Avoid double-declaration of ARRAY_SIZE
[fio.git] / fio.1
1 .TH fio 1 "October 2013" "User Manual"
2 .SH NAME
3 fio \- flexible I/O tester
4 .SH SYNOPSIS
5 .B fio
6 [\fIoptions\fR] [\fIjobfile\fR]...
7 .SH DESCRIPTION
8 .B fio
9 is a tool that will spawn a number of threads or processes doing a
10 particular type of I/O action as specified by the user.
11 The typical use of fio is to write a job file matching the I/O load
12 one wants to simulate.
13 .SH OPTIONS
14 .TP
15 .BI \-\-debug \fR=\fPtype
16 Enable verbose tracing of various fio actions. May be `all' for all types
17 or individual types separated by a comma (eg \-\-debug=io,file). `help' will
18 list all available tracing options.
19 .TP
20 .BI \-\-output \fR=\fPfilename
21 Write output to \fIfilename\fR.
22 .TP
23 .BI \-\-runtime \fR=\fPruntime
24 Limit run time to \fIruntime\fR seconds.
25 .TP
26 .B \-\-latency\-log
27 Generate per-job latency logs.
28 .TP
29 .B \-\-bandwidth\-log
30 Generate per-job bandwidth logs.
31 .TP
32 .B \-\-minimal
33 Print statistics in a terse, semicolon-delimited format.
34 .TP
35 .B \-\-append-terse
36 Print statistics in selected mode AND terse, semicolon-delimited format.
37 .TP
38 .B \-\-version
39 Display version information and exit.
40 .TP
41 .BI \-\-terse\-version \fR=\fPversion
42 Set terse version output format (Current version 3, or older version 2).
43 .TP
44 .B \-\-help
45 Display usage information and exit.
46 .TP
47 .B \-\-cpuclock-test
48 Perform test and validation of internal CPU clock
49 .TP
50 .BI \-\-crctest[\fR=\fPtest]
51 Test the speed of the builtin checksumming functions. If no argument is given,
52 all of them are tested. Or a comma separated list can be passed, in which
53 case the given ones are tested.
54 .TP
55 .BI \-\-cmdhelp \fR=\fPcommand
56 Print help information for \fIcommand\fR.  May be `all' for all commands.
57 .TP
58 .BI \-\-enghelp \fR=\fPioengine[,command]
59 List all commands defined by \fIioengine\fR, or print help for \fIcommand\fR defined by \fIioengine\fR.
60 .TP
61 .BI \-\-showcmd \fR=\fPjobfile
62 Convert \fIjobfile\fR to a set of command-line options.
63 .TP
64 .BI \-\-eta \fR=\fPwhen
65 Specifies when real-time ETA estimate should be printed.  \fIwhen\fR may
66 be one of `always', `never' or `auto'.
67 .TP
68 .BI \-\-eta\-newline \fR=\fPtime
69 Force an ETA newline for every `time` period passed.
70 .TP
71 .BI \-\-status\-interval \fR=\fPtime
72 Report full output status every `time` period passed.
73 .TP
74 .BI \-\-readonly
75 Turn on safety read-only checks, preventing any attempted write.
76 .TP
77 .BI \-\-section \fR=\fPsec
78 Only run section \fIsec\fR from job file. Multiple of these options can be given, adding more sections to run.
79 .TP
80 .BI \-\-alloc\-size \fR=\fPkb
81 Set the internal smalloc pool size to \fIkb\fP kilobytes.
82 .TP
83 .BI \-\-warnings\-fatal
84 All fio parser warnings are fatal, causing fio to exit with an error.
85 .TP
86 .BI \-\-max\-jobs \fR=\fPnr
87 Set the maximum allowed number of jobs (threads/processes) to support.
88 .TP
89 .BI \-\-server \fR=\fPargs
90 Start a backend server, with \fIargs\fP specifying what to listen to. See client/server section.
91 .TP
92 .BI \-\-daemonize \fR=\fPpidfile
93 Background a fio server, writing the pid to the given pid file.
94 .TP
95 .BI \-\-client \fR=\fPhost
96 Instead of running the jobs locally, send and run them on the given host.
97 .TP
98 .BI \-\-idle\-prof \fR=\fPoption
99 Report cpu idleness on a system or percpu basis (\fIoption\fP=system,percpu) or run unit work calibration only (\fIoption\fP=calibrate).
100 .SH "JOB FILE FORMAT"
101 Job files are in `ini' format. They consist of one or more
102 job definitions, which begin with a job name in square brackets and
103 extend to the next job name.  The job name can be any ASCII string
104 except `global', which has a special meaning.  Following the job name is
105 a sequence of zero or more parameters, one per line, that define the
106 behavior of the job.  Any line starting with a `;' or `#' character is
107 considered a comment and ignored.
108 .P
109 If \fIjobfile\fR is specified as `-', the job file will be read from
110 standard input.
111 .SS "Global Section"
112 The global section contains default parameters for jobs specified in the
113 job file.  A job is only affected by global sections residing above it,
114 and there may be any number of global sections.  Specific job definitions
115 may override any parameter set in global sections.
116 .SH "JOB PARAMETERS"
117 .SS Types
118 Some parameters may take arguments of a specific type.  The types used are:
119 .TP
120 .I str
121 String: a sequence of alphanumeric characters.
122 .TP
123 .I int
124 SI integer: a whole number, possibly containing a suffix denoting the base unit
125 of the value.  Accepted suffixes are `k', 'M', 'G', 'T', and 'P', denoting
126 kilo (1024), mega (1024^2), giga (1024^3), tera (1024^4), and peta (1024^5)
127 respectively. If prefixed with '0x', the value is assumed to be base 16
128 (hexadecimal). A suffix may include a trailing 'b', for instance 'kb' is
129 identical to 'k'. You can specify a base 10 value by using 'KiB', 'MiB','GiB',
130 etc. This is useful for disk drives where values are often given in base 10
131 values. Specifying '30GiB' will get you 30*1000^3 bytes.
