[PATCH] nrfiles > 1 random fix
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <assert.h>
30 #include <sys/stat.h>
31 #include <sys/wait.h>
32 #include <sys/ipc.h>
33 #include <sys/shm.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 #define MASK    (4095)
41
42 #define ALIGN(buf)      (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48 const char *fio_inst_prefix = _INST_PREFIX;
49
50 static volatile int startup_sem;
51
52 #define TERMINATE_ALL           (-1)
53 #define JOB_START_TIMEOUT       (5 * 1000)
54
55 static void terminate_threads(int group_id)
56 {
57         struct thread_data *td;
58         int i;
59
60         for_each_td(td, i) {
61                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
62                         td->terminate = 1;
63                         td->start_delay = 0;
64                 }
65         }
66 }
67
68 static void sig_handler(int sig)
69 {
70         switch (sig) {
71                 case SIGALRM:
72                         update_io_ticks();
73                         disk_util_timer_arm();
74                         print_thread_status();
75                         break;
76                 default:
77                         printf("\nfio: terminating on signal\n");
78                         fflush(stdout);
79                         terminate_threads(TERMINATE_ALL);
80                         break;
81         }
82 }
83
84 /*
85  * Check if we are above the minimum rate given.
86  */
87 static int check_min_rate(struct thread_data *td, struct timeval *now)
88 {
89         unsigned long spent;
90         unsigned long rate;
91         int ddir = td->ddir;
92
93         /*
94          * allow a 2 second settle period in the beginning
95          */
96         if (mtime_since(&td->start, now) < 2000)
97                 return 0;
98
99         /*
100          * if rate blocks is set, sample is running
101          */
102         if (td->rate_bytes) {
103                 spent = mtime_since(&td->lastrate, now);
104                 if (spent < td->ratecycle)
105                         return 0;
106
107                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
108                 if (rate < td->ratemin) {
109                         fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
110                         return 1;
111                 }
112         }
113
114         td->rate_bytes = td->this_io_bytes[ddir];
115         memcpy(&td->lastrate, now, sizeof(*now));
116         return 0;
117 }
118
119 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
120 {
121         if (!td->timeout)
122                 return 0;
123         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
124                 return 1;
125
126         return 0;
127 }
128
129 static inline void td_set_runstate(struct thread_data *td, int runstate)
130 {
131         td->runstate = runstate;
132 }
133
134 static struct fio_file *get_next_file(struct thread_data *td)
135 {
136         unsigned int old_next_file = td->next_file;
137         struct fio_file *f;
138
139         do {
140                 f = &td->files[td->next_file];
141
142                 td->next_file++;
143                 if (td->next_file >= td->nr_files)
144                         td->next_file = 0;
145
146                 if (f->fd != -1)
147                         break;
148
149                 f = NULL;
150         } while (td->next_file != old_next_file);
151
152         return f;
153 }
154
155 /*
156  * When job exits, we can cancel the in-flight IO if we are using async
157  * io. Attempt to do so.
158  */
159 static void cleanup_pending_aio(struct thread_data *td)
160 {
161         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
162         struct list_head *entry, *n;
163         struct io_completion_data icd;
164         struct io_u *io_u;
165         int r;
166
167         /*
168          * get immediately available events, if any
169          */
170         r = td_io_getevents(td, 0, td->cur_depth, &ts);
171         if (r > 0) {
172                 icd.nr = r;
173                 ios_completed(td, &icd);
174         }
175
176         /*
177          * now cancel remaining active events
178          */
179         if (td->io_ops->cancel) {
180                 list_for_each_safe(entry, n, &td->io_u_busylist) {
181                         io_u = list_entry(entry, struct io_u, list);
182
183                         r = td->io_ops->cancel(td, io_u);
184                         if (!r)
185                                 put_io_u(td, io_u);
186                 }
187         }
188
189         if (td->cur_depth) {
190                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
191                 if (r > 0) {
192                         icd.nr = r;
193                         ios_completed(td, &icd);
194                 }
195         }
196 }
197
198 /*
199  * Helper to handle the final sync of a file. Works just like the normal
200  * io path, just does everything sync.
