ops->flags & FIO_SYNCIO)
620                         lseek(f->fd, SEEK_SET, 0);
621
622                 if (f->file_map)
623                         memset(f->file_map, 0, f->num_maps * sizeof(long));
624         }
625 }
626
627 /*
628  * Entry point for the thread based jobs. The process based jobs end up
629  * here as well, after a little setup.
630  */
631 static void *thread_main(void *data)
632 {
633         unsigned long long runtime[2];
634         struct thread_data *td = data;
635
636         if (!td->use_thread)
637                 setsid();
638
639         td->pid = getpid();
640
641         INIT_LIST_HEAD(&td->io_u_freelist);
642         INIT_LIST_HEAD(&td->io_u_busylist);
643         INIT_LIST_HEAD(&td->io_hist_list);
644         INIT_LIST_HEAD(&td->io_log_list);
645
646         if (init_io_u(td))
647                 goto err;
648
649         if (fio_setaffinity(td) == -1) {
650                 td_verror(td, errno);
651                 goto err;
652         }
653
654         if (init_iolog(td))
655                 goto err;
656
657         if (td->ioprio) {
658                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
659                         td_verror(td, errno);
660                         goto err;
661                 }
662         }
663
664         if (nice(td->nice) == -1) {
665                 td_verror(td, errno);
666                 goto err;
667         }
668
669         if (init_random_state(td))
670                 goto err;
671
672         if (td->ioscheduler && switch_ioscheduler(td))
673                 goto err;
674
675         td_set_runstate(td, TD_INITIALIZED);
676         fio_sem_up(&startup_sem);
677         fio_sem_down(&td->mutex);
678
679         if (!td->create_serialize && setup_files(td))
680                 goto err;
681         if (open_files(td))
682                 goto err;
683
684         /*
685          * Do this late, as some IO engines would like to have the
686          * files setup prior to initializing structures.
687          */
688         if (td_io_init(td))
689                 goto err;
690
691         if (td->exec_prerun) {
692                 if (system(td->exec_prerun) < 0)
693                         goto err;
694         }
695
696         fio_gettime(&td->epoch, NULL);
697         getrusage(RUSAGE_SELF, &td->ru_start);
698
699         runtime[0] = runtime[1] = 0;
700         while (td->loops--) {
701                 fio_gettime(&td->start, NULL);
702                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
703
704                 if (td->ratemin)
705                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
706
707                 clear_io_state(td);
708                 prune_io_piece_log(td);
709
710                 if (td->io_ops->flags & FIO_CPUIO)
711                         do_cpuio(td);
712                 else
713                         do_io(td);
714
715                 runtime[td->ddir] += utime_since_now(&td->start);
716                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
717                         runtime[td->ddir ^ 1] = runtime[td->ddir];
718
719                 if (td->error || td->terminate)
720                         break;
721
722                 if (td->verify == VERIFY_NONE)
723                         continue;
724
725                 clear_io_state(td);
726                 fio_gettime(&td->start, NULL);
727
728                 do_verify(td);
729
730                 runtime[DDIR_READ] += utime_since_now(&td->start);
731
732                 if (td->error || td->terminate)
733                         break;
734         }
735
736         update_rusage_stat(td);
737         fio_gettime(&td->end_time, NULL);
738         td->runtime[0] = runtime[0] / 1000;
739         td->runtime[1] = runtime[1] / 1000;
740
741         if (td->bw_log)
742                 finish_log(td, td->bw_log, "bw");
743         if (td->slat_log)
744                 finish_log(td, td->slat_log, "slat");
745         if (td->clat_log)
746                 finish_log(td, td->clat_log, "clat");
747         if (td->write_iolog_file)
748                 write_iolog_close(td);
749         if (td->exec_postrun) {
750                 if (system(td->exec_postrun) < 0)
751                         log_err("fio: postrun %s failed\n", td->exec_postrun);
752         }
753
754         if (exitall_on_terminate)
755                 terminate_threads(td->groupid, 0);
756
757 err:
758         close_files(td);
759         close_ioengine(td);
760         cleanup_io_u(td);
761         td_set_runstate(td, TD_EXITED);
762         return NULL;
763
764 }
765
766 /*
767  * We cannot pass the td data into a forked process, so attach the td and
768  * pass it to the thread worker.
769  */
770 static void *fork_main(int shmid, int offset)
771 {
772         struct thread_data *td;
773         void *data;
774
775         data = shmat(shmid, NULL, 0);
776         if (data == (void *) -1) {
777                 perror("shmat");
778                 return NULL;
779         }
780
781         td = data + offset * sizeof(struct thread_data);
782         thread_main(td);
783         shmdt(data);
784         return NULL;
785 }
786
787 /*
788  * Run over the job map and reap the threads that have exited, if any.
789  */
790 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
791 {
792         struct thread_data *td;
793         int i, cputhreads, pending;
794
795         /*
796          * reap exited threads (TD_EXITED -> TD_REAPED)
797          */
798         pending = cputhreads = 0;
799         for_each_td(td, i) {
800                 /*
801                  * ->io_ops is NULL for a thread that has closed its
802                  * io engine
803                  */
804                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
805                         cputhreads++;
806
807                 if (td->runstate != TD_EXITED) {
808                         if (td->runstate < TD_RUNNING)
809                                 pending++;
810
811                         continue;
812                 }
813
814                 td_set_runstate(td, TD_REAPED);
815
816                 if (td->use_thread) {
817                         long ret;
818
819                         if (pthread_join(td->thread, (void *) &ret))
820                                 perror("thread_join");
821                 } else
822                         waitpid(td->pid, NULL, 0);
823
824                 (*nr_running)--;
825                 (*m_rate) -= td->ratemin;
826                 (*t_rate) -= td->rate;
827         }
828
829         if (*nr_running == cputhreads && !pending)
830                 terminate_threads(TERMINATE_ALL, 0);
831 }
832
833 /*
834  * Main function for kicking off and reaping jobs, as needed.