132 When specifying times the default suffix meaning changes, still denoting the
133 base unit of the value, but accepted suffixes are 'D' (days), 'H' (hours), 'M'
134 (minutes), 'S' Seconds, 'ms' (or msec) milli seconds, 'us' (or 'usec') micro
135 seconds. Time values without a unit specify seconds.
136 The suffixes are not case sensitive.
137 .TP
138 .I bool
139 Boolean: a true or false value. `0' denotes false, `1' denotes true.
140 .TP
141 .I irange
142 Integer range: a range of integers specified in the format
143 \fIlower\fR:\fIupper\fR or \fIlower\fR\-\fIupper\fR. \fIlower\fR and
144 \fIupper\fR may contain a suffix as described above.  If an option allows two
145 sets of ranges, they are separated with a `,' or `/' character. For example:
146 `8\-8k/8M\-4G'.
147 .TP
148 .I float_list
149 List of floating numbers: A list of floating numbers, separated by
150 a ':' character.
151 .SS "Parameter List"
152 .TP
153 .BI name \fR=\fPstr
154 May be used to override the job name.  On the command line, this parameter
155 has the special purpose of signalling the start of a new job.
156 .TP
157 .BI description \fR=\fPstr
158 Human-readable description of the job. It is printed when the job is run, but
159 otherwise has no special purpose.
160 .TP
161 .BI directory \fR=\fPstr
162 Prefix filenames with this directory.  Used to place files in a location other
163 than `./'.
164 You can specify a number of directories by separating the names with a ':'
165 character. These directories will be assigned equally distributed to job clones
166 creates with \fInumjobs\fR as long as they are using generated filenames.
167 If specific \fIfilename(s)\fR are set fio will use the first listed directory,
168 and thereby matching the  \fIfilename\fR semantic which generates a file each
169 clone if not specified, but let all clones use the same if set. See
170 \fIfilename\fR for considerations regarding escaping certain characters on
171 some platforms.
172 .TP
173 .BI filename \fR=\fPstr
174 .B fio
175 normally makes up a file name based on the job name, thread number, and file
176 number. If you want to share files between threads in a job or several jobs,
177 specify a \fIfilename\fR for each of them to override the default.
178 If the I/O engine is file-based, you can specify
179 a number of files by separating the names with a `:' character. `\-' is a
180 reserved name, meaning stdin or stdout, depending on the read/write direction
181 set. On Windows, disk devices are accessed as \\.\PhysicalDrive0 for the first
182 device, \\.\PhysicalDrive1 for the second etc. Note: Windows and FreeBSD
183 prevent write access to areas of the disk containing in-use data
184 (e.g. filesystems). If the wanted filename does need to include a colon, then
185 escape that with a '\' character. For instance, if the filename is
186 "/dev/dsk/foo@3,0:c", then you would use filename="/dev/dsk/foo@3,0\:c".
187 .TP
188 .BI filename_format \fR=\fPstr
189 If sharing multiple files between jobs, it is usually necessary to have
190 fio generate the exact names that you want. By default, fio will name a file
191 based on the default file format specification of
192 \fBjobname.jobnumber.filenumber\fP. With this option, that can be
193 customized. Fio will recognize and replace the following keywords in this
194 string:
195 .RS
196 .RS
197 .TP
198 .B $jobname
199 The name of the worker thread or process.
200 .TP
201 .B $jobnum
202 The incremental number of the worker thread or process.
203 .TP
204 .B $filenum
205 The incremental number of the file for that worker thread or process.
206 .RE
207 .P
208 To have dependent jobs share a set of files, this option can be set to
209 have fio generate filenames that are shared between the two. For instance,
210 if \fBtestfiles.$filenum\fR is specified, file number 4 for any job will
211 be named \fBtestfiles.4\fR. The default of \fB$jobname.$jobnum.$filenum\fR
212 will be used if no other format specifier is given.
213 .RE
214 .P
215 .TP
216 .BI lockfile \fR=\fPstr
217 Fio defaults to not locking any files before it does IO to them. If a file or
218 file descriptor is shared, fio can serialize IO to that file to make the end
219 result consistent. This is usual for emulating real workloads that share files.
220 The lock modes are:
221 .RS
222 .RS
223 .TP
224 .B none
225 No locking. This is the default.
226 .TP
227 .B exclusive
228 Only one thread or process may do IO at the time, excluding all others.
229 .TP
230 .B readwrite
231 Read-write locking on the file. Many readers may access the file at the same
232 time, but writes get exclusive access.