201  */
202 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
203 {
204         struct io_u *io_u = __get_io_u(td);
205         struct io_completion_data icd;
206         int ret;
207
208         if (!io_u)
209                 return 1;
210
211         io_u->ddir = DDIR_SYNC;
212         io_u->file = f;
213
214         if (td_io_prep(td, io_u)) {
215                 put_io_u(td, io_u);
216                 return 1;
217         }
218
219         ret = td_io_queue(td, io_u);
220         if (ret) {
221                 td_verror(td, io_u->error);
222                 put_io_u(td, io_u);
223                 return 1;
224         }
225
226         ret = td_io_getevents(td, 1, td->cur_depth, NULL);
227         if (ret < 0) {
228                 td_verror(td, ret);
229                 return 1;
230         }
231
232         icd.nr = ret;
233         ios_completed(td, &icd);
234         if (icd.error) {
235                 td_verror(td, icd.error);
236                 return 1;
237         }
238
239         return 0;
240 }
241
242 /*
243  * The main verify engine. Runs over the writes we previusly submitted,
244  * reads the blocks back in, and checks the crc/md5 of the data.
245  */
246 void do_verify(struct thread_data *td)
247 {
248         struct timeval t;
249         struct io_u *io_u, *v_io_u = NULL;
250         struct io_completion_data icd;
251         struct fio_file *f;
252         int ret, i;
253
254         /*
255          * sync io first and invalidate cache, to make sure we really
256          * read from disk.
257          */
258         for_each_file(td, f, i) {
259                 fio_io_sync(td, f);
260                 file_invalidate_cache(td, f);
261         }
262
263         td_set_runstate(td, TD_VERIFYING);
264
265         do {
266                 if (td->terminate)
267                         break;
268
269                 gettimeofday(&t, NULL);
270                 if (runtime_exceeded(td, &t))
271                         break;
272
273                 io_u = __get_io_u(td);
274                 if (!io_u)
275                         break;
276
277                 if (get_next_verify(td, io_u)) {
278                         put_io_u(td, io_u);
279                         break;
280                 }
281
282                 f = get_next_file(td);
283                 if (!f)
284                         break;
285
286                 io_u->file = f;
287
288                 if (td_io_prep(td, io_u)) {
289                         put_io_u(td, io_u);
290                         break;
291                 }
292
293                 ret = td_io_queue(td, io_u);
294                 if (ret) {
295                         td_verror(td, io_u->error);
296                         put_io_u(td, io_u);
297                         break;
298                 }
299
300                 /*
301                  * we have one pending to verify, do that while
302                  * we are doing io on the next one
303                  */
304                 if (do_io_u_verify(td, &v_io_u))
305                         break;
306
307                 ret = td_io_getevents(td, 1, 1, NULL);
308                 if (ret != 1) {
309                         if (ret < 0)
310                                 td_verror(td, ret);
311                         break;
312                 }
313
314                 v_io_u = td->io_ops->event(td, 0);
315                 icd.nr = 1;
316                 icd.error = 0;
317                 io_completed(td, v_io_u, &icd);
318
319                 if (icd.error) {
320                         td_verror(td, icd.error);
321                         put_io_u(td, v_io_u);
322                         v_io_u = NULL;
323                         break;
324                 }
325
326                 /*
327                  * if we can't submit more io, we need to verify now
328                  */
329                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
330                         break;
331
332         } while (1);
333
334         do_io_u_verify(td, &v_io_u);
335
336         if (td->cur_depth)
337                 cleanup_pending_aio(td);
338
339         td_set_runstate(td, TD_RUNNING);
340 }
341
342 /*
343  * Not really an io thread, all it does is burn CPU cycles in the specified
344  * manner.
