Track io_u state (free or in-flight)
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 /*
140  * When job exits, we can cancel the in-flight IO if we are using async
141  * io. Attempt to do so.
142  */
143 static void cleanup_pending_aio(struct thread_data *td)
144 {
145         struct list_head *entry, *n;
146         struct io_u *io_u;
147         int r;
148
149         /*
150          * get immediately available events, if any
151          */
152         r = io_u_queued_complete(td, 0, NULL);
153         if (r < 0)
154                 return;
155
156         /*
157          * now cancel remaining active events
158          */
159         if (td->io_ops->cancel) {
160                 list_for_each_safe(entry, n, &td->io_u_busylist) {
161                         io_u = list_entry(entry, struct io_u, list);
162
163                         /*
164                          * if the io_u isn't in flight, then that generally
165                          * means someone leaked an io_u. complain but fix
166                          * it up, so we don't stall here.
167                          */
168                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
169                                 log_err("fio: non-busy IO on busy list\n");
170                                 put_io_u(td, io_u);
171                         } else {
172                                 r = td->io_ops->cancel(td, io_u);
173                                 if (!r)
174                                         put_io_u(td, io_u);
175                         }
176                 }
177         }
178
179         if (td->cur_depth)
180                 r = io_u_queued_complete(td, td->cur_depth, NULL);
181 }
182
183 /*
184  * Helper to handle the final sync of a file. Works just like the normal
185  * io path, just does everything sync.
186  */
187 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
188 {
189         struct io_u *io_u = __get_io_u(td);
190         int ret;
191
192         if (!io_u)
193                 return 1;
194
195         io_u->ddir = DDIR_SYNC;
196         io_u->file = f;
197
198         if (td_io_prep(td, io_u)) {
199                 put_io_u(td, io_u);
200                 return 1;
201         }
202
203 requeue:
204         ret = td_io_queue(td, io_u);
205         if (ret < 0) {
206                 td_verror(td, io_u->error);
207                 put_io_u(td, io_u);
208                 return 1;
209         } else if (ret == FIO_Q_QUEUED) {
210                 if (io_u_queued_complete(td, 1, NULL) < 0)
211                         return 1;
212         } else if (ret == FIO_Q_COMPLETED) {
213                 if (io_u->error) {
214                         td_verror(td, io_u->error);
215                         return 1;
216                 }
217
218                 if (io_u_sync_complete(td, io_u, NULL) < 0)
219                         return 1;
220         } else if (ret == FIO_Q_BUSY) {
221                 if (td_io_commit(td))
222                         return 1;
223                 goto requeue;
224         }
225
226         return 0;
227 }
228
229 /*
230  * The main verify engine. Runs over the writes we previusly submitted,
231  * reads the blocks back in, and checks the crc/md5 of the data.
232  */
233 static void do_verify(struct thread_data *td)
234 {
235         struct fio_file *f;
236         struct io_u *io_u;
237         int ret, i, min_events;
238
239         /*
240          * sync io first and invalidate cache, to make sure we really
241          * read from disk.
242          */
243         for_each_file(td, f, i) {
244                 if (fio_io_sync(td, f))
245                         break;
246                 if (file_invalidate_cache(td, f))
247                         break;
248         }
249
250         if (td->error)
251                 return;
252
253         td_set_runstate(td, TD_VERIFYING);
254
255         io_u = NULL;
256         while (!td->terminate) {
257                 io_u = __get_io_u(td);
258                 if (!io_u)
259                         break;
260
261                 if (runtime_exceeded(td, &io_u->start_time)) {
262                         put_io_u(td, io_u);
263                         break;
264                 }
265
266                 if (get_next_verify(td, io_u)) {
267                         put_io_u(td, io_u);
268                         break;
269                 }
270
271                 if (td_io_prep(td, io_u)) {
272                         put_io_u(td, io_u);
273                         break;
274                 }
275 requeue:
276                 ret = td_io_queue(td, io_u);
277
278                 switch (ret) {
279                 case FIO_Q_COMPLETED:
280                         if (io_u->error)
281                                 ret = -io_u->error;
282                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
283                                 int bytes = io_u->xfer_buflen - io_u->resid;
284
285                                 io_u->xfer_buflen = io_u->resid;
286                                 io_u->xfer_buf += bytes;
287                                 goto requeue;
288                         }
289                         ret = io_u_sync_complete(td, io_u, verify_io_u);
290                         if (ret < 0)
291                                 break;
292                         continue;
293                 case FIO_Q_QUEUED:
294                         break;
295                 case FIO_Q_BUSY:
296                         requeue_io_u(td, &io_u);
297                         ret = td_io_commit(td);
298                         break;
299                 default:
300                         assert(ret < 0);
301                         td_verror(td, -ret);
302                         break;
303                 }
304
305                 if (ret < 0 || td->error)
306                         break;
307
308                 /*
309                  * if we can queue more, do so. but check if there are
310                  * completed io_u's first.