233 .RE
234 .RE
235 .P
236 .BI opendir \fR=\fPstr
237 Recursively open any files below directory \fIstr\fR.
238 .TP
239 .BI readwrite \fR=\fPstr "\fR,\fP rw" \fR=\fPstr
240 Type of I/O pattern.  Accepted values are:
241 .RS
242 .RS
243 .TP
244 .B read
245 Sequential reads.
246 .TP
247 .B write
248 Sequential writes.
249 .TP
250 .B trim
251 Sequential trim (Linux block devices only).
252 .TP
253 .B randread
254 Random reads.
255 .TP
256 .B randwrite
257 Random writes.
258 .TP
259 .B randtrim
260 Random trim (Linux block devices only).
261 .TP
262 .B rw, readwrite
263 Mixed sequential reads and writes.
264 .TP
265 .B randrw 
266 Mixed random reads and writes.
267 .RE
268 .P
269 For mixed I/O, the default split is 50/50. For certain types of io the result
270 may still be skewed a bit, since the speed may be different. It is possible to
271 specify a number of IO's to do before getting a new offset, this is done by
272 appending a `:\fI<nr>\fR to the end of the string given. For a random read, it
273 would look like \fBrw=randread:8\fR for passing in an offset modifier with a
274 value of 8. If the postfix is used with a sequential IO pattern, then the value
275 specified will be added to the generated offset for each IO. For instance,
276 using \fBrw=write:4k\fR will skip 4k for every write. It turns sequential IO
277 into sequential IO with holes. See the \fBrw_sequencer\fR option.
278 .RE
279 .TP
280 .BI rw_sequencer \fR=\fPstr
281 If an offset modifier is given by appending a number to the \fBrw=<str>\fR line,
282 then this option controls how that number modifies the IO offset being
283 generated. Accepted values are:
284 .RS
285 .RS
286 .TP
287 .B sequential
288 Generate sequential offset
289 .TP
290 .B identical
291 Generate the same offset
292 .RE
293 .P
294 \fBsequential\fR is only useful for random IO, where fio would normally
295 generate a new random offset for every IO. If you append eg 8 to randread, you
296 would get a new random offset for every 8 IO's. The result would be a seek for
297 only every 8 IO's, instead of for every IO. Use \fBrw=randread:8\fR to specify
298 that. As sequential IO is already sequential, setting \fBsequential\fR for that
299 would not result in any differences.  \fBidentical\fR behaves in a similar
300 fashion, except it sends the same offset 8 number of times before generating a
301 new offset.
302 .RE
303 .P
304 .TP
305 .BI kb_base \fR=\fPint
306 The base unit for a kilobyte. The defacto base is 2^10, 1024.  Storage
307 manufacturers like to use 10^3 or 1000 as a base ten unit instead, for obvious
308 reasons. Allowed values are 1024 or 1000, with 1024 being the default.
309 .TP
310 .BI unified_rw_reporting \fR=\fPbool
311 Fio normally reports statistics on a per data direction basis, meaning that
312 read, write, and trim are accounted and reported separately. If this option is
313 set, the fio will sum the results and report them as "mixed" instead.
314 .TP
315 .BI randrepeat \fR=\fPbool
316 Seed the random number generator used for random I/O patterns in a predictable
317 way so the pattern is repeatable across runs.  Default: true.
318 .TP
319 .BI allrandrepeat \fR=\fPbool
320 Seed all random number generators in a predictable way so results are
321 repeatable across runs.  Default: false.
322 .TP
323 .BI randseed \fR=\fPint
324 Seed the random number generators based on this seed value, to be able to
325 control what sequence of output is being generated. If not set, the random
326 sequence depends on the \fBrandrepeat\fR setting.
327 .TP
328 .BI use_os_rand \fR=\fPbool
329 Fio can either use the random generator supplied by the OS to generator random
330 offsets, or it can use it's own internal generator (based on Tausworthe).
331 Default is to use the internal generator, which is often of better quality and
332 faster. Default: false.
333 .TP
334 .BI fallocate \fR=\fPstr
335 Whether pre-allocation is performed when laying down files. Accepted values
336 are:
337 .RS
338 .RS
339 .TP
340 .B none
341 Do not pre-allocate space.
342 .TP
343 .B posix
344 Pre-allocate via \fBposix_fallocate\fR\|(3).
345 .TP
346 .B keep
347 Pre-allocate via \fBfallocate\fR\|(2) with FALLOC_FL_KEEP_SIZE set.
348 .TP
349 .B 0
350 Backward-compatible alias for 'none'.
351 .TP
352 .B 1
353 Backward-compatible alias for 'posix'.
354 .RE
355 .P
356 May not be available on all supported platforms. 'keep' is only
357 available on Linux. If using ZFS on Solaris this must be set to 'none'
358 because ZFS doesn't support it. Default: 'posix'.
359 .RE
360 .TP
361 .BI fadvise_hint \fR=\fPbool
362 Use of \fBposix_fadvise\fR\|(2) to advise the kernel what I/O patterns
363 are likely to be issued. Default: true.
364 .TP
365 .BI size \fR=\fPint
366 Total size of I/O for this job.  \fBfio\fR will run until this many bytes have
367 been transferred, unless limited by other options (\fBruntime\fR, for instance).
368 Unless \fBnrfiles\fR and \fBfilesize\fR options are given, this amount will be
369 divided between the available files for the job. If not set, fio will use the
370 full size of the given files or devices. If the files do not exist, size
371 must be given. It is also possible to give size as a percentage between 1 and
372 100. If size=20% is given, fio will use 20% of the full size of the given
373 files or devices.
374 .TP
375 .BI io_limit \fR=\fPint
376 Normally fio operates within the region set by \fBsize\fR, which means that
377 the \fBsize\fR option sets both the region and size of IO to be performed.
378 Sometimes that is not what you want. With this option, it is possible to
379 define just the amount of IO that fio should do. For instance, if \fBsize\fR
380 is set to 20G and \fBio_limit\fR is set to 5G, fio will perform IO within
381 the first 20G but exit when 5G have been done.
382 .TP
383 .BI fill_device \fR=\fPbool "\fR,\fB fill_fs" \fR=\fPbool
384 Sets size to something really large and waits for ENOSPC (no space left on
385 device) as the terminating condition. Only makes sense with sequential write.