345  */
346 static void do_cpuio(struct thread_data *td)
347 {
348         struct timeval e;
349         int split = 100 / td->cpuload;
350         int i = 0;
351
352         while (!td->terminate) {
353                 gettimeofday(&e, NULL);
354
355                 if (runtime_exceeded(td, &e))
356                         break;
357
358                 if (!(i % split))
359                         __usec_sleep(10000);
360                 else
361                         usec_sleep(td, 10000);
362
363                 i++;
364         }
365 }
366
367 /*
368  * Main IO worker function. It retrieves io_u's to process and queues
369  * and reaps them, checking for rate and errors along the way.
370  */
371 static void do_io(struct thread_data *td)
372 {
373         struct io_completion_data icd;
374         struct timeval s, e;
375         unsigned long usec;
376         struct fio_file *f;
377         int i, ret = 0;
378
379         td_set_runstate(td, TD_RUNNING);
380
381         while (td->this_io_bytes[td->ddir] < td->io_size) {
382                 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
383                 struct timespec *timeout;
384                 int min_evts = 0;
385                 struct io_u *io_u;
386
387                 if (td->terminate)
388                         break;
389
390                 f = get_next_file(td);
391                 if (!f)
392                         break;
393
394                 io_u = get_io_u(td, f);
395                 if (!io_u)
396                         break;
397
398                 memcpy(&s, &io_u->start_time, sizeof(s));
399
400                 ret = td_io_queue(td, io_u);
401                 if (ret) {
402                         td_verror(td, io_u->error);
403                         put_io_u(td, io_u);
404                         break;
405                 }
406
407                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
408
409                 if (td->cur_depth < td->iodepth) {
410                         timeout = &ts;
411                         min_evts = 0;
412                 } else {
413                         timeout = NULL;
414                         min_evts = 1;
415                 }
416
417                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
418                 if (ret < 0) {
419                         td_verror(td, ret);
420                         break;
421                 } else if (!ret)
422                         continue;
423
424                 icd.nr = ret;
425                 ios_completed(td, &icd);
426                 if (icd.error) {
427                         td_verror(td, icd.error);
428                         break;
429                 }
430
431                 /*
432                  * the rate is batched for now, it should work for batches
433                  * of completions except the very first one which may look
434                  * a little bursty
435                  */
436                 gettimeofday(&e, NULL);
437                 usec = utime_since(&s, &e);
438
439                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
440
441                 if (check_min_rate(td, &e)) {
442                         if (exitall_on_terminate)
443                                 terminate_threads(td->groupid);
444                         td_verror(td, ENOMEM);
445                         break;
446                 }
447
448                 if (runtime_exceeded(td, &e))
449                         break;
450
451                 if (td->thinktime)
452                         usec_sleep(td, td->thinktime);
453         }
454
455         if (!ret) {
456                 if (td->cur_depth)
457                         cleanup_pending_aio(td);
458
459                 if (should_fsync(td) && td->end_fsync) {
460                         td_set_runstate(td, TD_FSYNCING);
461                         for_each_file(td, f, i)
462                                 fio_io_sync(td, f);
463                 }
464         }
465 }
466
467 static void cleanup_io_u(struct thread_data *td)
468 {
469         struct list_head *entry, *n;
470         struct io_u *io_u;
471
472         list_for_each_safe(entry, n, &td->io_u_freelist) {
473                 io_u = list_entry(entry, struct io_u, list);
474
475                 list_del(&io_u->list);
476                 free(io_u);
477         }
478
479         free_io_mem(td);
480 }
481
482 /*
483  * "randomly" fill the buffer contents
484  */
485 static void fill_rand_buf(struct io_u *io_u, int max_bs)
486 {
487         int *ptr = io_u->buf;
488
489         while ((void *) ptr - io_u->buf < max_bs) {
490                 *ptr = rand() * 0x9e370001;
491                 ptr++;
492         }
493 }
494
495 static int init_io_u(struct thread_data *td)
496 {
497         struct io_u *io_u;
498         unsigned int max_bs;
499         int i, max_units;
500         char *p;
501
502         if (td->io_ops->flags & FIO_CPUIO)
503                 return 0;
504
505         if (td->io_ops->flags & FIO_SYNCIO)
506                 max_units = 1;
507         else
508                 max_units = td->iodepth;
509
510         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
511         td->orig_buffer_size = max_bs * max_units + MASK;
512
513         if (allocate_io_mem(td))
514                 return 1;
515
516         p = ALIGN(td->orig_buffer);
517         for (i = 0; i < max_units; i++) {
518                 io_u = malloc(sizeof(*io_u));
519                 memset(io_u, 0, sizeof(*io_u));
520                 INIT_LIST_HEAD(&io_u->list);
521
522                 io_u->buf = p + max_bs * i;
523                 if (td_write(td) || td_rw(td))
524                         fill_rand_buf(io_u, max_bs);
525
526                 io_u->index = i;
527                 list_add(&io_u->list, &td->io_u_freelist);
528         }
529
530         return 0;
531 }
532
533 static int switch_ioscheduler(struct thread_data *td)
534 {
535         char tmp[256], tmp2[128];
536         FILE *f;
537         int ret;
538
539         if (td->io_ops->flags & FIO_CPUIO)
540                 return 0;
541
542         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
543
544         f = fopen(tmp, "r+");
545         if (!f) {
546                 td_verror(td, errno);
547                 return 1;
548         }
549
550         /*
551          * Set io scheduler.