311                  */
312                 min_events = 0;
313                 if (queue_full(td) || ret == FIO_Q_BUSY) {
314                         min_events = 1;
315
316                         if (td->cur_depth > td->iodepth_low)
317                                 min_events = td->cur_depth - td->iodepth_low;
318                 }
319
320                 /*
321                  * Reap required number of io units, if any, and do the
322                  * verification on them through the callback handler
323                  */
324                 if (io_u_queued_complete(td, min_events, verify_io_u) < 0)
325                         break;
326         }
327
328         if (td->cur_depth)
329                 cleanup_pending_aio(td);
330
331         td_set_runstate(td, TD_RUNNING);
332 }
333
334 /*
335  * Not really an io thread, all it does is burn CPU cycles in the specified
336  * manner.
337  */
338 static void do_cpuio(struct thread_data *td)
339 {
340         struct timeval e;
341         int split = 100 / td->cpuload;
342         int i = 0;
343
344         while (!td->terminate) {
345                 fio_gettime(&e, NULL);
346
347                 if (runtime_exceeded(td, &e))
348                         break;
349
350                 if (!(i % split))
351                         __usec_sleep(10000);
352                 else
353                         usec_sleep(td, 10000);
354
355                 i++;
356         }
357 }
358
359 /*
360  * Main IO worker function. It retrieves io_u's to process and queues
361  * and reaps them, checking for rate and errors along the way.
362  */
363 static void do_io(struct thread_data *td)
364 {
365         struct timeval s;
366         unsigned long usec;
367         int i, ret = 0;
368
369         td_set_runstate(td, TD_RUNNING);
370
371         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
372                 struct timeval comp_time;
373                 long bytes_done = 0;
374                 int min_evts = 0;
375                 struct io_u *io_u;
376
377                 if (td->terminate)
378                         break;
379
380                 io_u = get_io_u(td);
381                 if (!io_u)
382                         break;
383
384                 memcpy(&s, &io_u->start_time, sizeof(s));
385
386                 if (runtime_exceeded(td, &s)) {
387                         put_io_u(td, io_u);
388                         break;
389                 }
390 requeue:
391                 ret = td_io_queue(td, io_u);
392
393                 switch (ret) {
394                 case FIO_Q_COMPLETED:
395                         if (io_u->error) {
396                                 ret = io_u->error;
397                                 break;
398                         }
399                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
400                                 int bytes = io_u->xfer_buflen - io_u->resid;
401
402                                 io_u->xfer_buflen = io_u->resid;
403                                 io_u->xfer_buf += bytes;
404                                 goto requeue;
405                         }
406                         fio_gettime(&comp_time, NULL);
407                         bytes_done = io_u_sync_complete(td, io_u, NULL);
408                         if (bytes_done < 0)
409                                 ret = bytes_done;
410                         break;
411                 case FIO_Q_QUEUED:
412                         /*
413                          * if the engine doesn't have a commit hook,
414                          * the io_u is really queued. if it does have such
415                          * a hook, it has to call io_u_queued() itself.