386 For a read workload, the mount point will be filled first then IO started on
387 the result. This option doesn't make sense if operating on a raw device node,
388 since the size of that is already known by the file system. Additionally,
389 writing beyond end-of-device will not return ENOSPC there.
390 .TP
391 .BI filesize \fR=\fPirange
392 Individual file sizes. May be a range, in which case \fBfio\fR will select sizes
393 for files at random within the given range, limited to \fBsize\fR in total (if
394 that is given). If \fBfilesize\fR is not specified, each created file is the
395 same size.
396 .TP
397 .BI file_append \fR=\fPbool
398 Perform IO after the end of the file. Normally fio will operate within the
399 size of a file. If this option is set, then fio will append to the file
400 instead. This has identical behavior to setting \fRoffset\fP to the size
401 of a file. This option is ignored on non-regular files.
402 .TP
403 .BI blocksize \fR=\fPint[,int] "\fR,\fB bs" \fR=\fPint[,int]
404 Block size for I/O units.  Default: 4k.  Values for reads, writes, and trims
405 can be specified separately in the format \fIread\fR,\fIwrite\fR,\fItrim\fR
406 either of which may be empty to leave that value at its default. If a trailing
407 comma isn't given, the remainder will inherit the last value set.
408 .TP
409 .BI blocksize_range \fR=\fPirange[,irange] "\fR,\fB bsrange" \fR=\fPirange[,irange]
410 Specify a range of I/O block sizes.  The issued I/O unit will always be a
411 multiple of the minimum size, unless \fBblocksize_unaligned\fR is set.  Applies
412 to both reads and writes if only one range is given, but can be specified
413 separately with a comma separating the values. Example: bsrange=1k-4k,2k-8k.
414 Also (see \fBblocksize\fR).
415 .TP
416 .BI bssplit \fR=\fPstr
417 This option allows even finer grained control of the block sizes issued,
418 not just even splits between them. With this option, you can weight various
419 block sizes for exact control of the issued IO for a job that has mixed
420 block sizes. The format of the option is bssplit=blocksize/percentage,
421 optionally adding as many definitions as needed separated by a colon.
422 Example: bssplit=4k/10:64k/50:32k/40 would issue 50% 64k blocks, 10% 4k
423 blocks and 40% 32k blocks. \fBbssplit\fR also supports giving separate
424 splits to reads and writes. The format is identical to what the
425 \fBbs\fR option accepts, the read and write parts are separated with a
426 comma.
427 .TP
428 .B blocksize_unaligned\fR,\fP bs_unaligned
429 If set, any size in \fBblocksize_range\fR may be used.  This typically won't
430 work with direct I/O, as that normally requires sector alignment.
431 .TP
432 .BI blockalign \fR=\fPint[,int] "\fR,\fB ba" \fR=\fPint[,int]
433 At what boundary to align random IO offsets. Defaults to the same as 'blocksize'
434 the minimum blocksize given.  Minimum alignment is typically 512b
435 for using direct IO, though it usually depends on the hardware block size.
436 This option is mutually exclusive with using a random map for files, so it
437 will turn off that option.
438 .TP
439 .BI bs_is_seq_rand \fR=\fPbool
440 If this option is set, fio will use the normal read,write blocksize settings as
441 sequential,random instead. Any random read or write will use the WRITE
442 blocksize settings, and any sequential read or write will use the READ
443 blocksize setting.
444 .TP
445 .B zero_buffers
446 Initialise buffers with all zeros. Default: fill buffers with random data.
447 The resulting IO buffers will not be completely zeroed, unless
448 \fPscramble_buffers\fR is also turned off.
449 .TP
450 .B refill_buffers
451 If this option is given, fio will refill the IO buffers on every submit. The
452 default is to only fill it at init time and reuse that data. Only makes sense
453 if zero_buffers isn't specified, naturally. If data verification is enabled,
454 refill_buffers is also automatically enabled.
455 .TP
456 .BI scramble_buffers \fR=\fPbool
457 If \fBrefill_buffers\fR is too costly and the target is using data
458 deduplication, then setting this option will slightly modify the IO buffer
459 contents to defeat normal de-dupe attempts. This is not enough to defeat
460 more clever block compression attempts, but it will stop naive dedupe
461 of blocks. Default: true.
462 .TP
463 .BI buffer_compress_percentage \fR=\fPint
464 If this is set, then fio will attempt to provide IO buffer content (on WRITEs)
465 that compress to the specified level. Fio does this by providing a mix of
466 random data and zeroes. Note that this is per block size unit, for file/disk
467 wide compression level that matches this setting, you'll also want to set
468 \fBrefill_buffers\fR.
469 .TP
470 .BI buffer_compress_chunk \fR=\fPint
471 See \fBbuffer_compress_percentage\fR. This setting allows fio to manage how
472 big the ranges of random data and zeroed data is. Without this set, fio will
473 provide \fBbuffer_compress_percentage\fR of blocksize random data, followed by
474 the remaining zeroed. With this set to some chunk size smaller than the block
475 size, fio can alternate random and zeroed data throughout the IO buffer.
476 .TP
477 .BI buffer_pattern \fR=\fPstr
478 If set, fio will fill the io buffers with this pattern. If not set, the contents
479 of io buffers is defined by the other options related to buffer contents. The
480 setting can be any pattern of bytes, and can be prefixed with 0x for hex
481 values.