552          */
553         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
554         if (ferror(f) || ret != 1) {
555                 td_verror(td, errno);
556                 fclose(f);
557                 return 1;
558         }
559
560         rewind(f);
561
562         /*
563          * Read back and check that the selected scheduler is now the default.
564          */
565         ret = fread(tmp, 1, sizeof(tmp), f);
566         if (ferror(f) || ret < 0) {
567                 td_verror(td, errno);
568                 fclose(f);
569                 return 1;
570         }
571
572         sprintf(tmp2, "[%s]", td->ioscheduler);
573         if (!strstr(tmp, tmp2)) {
574                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
575                 td_verror(td, EINVAL);
576                 fclose(f);
577                 return 1;
578         }
579
580         fclose(f);
581         return 0;
582 }
583
584 static void clear_io_state(struct thread_data *td)
585 {
586         struct fio_file *f;
587         int i;
588
589         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
590         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
591         td->zone_bytes = 0;
592
593         for_each_file(td, f, i) {
594                 f->last_pos = 0;
595                 if (td->io_ops->flags & FIO_SYNCIO)
596                         lseek(f->fd, SEEK_SET, 0);
597
598                 if (f->file_map)
599                         memset(f->file_map, 0, f->num_maps * sizeof(long));
600         }
601 }
602
603 /*
604  * Entry point for the thread based jobs. The process based jobs end up
605  * here as well, after a little setup.
606  */
607 static void *thread_main(void *data)
608 {
609         struct thread_data *td = data;
610
611         if (!td->use_thread)
612                 setsid();
613
614         td->pid = getpid();
615
616         INIT_LIST_HEAD(&td->io_u_freelist);
617         INIT_LIST_HEAD(&td->io_u_busylist);
618         INIT_LIST_HEAD(&td->io_hist_list);
619         INIT_LIST_HEAD(&td->io_log_list);
620
621         if (init_io_u(td))
622                 goto err;
623
624         if (fio_setaffinity(td) == -1) {
625                 td_verror(td, errno);
626                 goto err;
627         }
628
629         if (td_io_init(td))
630                 goto err;
631
632         if (init_iolog(td))
633                 goto err;
634
635         if (td->ioprio) {
636                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
637                         td_verror(td, errno);
638                         goto err;
639                 }
640         }
641
642         if (nice(td->nice) == -1) {
643                 td_verror(td, errno);
644                 goto err;
645         }
646
647         if (init_random_state(td))
648                 goto err;
649
650         if (td->ioscheduler && switch_ioscheduler(td))
651                 goto err;
652
653         td_set_runstate(td, TD_INITIALIZED);
654         fio_sem_up(&startup_sem);
655         fio_sem_down(&td->mutex);
656
657         if (!td->create_serialize && setup_files(td))
658                 goto err;
659
660         gettimeofday(&td->epoch, NULL);
661
662         if (td->exec_prerun)
663                 system(td->exec_prerun);
664
665         while (td->loops--) {
666                 getrusage(RUSAGE_SELF, &td->ru_start);
667                 gettimeofday(&td->start, NULL);
668                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
669
670                 if (td->ratemin)
671                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
672
673                 clear_io_state(td);