416                          */
417                         if (td->io_ops->commit == NULL)
418                                 io_u_queued(td, io_u);
419                         break;
420                 case FIO_Q_BUSY:
421                         requeue_io_u(td, &io_u);
422                         ret = td_io_commit(td);
423                         break;
424                 default:
425                         assert(ret < 0);
426                         put_io_u(td, io_u);
427                         break;
428                 }
429
430                 if (ret < 0 || td->error)
431                         break;
432
433                 /*
434                  * See if we need to complete some commands
435                  */
436                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
437                         min_evts = 0;
438                         if (queue_full(td) || ret == FIO_Q_BUSY) {
439                                 min_evts = 1;
440
441                                 if (td->cur_depth > td->iodepth_low)
442                                         min_evts = td->cur_depth - td->iodepth_low;
443                         }
444
445                         fio_gettime(&comp_time, NULL);
446                         bytes_done = io_u_queued_complete(td, min_evts, NULL);
447                         if (bytes_done < 0)
448                                 break;
449                 }
450
451                 if (!bytes_done)
452                         continue;
453
454                 /*
455                  * the rate is batched for now, it should work for batches
456                  * of completions except the very first one which may look
457                  * a little bursty
458                  */
459                 usec = utime_since(&s, &comp_time);
460
461                 rate_throttle(td, usec, bytes_done, td->ddir);
462
463                 if (check_min_rate(td, &comp_time)) {
464                         if (exitall_on_terminate)
465                                 terminate_threads(td->groupid, 0);
466                         td_verror(td, ENODATA);
467                         break;
468                 }
469
470                 if (td->thinktime) {
471                         unsigned long long b;
472
473                         b = td->io_blocks[0] + td->io_blocks[1];
474                         if (!(b % td->thinktime_blocks)) {
475                                 int left;
476
477                                 if (td->thinktime_spin)
478                                         __usec_sleep(td->thinktime_spin);
479
480                                 left = td->thinktime - td->thinktime_spin;
481                                 if (left)
482                                         usec_sleep(td, left);
483                         }
484                 }
485         }
486
487         if (!td->error) {
488                 struct fio_file *f;
489
490                 if (td->cur_depth)
491                         cleanup_pending_aio(td);
492
493                 if (should_fsync(td) && td->end_fsync) {
494                         td_set_runstate(td, TD_FSYNCING);
495                         for_each_file(td, f, i)
496                                 fio_io_sync(td, f);
497                 }
498         }
499 }
500
501 static void cleanup_io_u(struct thread_data *td)
502 {
503         struct list_head *entry, *n;
504         struct io_u *io_u;
505
506         list_for_each_safe(entry, n, &td->io_u_freelist) {
507                 io_u = list_entry(entry, struct io_u, list);
508
509                 list_del(&io_u->list);
510                 free(io_u);
511         }
512
513         free_io_mem(td);
514 }
515
516 /*
517  * "randomly" fill the buffer contents
518  */
519 static void fill_rand_buf(struct io_u *io_u, int max_bs)
520 {
521         int *ptr = io_u->buf;
522
523         while ((void *) ptr - io_u->buf < max_bs) {
524                 *ptr = rand() * 0x9e370001;
525                 ptr++;
526         }
527 }
528
529 static int init_io_u(struct thread_data *td)
530 {
531         struct io_u *io_u;
532         unsigned int max_bs;
533         int i, max_units;
534         char *p;
535
536         if (td->io_ops->flags & FIO_CPUIO)
537                 return 0;
538
539         if (td->io_ops->flags & FIO_SYNCIO)
540                 max_units = 1;
541         else
542                 max_units = td->iodepth;
543
544         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
545         td->orig_buffer_size = max_bs * max_units;
546
547         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
548                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
549         else
550                 td->orig_buffer_size += page_mask;
551
552         if (allocate_io_mem(td))
553                 return 1;
554
555         p = ALIGN(td->orig_buffer);
556         for (i = 0; i < max_units; i++) {
557                 io_u = malloc(sizeof(*io_u));
558                 memset(io_u, 0, sizeof(*io_u));
559                 INIT_LIST_HEAD(&io_u->list);
560
561                 io_u->buf = p + max_bs * i;
562                 if (td_write(td) || td_rw(td))
563                         fill_rand_buf(io_u, max_bs);
564
565                 io_u->index = i;
566                 io_u->flags = IO_U_F_FREE;
567                 list_add(&io_u->list, &td->io_u_freelist);
568         }
569
570         return 0;
571 }
572
573 static int switch_ioscheduler(struct thread_data *td)
574 {
575         char tmp[256], tmp2[128];
576         FILE *f;
577         int ret;
578
579         if (td->io_ops->flags & FIO_CPUIO)
580                 return 0;
581
582         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
583
584         f = fopen(tmp, "r+");
585         if (!f) {
586                 td_verror(td, errno);
587                 return 1;
588         }
589
590         /*
591          * Set io scheduler.
592          */
593         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
594         if (ferror(f) || ret != 1) {
595                 td_verror(td, errno);
596                 fclose(f);
597                 return 1;
598         }
599
600         rewind(f);
601
602         /*
603          * Read back and check that the selected scheduler is now the default.