482 .TP
483 .BI nrfiles \fR=\fPint
484 Number of files to use for this job.  Default: 1.
485 .TP
486 .BI openfiles \fR=\fPint
487 Number of files to keep open at the same time.  Default: \fBnrfiles\fR.
488 .TP
489 .BI file_service_type \fR=\fPstr
490 Defines how files to service are selected.  The following types are defined:
491 .RS
492 .RS
493 .TP
494 .B random
495 Choose a file at random.
496 .TP
497 .B roundrobin
498 Round robin over open files (default).
499 .TP
500 .B sequential
501 Do each file in the set sequentially.
502 .RE
503 .P
504 The number of I/Os to issue before switching a new file can be specified by
505 appending `:\fIint\fR' to the service type.
506 .RE
507 .TP
508 .BI ioengine \fR=\fPstr
509 Defines how the job issues I/O.  The following types are defined:
510 .RS
511 .RS
512 .TP
513 .B sync
514 Basic \fBread\fR\|(2) or \fBwrite\fR\|(2) I/O.  \fBfseek\fR\|(2) is used to
515 position the I/O location.
516 .TP
517 .B psync
518 Basic \fBpread\fR\|(2) or \fBpwrite\fR\|(2) I/O.
519 .TP
520 .B vsync
521 Basic \fBreadv\fR\|(2) or \fBwritev\fR\|(2) I/O. Will emulate queuing by
522 coalescing adjacent IOs into a single submission.
523 .TP
524 .B pvsync
525 Basic \fBpreadv\fR\|(2) or \fBpwritev\fR\|(2) I/O.
526 .TP
527 .B libaio
528 Linux native asynchronous I/O. This ioengine defines engine specific options.
529 .TP
530 .B posixaio
531 POSIX asynchronous I/O using \fBaio_read\fR\|(3) and \fBaio_write\fR\|(3).
532 .TP
533 .B solarisaio
534 Solaris native asynchronous I/O.
535 .TP
536 .B windowsaio
537 Windows native asynchronous I/O.
538 .TP
539 .B mmap
540 File is memory mapped with \fBmmap\fR\|(2) and data copied using
541 \fBmemcpy\fR\|(3).
542 .TP
543 .B splice
544 \fBsplice\fR\|(2) is used to transfer the data and \fBvmsplice\fR\|(2) to
545 transfer data from user-space to the kernel.
546 .TP
547 .B syslet-rw
548 Use the syslet system calls to make regular read/write asynchronous.
549 .TP
550 .B sg
551 SCSI generic sg v3 I/O. May be either synchronous using the SG_IO ioctl, or if
552 the target is an sg character device, we use \fBread\fR\|(2) and
553 \fBwrite\fR\|(2) for asynchronous I/O.
554 .TP
555 .B null
556 Doesn't transfer any data, just pretends to.  Mainly used to exercise \fBfio\fR
557 itself and for debugging and testing purposes.
558 .TP
559 .B net
560 Transfer over the network.  The protocol to be used can be defined with the
561 \fBprotocol\fR parameter.  Depending on the protocol, \fBfilename\fR,
562 \fBhostname\fR, \fBport\fR, or \fBlisten\fR must be specified.
563 This ioengine defines engine specific options.
564 .TP
565 .B netsplice
566 Like \fBnet\fR, but uses \fBsplice\fR\|(2) and \fBvmsplice\fR\|(2) to map data
567 and send/receive. This ioengine defines engine specific options.
568 .TP
569 .B cpuio
570 Doesn't transfer any data, but burns CPU cycles according to \fBcpuload\fR and
571 \fBcpucycles\fR parameters.
572 .TP
573 .B guasi
574 The GUASI I/O engine is the Generic Userspace Asynchronous Syscall Interface
575 approach to asynchronous I/O.
576 .br
577 See <http://www.xmailserver.org/guasi\-lib.html>.
578 .TP
579 .B rdma
580 The RDMA I/O engine supports both RDMA memory semantics (RDMA_WRITE/RDMA_READ)
581 and channel semantics (Send/Recv) for the InfiniBand, RoCE and iWARP protocols.
582 .TP
583 .B external
584 Loads an external I/O engine object file.  Append the engine filename as
585 `:\fIenginepath\fR'.
586 .TP
587 .B falloc
588    IO engine that does regular linux native fallocate call to simulate data
589 transfer as fio ioengine
590 .br
591   DDIR_READ  does fallocate(,mode = FALLOC_FL_KEEP_SIZE,)
592 .br
593   DIR_WRITE does fallocate(,mode = 0)
594 .br
595   DDIR_TRIM does fallocate(,mode = FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE)
596 .TP
597 .B e4defrag
598 IO engine that does regular EXT4_IOC_MOVE_EXT ioctls to simulate defragment activity
599 request to DDIR_WRITE event
600 .TP
601 .B rbd
602 IO engine supporting direct access to Ceph Rados Block Devices (RBD) via librbd 
603 without the need to use the kernel rbd driver. This ioengine defines engine specific 
604 options.
605 .RE
606 .P
607 .RE
608 .TP
609 .BI iodepth \fR=\fPint
610 Number of I/O units to keep in flight against the file. Note that increasing
611 iodepth beyond 1 will not affect synchronous ioengines (except for small
612 degress when verify_async is in use). Even async engines my impose OS
613 restrictions causing the desired depth not to be achieved.  This may happen on
614 Linux when using libaio and not setting \fBdirect\fR=1, since buffered IO is
615 not async on that OS. Keep an eye on the IO depth distribution in the
616 fio output to verify that the achieved depth is as expected. Default: 1.