674                 prune_io_piece_log(td);
675
676                 if (td->io_ops->flags & FIO_CPUIO)
677                         do_cpuio(td);
678                 else
679                         do_io(td);
680
681                 td->runtime[td->ddir] += mtime_since_now(&td->start);
682                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
683                         td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
684
685                 update_rusage_stat(td);
686
687                 if (td->error || td->terminate)
688                         break;
689
690                 if (td->verify == VERIFY_NONE)
691                         continue;
692
693                 clear_io_state(td);
694                 gettimeofday(&td->start, NULL);
695
696                 do_verify(td);
697
698                 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
699
700                 if (td->error || td->terminate)
701                         break;
702         }
703
704         if (td->bw_log)
705                 finish_log(td, td->bw_log, "bw");
706         if (td->slat_log)
707                 finish_log(td, td->slat_log, "slat");
708         if (td->clat_log)
709                 finish_log(td, td->clat_log, "clat");
710         if (td->write_iolog_file)
711                 write_iolog_close(td);
712         if (td->exec_postrun)
713                 system(td->exec_postrun);
714
715         if (exitall_on_terminate)
716                 terminate_threads(td->groupid);
717
718 err:
719         close_files(td);
720         close_ioengine(td);
721         cleanup_io_u(td);
722         td_set_runstate(td, TD_EXITED);
723         return NULL;
724
725 }
726
727 /*
728  * We cannot pass the td data into a forked process, so attach the td and
729  * pass it to the thread worker.
730  */
731 static void *fork_main(int shmid, int offset)
732 {
733         struct thread_data *td;
734         void *data;
735
736         data = shmat(shmid, NULL, 0);
737         if (data == (void *) -1) {
738                 perror("shmat");
739                 return NULL;
740         }
741
742         td = data + offset * sizeof(struct thread_data);
743         thread_main(td);
744         shmdt(data);
745         return NULL;
746 }
747
748 /*
749  * Run over the job map and reap the threads that have exited, if any.
750  */
751 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
752 {
753         struct thread_data *td;
754         int i, cputhreads;
755
756         /*
757          * reap exited threads (TD_EXITED -> TD_REAPED)
758          */
759         cputhreads = 0;
760         for_each_td(td, i) {
761                 /*
762                  * ->io_ops is NULL for a thread that has closed its
763                  * io engine
764                  */
765                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
766                         cputhreads++;
767
768                 if (td->runstate != TD_EXITED)
769                         continue;
770
771                 td_set_runstate(td, TD_REAPED);
772
773                 if (td->use_thread) {
774                         long ret;
775
776                         if (pthread_join(td->thread, (void *) &ret))
777                                 perror("thread_join");
778                 } else
779                         waitpid(td->pid, NULL, 0);
780
781                 (*nr_running)--;
782                 (*m_rate) -= td->ratemin;
783                 (*t_rate) -= td->rate;
784         }
785
786         if (*nr_running == cputhreads)
787                 terminate_threads(TERMINATE_ALL);
788 }
789
790 /*
791  * Main function for kicking off and reaping jobs, as needed.