604          */
605         ret = fread(tmp, 1, sizeof(tmp), f);
606         if (ferror(f) || ret < 0) {
607                 td_verror(td, errno);
608                 fclose(f);
609                 return 1;
610         }
611
612         sprintf(tmp2, "[%s]", td->ioscheduler);
613         if (!strstr(tmp, tmp2)) {
614                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
615                 td_verror(td, EINVAL);
616                 fclose(f);
617                 return 1;
618         }
619
620         fclose(f);
621         return 0;
622 }
623
624 static void clear_io_state(struct thread_data *td)
625 {
626         struct fio_file *f;
627         int i;
628
629         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
630         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
631         td->zone_bytes = 0;
632
633         td->last_was_sync = 0;
634
635         for_each_file(td, f, i) {
636                 f->last_completed_pos = 0;
637
638                 f->last_pos = 0;
639                 if (td->io_ops->flags & FIO_SYNCIO)
640                         lseek(f->fd, SEEK_SET, 0);
641
642                 if (f->file_map)
643                         memset(f->file_map, 0, f->num_maps * sizeof(long));
644         }
645 }
646
647 /*
648  * Entry point for the thread based jobs. The process based jobs end up
649  * here as well, after a little setup.
650  */
651 static void *thread_main(void *data)
652 {
653         unsigned long long runtime[2];
654         struct thread_data *td = data;
655
656         if (!td->use_thread)
657                 setsid();
658
659         td->pid = getpid();
660
661         INIT_LIST_HEAD(&td->io_u_freelist);
662         INIT_LIST_HEAD(&td->io_u_busylist);
663         INIT_LIST_HEAD(&td->io_u_requeues);
664         INIT_LIST_HEAD(&td->io_hist_list);
665         INIT_LIST_HEAD(&td->io_log_list);
666
667         if (init_io_u(td))
668                 goto err;
669
670         if (fio_setaffinity(td) == -1) {
671                 td_verror(td, errno);
672                 goto err;
673         }
674
675         if (init_iolog(td))
676                 goto err;
677
678         if (td->ioprio) {
679                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
680                         td_verror(td, errno);
681                         goto err;
682                 }
683         }
684
685         if (nice(td->nice) == -1) {
686                 td_verror(td, errno);
687                 goto err;
688         }
689
690         if (init_random_state(td))
691                 goto err;
692
693         if (td->ioscheduler && switch_ioscheduler(td))
694                 goto err;
695
696         td_set_runstate(td, TD_INITIALIZED);
697         fio_sem_up(&startup_sem);
698         fio_sem_down(&td->mutex);
699
700         if (!td->create_serialize && setup_files(td))
701                 goto err;
702         if (open_files(td))
703                 goto err;
704
705         /*
706          * Do this late, as some IO engines would like to have the
707          * files setup prior to initializing structures.
708          */
709         if (td_io_init(td))
710                 goto err;
711
712         if (td->exec_prerun) {
713                 if (system(td->exec_prerun) < 0)
714                         goto err;
715         }
716
717         fio_gettime(&td->epoch, NULL);
718         getrusage(RUSAGE_SELF, &td->ts.ru_start);
719
720         runtime[0] = runtime[1] = 0;
721         while (td->loops--) {
722                 fio_gettime(&td->start, NULL);
723                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
724
725                 if (td->ratemin)
726                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
727
728                 clear_io_state(td);
729                 prune_io_piece_log(td);
730
731                 if (td->io_ops->flags & FIO_CPUIO)
732                         do_cpuio(td);
733                 else
734                         do_io(td);
735
736                 runtime[td->ddir] += utime_since_now(&td->start);
737                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
738                         runtime[td->ddir ^ 1] = runtime[td->ddir];
739
740                 if (td->error || td->terminate)
741                         break;
742
743                 if (td->verify == VERIFY_NONE)
744                         continue;
745
746                 clear_io_state(td);
747                 fio_gettime(&td->start, NULL);
748
749                 do_verify(td);
750
751                 runtime[DDIR_READ] += utime_since_now(&td->start);
752
753                 if (td->error || td->terminate)
754                         break;
755         }
756
757         update_rusage_stat(td);
758         fio_gettime(&td->end_time, NULL);
759         td->runtime[0] = runtime[0] / 1000;
760         td->runtime[1] = runtime[1] / 1000;
761
762         if (td->ts.bw_log)
763                 finish_log(td, td->ts.bw_log, "bw");
764         if (td->ts.slat_log)
765                 finish_log(td, td->ts.slat_log, "slat");
766         if (td->ts.clat_log)
767                 finish_log(td, td->ts.clat_log, "clat");
768         if (td->write_iolog_file)
769                 write_iolog_close(td);
770         if (td->exec_postrun) {
771                 if (system(td->exec_postrun) < 0)
772                         log_err("fio: postrun %s failed\n", td->exec_postrun);
773         }
774
775         if (exitall_on_terminate)
776                 terminate_threads(td->groupid, 0);
777
778 err:
779         if (td->error)
780                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
781         close_files(td);
782         close_ioengine(td);
783         cleanup_io_u(td);
784         td_set_runstate(td, TD_EXITED);
785         return (void *) (unsigned long) td->error;
786 }
787
788 /*
789  * We cannot pass the td data into a forked process, so attach the td and
790  * pass it to the thread worker.