617 .TP
618 .BI iodepth_batch \fR=\fPint
619 Number of I/Os to submit at once.  Default: \fBiodepth\fR.
620 .TP
621 .BI iodepth_batch_complete \fR=\fPint
622 This defines how many pieces of IO to retrieve at once. It defaults to 1 which
623  means that we'll ask for a minimum of 1 IO in the retrieval process from the
624 kernel. The IO retrieval will go on until we hit the limit set by
625 \fBiodepth_low\fR. If this variable is set to 0, then fio will always check for
626 completed events before queuing more IO. This helps reduce IO latency, at the
627 cost of more retrieval system calls.
628 .TP
629 .BI iodepth_low \fR=\fPint
630 Low watermark indicating when to start filling the queue again.  Default:
631 \fBiodepth\fR. 
632 .TP
633 .BI direct \fR=\fPbool
634 If true, use non-buffered I/O (usually O_DIRECT).  Default: false.
635 .TP
636 .BI atomic \fR=\fPbool
637 If value is true, attempt to use atomic direct IO. Atomic writes are guaranteed
638 to be stable once acknowledged by the operating system. Only Linux supports
639 O_ATOMIC right now.
640 .TP
641 .BI buffered \fR=\fPbool
642 If true, use buffered I/O.  This is the opposite of the \fBdirect\fR parameter.
643 Default: true.
644 .TP
645 .BI offset \fR=\fPint
646 Offset in the file to start I/O. Data before the offset will not be touched.
647 .TP
648 .BI offset_increment \fR=\fPint
649 If this is provided, then the real offset becomes the
650 offset + offset_increment * thread_number, where the thread number is a counter
651 that starts at 0 and is incremented for each job. This option is useful if
652 there are several jobs which are intended to operate on a file in parallel in
653 disjoint segments, with even spacing between the starting points.
654 .TP
655 .BI number_ios \fR=\fPint
656 Fio will normally perform IOs until it has exhausted the size of the region
657 set by \fBsize\fR, or if it exhaust the allocated time (or hits an error
658 condition). With this setting, the range/size can be set independently of
659 the number of IOs to perform. When fio reaches this number, it will exit
660 normally and report status.
661 .TP
662 .BI fsync \fR=\fPint
663 How many I/Os to perform before issuing an \fBfsync\fR\|(2) of dirty data.  If
664 0, don't sync.  Default: 0.
665 .TP
666 .BI fdatasync \fR=\fPint
667 Like \fBfsync\fR, but uses \fBfdatasync\fR\|(2) instead to only sync the
668 data parts of the file. Default: 0.
669 .TP
670 .BI write_barrier \fR=\fPint
671 Make every Nth write a barrier write.
672 .TP
673 .BI sync_file_range \fR=\fPstr:int
674 Use \fBsync_file_range\fR\|(2) for every \fRval\fP number of write operations. Fio will
675 track range of writes that have happened since the last \fBsync_file_range\fR\|(2) call.
676 \fRstr\fP can currently be one or more of:
677 .RS
678 .TP
679 .B wait_before
680 SYNC_FILE_RANGE_WAIT_BEFORE
681 .TP
682 .B write
683 SYNC_FILE_RANGE_WRITE
684 .TP
685 .B wait_after
686 SYNC_FILE_RANGE_WRITE
687 .TP
688 .RE
689 .P
690 So if you do sync_file_range=wait_before,write:8, fio would use
691 \fBSYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE\fP for every 8 writes.
692 Also see the \fBsync_file_range\fR\|(2) man page.  This option is Linux specific.
693 .TP
694 .BI overwrite \fR=\fPbool
695 If writing, setup the file first and do overwrites.  Default: false.
696 .TP
697 .BI end_fsync \fR=\fPbool
698 Sync file contents when a write stage has completed.  Default: false.
699 .TP
700 .BI fsync_on_close \fR=\fPbool
701 If true, sync file contents on close.  This differs from \fBend_fsync\fR in that
702 it will happen on every close, not just at the end of the job.  Default: false.
703 .TP
704 .BI rwmixread \fR=\fPint
705 Percentage of a mixed workload that should be reads. Default: 50.
706 .TP
707 .BI rwmixwrite \fR=\fPint
708 Percentage of a mixed workload that should be writes.  If \fBrwmixread\fR and
709 \fBrwmixwrite\fR are given and do not sum to 100%, the latter of the two
710 overrides the first. This may interfere with a given rate setting, if fio is
711 asked to limit reads or writes to a certain rate. If that is the case, then
712 the distribution may be skewed. Default: 50.
713 .TP
714 .BI random_distribution \fR=\fPstr:float
715 By default, fio will use a completely uniform random distribution when asked
716 to perform random IO. Sometimes it is useful to skew the distribution in
717 specific ways, ensuring that some parts of the data is more hot than others.
718 Fio includes the following distribution models:
719 .RS
720 .TP
721 .B random
722 Uniform random distribution
723 .TP
724 .B zipf
725 Zipf distribution
726 .TP
727 .B pareto
728 Pareto distribution
729 .TP
730 .RE
731 .P
732 When using a zipf or pareto distribution, an input value is also needed to
733 define the access pattern. For zipf, this is the zipf theta. For pareto,
734 it's the pareto power. Fio includes a test program, genzipf, that can be
735 used visualize what the given input values will yield in terms of hit rates.
736 If you wanted to use zipf with a theta of 1.2, you would use
737 random_distribution=zipf:1.2 as the option. If a non-uniform model is used,
738 fio will disable use of the random map.
739 .TP
740 .BI percentage_random \fR=\fPint
741 For a random workload, set how big a percentage should be random. This defaults
742 to 100%, in which case the workload is fully random. It can be set from
743 anywhere from 0 to 100.  Setting it to 0 would make the workload fully
744 sequential. It is possible to set different values for reads, writes, and
745 trim. To do so, simply use a comma separated list. See \fBblocksize\fR.