835  */
836 static void run_threads(void)
837 {
838         struct thread_data *td;
839         unsigned long spent;
840         int i, todo, nr_running, m_rate, t_rate, nr_started;
841
842         if (fio_pin_memory())
843                 return;
844
845         if (!terse_output) {
846                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
847                 fflush(stdout);
848         }
849
850         signal(SIGINT, sig_handler);
851         signal(SIGALRM, sig_handler);
852
853         todo = thread_number;
854         nr_running = 0;
855         nr_started = 0;
856         m_rate = t_rate = 0;
857
858         for_each_td(td, i) {
859                 print_status_init(td->thread_number - 1);
860
861                 if (!td->create_serialize) {
862                         init_disk_util(td);
863                         continue;
864                 }
865
866                 /*
867                  * do file setup here so it happens sequentially,
868                  * we don't want X number of threads getting their
869                  * client data interspersed on disk
870                  */
871                 if (setup_files(td)) {
872                         td_set_runstate(td, TD_REAPED);
873                         todo--;
874                 }
875
876                 init_disk_util(td);
877         }
878
879         while (todo) {
880                 struct thread_data *map[MAX_JOBS];
881                 struct timeval this_start;
882                 int this_jobs = 0, left;
883
884                 /*
885                  * create threads (TD_NOT_CREATED -> TD_CREATED)
886                  */
887                 for_each_td(td, i) {
888                         if (td->runstate != TD_NOT_CREATED)
889                                 continue;
890
891                         /*
892                          * never got a chance to start, killed by other
893                          * thread for some reason
894                          */
895                         if (td->terminate) {
896                                 todo--;
897                                 continue;
898                         }
899
900                         if (td->start_delay) {
901                                 spent = mtime_since_genesis();
902
903                                 if (td->start_delay * 1000 > spent)
904                                         continue;
905                         }
906
907                         if (td->stonewall && (nr_started || nr_running))
908                                 break;
909
910                         /*
911                          * Set state to created. Thread will transition
912                          * to TD_INITIALIZED when it's done setting up.
913                          */
914                         td_set_runstate(td, TD_CREATED);
915                         map[this_jobs++] = td;
916                         fio_sem_init(&startup_sem, 1);
917                         nr_started++;
918
919                         if (td->use_thread) {
920                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
921                                         perror("thread_create");
922                                         nr_started--;
923                                 }
924                         } else {
925                                 if (fork())
926                                         fio_sem_down(&startup_sem);
927                                 else {
928                                         fork_main(shm_id, i);
929                                         exit(0);
930                                 }
931                         }
932                 }
933
934                 /*
935                  * Wait for the started threads to transition to
936                  * TD_INITIALIZED.
937                  */
938                 fio_gettime(&this_start, NULL);
939                 left = this_jobs;
940                 while (left && !fio_abort) {
941                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
942                                 break;
943
944                         usleep(100000);
945
946                         for (i = 0; i < this_jobs; i++) {
947                                 td = map[i];
948                                 if (!td)
949                                         continue;
950                                 if (td->runstate == TD_INITIALIZED) {
951                                         map[i] = NULL;
952                                         left--;
953                                 } else if (td->runstate >= TD_EXITED) {
954                                         map[i] = NULL;
955                                         left--;
956                                         todo--;
957                                         nr_running++; /* work-around... */
958                                 }
959                         }
960                 }
961
962                 if (left) {
963                         log_err("fio: %d jobs failed to start\n", left);
964                         for (i = 0; i < this_jobs; i++) {
965                                 td = map[i];
966                                 if (!td)
967                                         continue;
968                                 kill(td->pid, SIGTERM);
969                         }
970                         break;
971                 }
972
973                 /*
974                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
975                  */
976                 for_each_td(td, i) {
977                         if (td->runstate != TD_INITIALIZED)
978                                 continue;
979
980                         td_set_runstate(td, TD_RUNNING);
981                         nr_running++;
982                         nr_started--;
983                         m_rate += td->ratemin;
984                         t_rate += td->rate;
985                         todo--;
986                         fio_sem_up(&td->mutex);
987                 }
988
989                 reap_threads(&nr_running, &t_rate, &m_rate);
990
991                 if (todo)
992                         usleep(100000);
993         }
994
995         while (nr_running) {
996                 reap_threads(&nr_running, &t_rate, &m_rate);
997                 usleep(10000);
998         }
999
1000         update_io_ticks();
1001         fio_unpin_memory();
1002 }
1003
1004 int main(int argc, char *argv[])
1005 {
1006         long ps;
1007
1008         if (parse_options(argc, argv))
1009                 return 1;
1010
1011         if (!thread_number) {
1012                 log_err("Nothing to do\n");
1013                 return 1;
1014         }
1015
1016         ps = sysconf(_SC_PAGESIZE);
1017         if (ps < 0) {
1018                 log_err("Failed to get page size\n");
1019                 return 1;
1020         }
1021
1022         page_mask = ps - 1;
1023
1024         if (write_bw_log) {
1025                 setup_log(&agg_io_log[DDIR_READ]);
1026                 setup_log(&agg_io_log[DDIR_WRITE]);
1027         }
1028
1029         disk_util_timer_arm();
1030
1031         run_threads();
1032
1033         if (!fio_abort) {
1034                 show_run_stats();
1035                 if (write_bw_log) {
1036                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1037                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1038                 }
1039         }
1040
1041         return 0;
1042 }