792  */
793 static void run_threads(void)
794 {
795         struct thread_data *td;
796         unsigned long spent;
797         int i, todo, nr_running, m_rate, t_rate, nr_started;
798
799         if (fio_pin_memory())
800                 return;
801
802         if (!terse_output) {
803                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
804                 fflush(stdout);
805         }
806
807         signal(SIGINT, sig_handler);
808         signal(SIGALRM, sig_handler);
809
810         todo = thread_number;
811         nr_running = 0;
812         nr_started = 0;
813         m_rate = t_rate = 0;
814
815         for_each_td(td, i) {
816                 print_status_init(td->thread_number - 1);
817
818                 init_disk_util(td);
819
820                 if (!td->create_serialize)
821                         continue;
822
823                 /*
824                  * do file setup here so it happens sequentially,
825                  * we don't want X number of threads getting their
826                  * client data interspersed on disk
827                  */
828                 if (setup_files(td)) {
829                         td_set_runstate(td, TD_REAPED);
830                         todo--;
831                 }
832         }
833
834         time_init();
835
836         while (todo) {
837                 struct thread_data *map[MAX_JOBS];
838                 struct timeval this_start;
839                 int this_jobs = 0, left;
840
841                 /*
842                  * create threads (TD_NOT_CREATED -> TD_CREATED)
843                  */
844                 for_each_td(td, i) {
845                         if (td->runstate != TD_NOT_CREATED)
846                                 continue;
847
848                         /*
849                          * never got a chance to start, killed by other
850                          * thread for some reason
851                          */
852                         if (td->terminate) {
853                                 todo--;
854                                 continue;
855                         }
856
857                         if (td->start_delay) {
858                                 spent = mtime_since_genesis();
859
860                                 if (td->start_delay * 1000 > spent)
861                                         continue;
862                         }
863
864                         if (td->stonewall && (nr_started || nr_running))
865                                 break;
866
867                         /*
868                          * Set state to created. Thread will transition
869                          * to TD_INITIALIZED when it's done setting up.
870                          */
871                         td_set_runstate(td, TD_CREATED);
872                         map[this_jobs++] = td;
873                         fio_sem_init(&startup_sem, 1);
874                         nr_started++;
875
876                         if (td->use_thread) {
877                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
878                                         perror("thread_create");
879                                         nr_started--;
880                                 }
881                         } else {
882                                 if (fork())
883                                         fio_sem_down(&startup_sem);
884                                 else {
885                                         fork_main(shm_id, i);
886                                         exit(0);
887                                 }
888                         }
889                 }
890
891                 /*
892                  * Wait for the started threads to transition to
893                  * TD_INITIALIZED.
894                  */
895                 gettimeofday(&this_start, NULL);
896                 left = this_jobs;
897                 while (left) {
898                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
899                                 break;
900
901                         usleep(100000);
902
903                         for (i = 0; i < this_jobs; i++) {
904                                 td = map[i];
905                                 if (!td)
906                                         continue;
907                                 if (td->runstate == TD_INITIALIZED) {
908                                         map[i] = NULL;
909                                         left--;
910                                 } else if (td->runstate >= TD_EXITED) {
911                                         map[i] = NULL;
912                                         left--;
913                                         todo--;
914                                         nr_running++; /* work-around... */
915                                 }
916                         }
917                 }
918
919                 if (left) {
920                         log_err("fio: %d jobs failed to start\n", left);
921                         for (i = 0; i < this_jobs; i++) {
922                                 td = map[i];
923                                 if (!td)
924                                         continue;
925                                 kill(td->pid, SIGTERM);
926                         }
927                         break;
928                 }
929
930                 /*
931                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
932                  */
933                 for_each_td(td, i) {
934                         if (td->runstate != TD_INITIALIZED)
935                                 continue;
936
937                         td_set_runstate(td, TD_RUNNING);
938                         nr_running++;
939                         nr_started--;
940                         m_rate += td->ratemin;
941                         t_rate += td->rate;
942                         todo--;
943                         fio_sem_up(&td->mutex);
944                 }
945
946                 reap_threads(&nr_running, &t_rate, &m_rate);
947
948                 if (todo)
949                         usleep(100000);
950         }
951
952         while (nr_running) {
953                 reap_threads(&nr_running, &t_rate, &m_rate);
954                 usleep(10000);
955         }
956
957         update_io_ticks();
958         fio_unpin_memory();
959 }
960
961 int main(int argc, char *argv[])
962 {
963         if (parse_options(argc, argv))
964                 return 1;
965
966         if (!thread_number) {
967                 log_err("Nothing to do\n");
968                 return 1;
969         }
970
971         disk_util_timer_arm();
972
973         run_threads();
974         show_run_stats();
975
976         return 0;
977 }