791  */
792 static int fork_main(int shmid, int offset)
793 {
794         struct thread_data *td;
795         void *data, *ret;
796
797         data = shmat(shmid, NULL, 0);
798         if (data == (void *) -1) {
799                 int __err = errno;
800
801                 perror("shmat");
802                 return __err;
803         }
804
805         td = data + offset * sizeof(struct thread_data);
806         ret = thread_main(td);
807         shmdt(data);
808         return (int) (unsigned long) ret;
809 }
810
811 /*
812  * Run over the job map and reap the threads that have exited, if any.
813  */
814 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
815 {
816         struct thread_data *td;
817         int i, cputhreads, pending, status, ret;
818
819         /*
820          * reap exited threads (TD_EXITED -> TD_REAPED)
821          */
822         pending = cputhreads = 0;
823         for_each_td(td, i) {
824                 /*
825                  * ->io_ops is NULL for a thread that has closed its
826                  * io engine
827                  */
828                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
829                         cputhreads++;
830
831                 if (td->runstate < TD_EXITED) {
832                         /*
833                          * check if someone quit or got killed in an unusual way
834                          */
835                         ret = waitpid(td->pid, &status, WNOHANG);
836                         if (ret < 0)
837                                 perror("waitpid");
838                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
839                                 int sig = WTERMSIG(status);
840
841                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
842                                 td_set_runstate(td, TD_REAPED);
843                                 goto reaped;
844                         }
845                 }
846
847                 if (td->runstate != TD_EXITED) {
848                         if (td->runstate < TD_RUNNING)
849                                 pending++;
850
851                         continue;
852                 }
853
854                 if (td->error)
855                         exit_value++;
856
857                 td_set_runstate(td, TD_REAPED);
858
859                 if (td->use_thread) {
860                         long ret;
861
862                         if (pthread_join(td->thread, (void *) &ret))
863                                 perror("thread_join");
864                 } else {
865                         int status;
866
867                         ret = waitpid(td->pid, &status, 0);
868                         if (ret < 0)
869                                 perror("waitpid");
870                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
871                                 if (!exit_value)
872                                         exit_value++;
873                         }
874                 }
875
876 reaped:
877                 (*nr_running)--;
878                 (*m_rate) -= td->ratemin;
879                 (*t_rate) -= td->rate;
880         }
881
882         if (*nr_running == cputhreads && !pending)
883                 terminate_threads(TERMINATE_ALL, 0);
884 }
885
886 /*
887  * Main function for kicking off and reaping jobs, as needed.
888  */
889 static void run_threads(void)
890 {
891         struct thread_data *td;
892         unsigned long spent;
893         int i, todo, nr_running, m_rate, t_rate, nr_started;
894
895         if (fio_pin_memory())
896                 return;
897
898         if (!terse_output) {
899                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
900                 fflush(stdout);
901         }
902
903         signal(SIGINT, sig_handler);
904         signal(SIGALRM, sig_handler);
905
906         todo = thread_number;
907         nr_running = 0;
908         nr_started = 0;
909         m_rate = t_rate = 0;
910
911         for_each_td(td, i) {
912                 print_status_init(td->thread_number - 1);
913
914                 if (!td->create_serialize) {
915                         init_disk_util(td);
916                         continue;
917                 }
918
919                 /*
920                  * do file setup here so it happens sequentially,
921                  * we don't want X number of threads getting their
922                  * client data interspersed on disk
923                  */
924                 if (setup_files(td)) {
925                         exit_value++;
926                         if (td->error)
927                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
928                         td_set_runstate(td, TD_REAPED);
929                         todo--;
930                 }
931
932                 init_disk_util(td);
933         }
934
935         while (todo) {
936                 struct thread_data *map[MAX_JOBS];
937                 struct timeval this_start;
938                 int this_jobs = 0, left;
939
940                 /*
941                  * create threads (TD_NOT_CREATED -> TD_CREATED)
942                  */
943                 for_each_td(td, i) {
944                         if (td->runstate != TD_NOT_CREATED)
945                                 continue;
946
947                         /*
948                          * never got a chance to start, killed by other
949                          * thread for some reason
950                          */
951                         if (td->terminate) {
952                                 todo--;
953                                 continue;
954                         }
955
956                         if (td->start_delay) {
957                                 spent = mtime_since_genesis();
958
959                                 if (td->start_delay * 1000 > spent)
960                                         continue;
961                         }
962
963                         if (td->stonewall && (nr_started || nr_running))
964                                 break;
965
966                         /*
967                          * Set state to created. Thread will transition
968                          * to TD_INITIALIZED when it's done setting up.