746 .TP
747 .B norandommap
748 Normally \fBfio\fR will cover every block of the file when doing random I/O. If
749 this parameter is given, a new offset will be chosen without looking at past
750 I/O history.  This parameter is mutually exclusive with \fBverify\fR.
751 .TP
752 .BI softrandommap \fR=\fPbool
753 See \fBnorandommap\fR. If fio runs with the random block map enabled and it
754 fails to allocate the map, if this option is set it will continue without a
755 random block map. As coverage will not be as complete as with random maps, this
756 option is disabled by default.
757 .TP
758 .BI random_generator \fR=\fPstr
759 Fio supports the following engines for generating IO offsets for random IO:
760 .RS
761 .TP
762 .B tausworthe
763 Strong 2^88 cycle random number generator
764 .TP
765 .B lfsr
766 Linear feedback shift register generator
767 .TP
768 .RE
769 .P
770 Tausworthe is a strong random number generator, but it requires tracking on the
771 side if we want to ensure that blocks are only read or written once. LFSR
772 guarantees that we never generate the same offset twice, and it's also less
773 computationally expensive. It's not a true random generator, however, though
774 for IO purposes it's typically good enough. LFSR only works with single block
775 sizes, not with workloads that use multiple block sizes. If used with such a
776 workload, fio may read or write some blocks multiple times.
777 .TP
778 .BI nice \fR=\fPint
779 Run job with given nice value.  See \fBnice\fR\|(2).
780 .TP
781 .BI prio \fR=\fPint
782 Set I/O priority value of this job between 0 (highest) and 7 (lowest).  See
783 \fBionice\fR\|(1).
784 .TP
785 .BI prioclass \fR=\fPint
786 Set I/O priority class.  See \fBionice\fR\|(1).
787 .TP
788 .BI thinktime \fR=\fPint
789 Stall job for given number of microseconds between issuing I/Os.
790 .TP
791 .BI thinktime_spin \fR=\fPint
792 Pretend to spend CPU time for given number of microseconds, sleeping the rest
793 of the time specified by \fBthinktime\fR.  Only valid if \fBthinktime\fR is set.
794 .TP
795 .BI thinktime_blocks \fR=\fPint
796 Only valid if thinktime is set - control how many blocks to issue, before
797 waiting \fBthinktime\fR microseconds. If not set, defaults to 1 which will
798 make fio wait \fBthinktime\fR microseconds after every block. This
799 effectively makes any queue depth setting redundant, since no more than 1 IO
800 will be queued before we have to complete it and do our thinktime. In other
801 words, this setting effectively caps the queue depth if the latter is larger.
802 Default: 1.
803 .TP
804 .BI rate \fR=\fPint
805 Cap bandwidth used by this job. The number is in bytes/sec, the normal postfix
806 rules apply. You can use \fBrate\fR=500k to limit reads and writes to 500k each,
807 or you can specify read and writes separately. Using \fBrate\fR=1m,500k would
808 limit reads to 1MB/sec and writes to 500KB/sec. Capping only reads or writes
809 can be done with \fBrate\fR=,500k or \fBrate\fR=500k,. The former will only
810 limit writes (to 500KB/sec), the latter will only limit reads.
811 .TP
812 .BI ratemin \fR=\fPint
813 Tell \fBfio\fR to do whatever it can to maintain at least the given bandwidth.
814 Failing to meet this requirement will cause the job to exit. The same format
815 as \fBrate\fR is used for read vs write separation.
816 .TP
817 .BI rate_iops \fR=\fPint
818 Cap the bandwidth to this number of IOPS. Basically the same as rate, just
819 specified independently of bandwidth. The same format as \fBrate\fR is used for
820 read vs write separation. If \fBblocksize\fR is a range, the smallest block
821 size is used as the metric.
822 .TP
823 .BI rate_iops_min \fR=\fPint
824 If this rate of I/O is not met, the job will exit. The same format as \fBrate\fR
825 is used for read vs write separation.
826 .TP
827 .BI ratecycle \fR=\fPint
828 Average bandwidth for \fBrate\fR and \fBratemin\fR over this number of
829 milliseconds.  Default: 1000ms.
830 .TP
831 .BI latency_target \fR=\fPint
832 If set, fio will attempt to find the max performance point that the given
833 workload will run at while maintaining a latency below this target. The
834 values is given in microseconds. See \fBlatency_window\fR and
835 \fBlatency_percentile\fR.
836 .TP
837 .BI latency_window \fR=\fPint
838 Used with \fBlatency_target\fR to specify the sample window that the job
839 is run at varying queue depths to test the performance. The value is given
840 in microseconds.
841 .TP
842 .BI latency_percentile \fR=\fPfloat
843 The percentage of IOs that must fall within the criteria specified by
844 \fBlatency_target\fR and \fBlatency_window\fR. If not set, this defaults
845 to 100.0, meaning that all IOs must be equal or below to the value set
846 by \fBlatency_target\fR.
847 .TP
848 .BI max_latency \fR=\fPint
849 If set, fio will exit the job if it exceeds this maximum latency. It will exit
850 with an ETIME error.
851 .TP
852 .BI cpumask \fR=\fPint
853 Set CPU affinity for this job. \fIint\fR is a bitmask of allowed CPUs the job
854 may run on.  See \fBsched_setaffinity\fR\|(2).