969                          */
970                         td_set_runstate(td, TD_CREATED);
971                         map[this_jobs++] = td;
972                         fio_sem_init(&startup_sem, 1);
973                         nr_started++;
974
975                         if (td->use_thread) {
976                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
977                                         perror("thread_create");
978                                         nr_started--;
979                                 }
980                         } else {
981                                 if (fork())
982                                         fio_sem_down(&startup_sem);
983                                 else {
984                                         int ret = fork_main(shm_id, i);
985
986                                         exit(ret);
987                                 }
988                         }
989                 }
990
991                 /*
992                  * Wait for the started threads to transition to
993                  * TD_INITIALIZED.
994                  */
995                 fio_gettime(&this_start, NULL);
996                 left = this_jobs;
997                 while (left && !fio_abort) {
998                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
999                                 break;
1000
1001                         usleep(100000);
1002
1003                         for (i = 0; i < this_jobs; i++) {
1004                                 td = map[i];
1005                                 if (!td)
1006                                         continue;
1007                                 if (td->runstate == TD_INITIALIZED) {
1008                                         map[i] = NULL;
1009                                         left--;
1010                                 } else if (td->runstate >= TD_EXITED) {
1011                                         map[i] = NULL;
1012                                         left--;
1013                                         todo--;
1014                                         nr_running++; /* work-around... */
1015                                 }
1016                         }
1017                 }
1018
1019                 if (left) {
1020                         log_err("fio: %d jobs failed to start\n", left);
1021                         for (i = 0; i < this_jobs; i++) {
1022                                 td = map[i];
1023                                 if (!td)
1024                                         continue;
1025                                 kill(td->pid, SIGTERM);
1026                         }
1027                         break;
1028                 }
1029
1030                 /*
1031                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1032                  */
1033                 for_each_td(td, i) {
1034                         if (td->runstate != TD_INITIALIZED)
1035                                 continue;
1036
1037                         td_set_runstate(td, TD_RUNNING);
1038                         nr_running++;
1039                         nr_started--;
1040                         m_rate += td->ratemin;
1041                         t_rate += td->rate;
1042                         todo--;
1043                         fio_sem_up(&td->mutex);
1044                 }
1045
1046                 reap_threads(&nr_running, &t_rate, &m_rate);
1047
1048                 if (todo)
1049                         usleep(100000);
1050         }
1051
1052         while (nr_running) {
1053                 reap_threads(&nr_running, &t_rate, &m_rate);
1054                 usleep(10000);
1055         }
1056
1057         update_io_ticks();
1058         fio_unpin_memory();
1059 }
1060
1061 int main(int argc, char *argv[])
1062 {
1063         long ps;
1064
1065         /*
1066          * We need locale for number printing, if it isn't set then just
1067          * go with the US format.
1068          */
1069         if (!getenv("LC_NUMERIC"))
1070                 setlocale(LC_NUMERIC, "en_US");
1071
1072         if (parse_options(argc, argv))
1073                 return 1;
1074
1075         if (!thread_number) {
1076                 log_err("Nothing to do\n");
1077                 return 1;
1078         }
1079
1080         ps = sysconf(_SC_PAGESIZE);
1081         if (ps < 0) {
1082                 log_err("Failed to get page size\n");
1083                 return 1;
1084         }
1085
1086         page_mask = ps - 1;
1087
1088         if (write_bw_log) {
1089                 setup_log(&agg_io_log[DDIR_READ]);
1090                 setup_log(&agg_io_log[DDIR_WRITE]);
1091         }
1092
1093         disk_util_timer_arm();
1094
1095         run_threads();
1096
1097         if (!fio_abort) {
1098                 show_run_stats();
1099                 if (write_bw_log) {
1100                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1101                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1102                 }
1103         }
1104
1105         return exit_value;
1106 }