855 .TP
856 .BI cpus_allowed \fR=\fPstr
857 Same as \fBcpumask\fR, but allows a comma-delimited list of CPU numbers.
858 .TP
859 .BI cpus_allowed_policy \fR=\fPstr
860 Set the policy of how fio distributes the CPUs specified by \fBcpus_allowed\fR
861 or \fBcpumask\fR. Two policies are supported:
862 .RS
863 .RS
864 .TP
865 .B shared
866 All jobs will share the CPU set specified.
867 .TP
868 .B split
869 Each job will get a unique CPU from the CPU set.
870 .RE
871 .P
872 \fBshared\fR is the default behaviour, if the option isn't specified. If
873 \fBsplit\fR is specified, then fio will assign one cpu per job. If not enough
874 CPUs are given for the jobs listed, then fio will roundrobin the CPUs in
875 the set.
876 .RE
877 .P
878 .TP
879 .BI numa_cpu_nodes \fR=\fPstr
880 Set this job running on specified NUMA nodes' CPUs. The arguments allow
881 comma delimited list of cpu numbers, A-B ranges, or 'all'.
882 .TP
883 .BI numa_mem_policy \fR=\fPstr
884 Set this job's memory policy and corresponding NUMA nodes. Format of
885 the arguments:
886 .RS
887 .TP
888 .B <mode>[:<nodelist>]
889 .TP
890 .B mode
891 is one of the following memory policy:
892 .TP
893 .B default, prefer, bind, interleave, local
894 .TP
895 .RE
896 For \fBdefault\fR and \fBlocal\fR memory policy, no \fBnodelist\fR is
897 needed to be specified. For \fBprefer\fR, only one node is
898 allowed. For \fBbind\fR and \fBinterleave\fR, \fBnodelist\fR allows
899 comma delimited list of numbers, A-B ranges, or 'all'.
900 .TP
901 .BI startdelay \fR=\fPirange
902 Delay start of job for the specified number of seconds. Supports all time
903 suffixes to allow specification of hours, minutes, seconds and
904 milliseconds - seconds are the default if a unit is ommited.
905 Can be given as a range which causes each thread to choose randomly out of the
906 range.
907 .TP
908 .BI runtime \fR=\fPint
909 Terminate processing after the specified number of seconds.
910 .TP
911 .B time_based
912 If given, run for the specified \fBruntime\fR duration even if the files are
913 completely read or written. The same workload will be repeated as many times
914 as \fBruntime\fR allows.
915 .TP
916 .BI ramp_time \fR=\fPint
917 If set, fio will run the specified workload for this amount of time before
918 logging any performance numbers. Useful for letting performance settle before
919 logging results, thus minimizing the runtime required for stable results. Note
920 that the \fBramp_time\fR is considered lead in time for a job, thus it will
921 increase the total runtime if a special timeout or runtime is specified.
922 .TP
923 .BI invalidate \fR=\fPbool
924 Invalidate buffer-cache for the file prior to starting I/O.  Default: true.
925 .TP
926 .BI sync \fR=\fPbool
927 Use synchronous I/O for buffered writes.  For the majority of I/O engines,
928 this means using O_SYNC.  Default: false.
929 .TP
930 .BI iomem \fR=\fPstr "\fR,\fP mem" \fR=\fPstr
931 Allocation method for I/O unit buffer.  Allowed values are:
932 .RS
933 .RS
934 .TP
935 .B malloc
936 Allocate memory with \fBmalloc\fR\|(3).
937 .TP
938 .B shm
939 Use shared memory buffers allocated through \fBshmget\fR\|(2).
940 .TP
941 .B shmhuge
942 Same as \fBshm\fR, but use huge pages as backing.
943 .TP
944 .B mmap
945 Use \fBmmap\fR\|(2) for allocation.  Uses anonymous memory unless a filename
946 is given after the option in the format `:\fIfile\fR'.
947 .TP
948 .B mmaphuge
949 Same as \fBmmap\fR, but use huge files as backing.
950 .RE
951 .P
952 The amount of memory allocated is the maximum allowed \fBblocksize\fR for the
953 job multiplied by \fBiodepth\fR.  For \fBshmhuge\fR or \fBmmaphuge\fR to work,
954 the system must have free huge pages allocated.  \fBmmaphuge\fR also needs to
955 have hugetlbfs mounted, and \fIfile\fR must point there. At least on Linux,
956 huge pages must be manually allocated. See \fB/proc/sys/vm/nr_hugehages\fR
957 and the documentation for that. Normally you just need to echo an appropriate
958 number, eg echoing 8 will ensure that the OS has 8 huge pages ready for
959 use.
960 .RE
961 .TP
962 .BI iomem_align \fR=\fPint "\fR,\fP mem_align" \fR=\fPint
963 This indicates the memory alignment of the IO memory buffers. Note that the
964 given alignment is applied to the first IO unit buffer, if using \fBiodepth\fR
965 the alignment of the following buffers are given by the \fBbs\fR used. In
966 other words, if using a \fBbs\fR that is a multiple of the page sized in the
967 system, all buffers will be aligned to this value. If using a \fBbs\fR that
968 is not page aligned, the alignment of subsequent IO memory buffers is the
969 sum of the \fBiomem_align\fR and \fBbs\fR used.
970 .TP
971 .BI hugepage\-size \fR=\fPint
972 Defines the size of a huge page.  Must be at least equal to the system setting.
973 Should be a multiple of 1MB. Default: 4MB.
974 .TP
975 .B exitall
976 Terminate all jobs when one finishes.  Default: wait for each job to finish.
977 .TP
978 .BI bwavgtime \fR=\fPint
979 Average bandwidth calculations over the given time in milliseconds.  Default:
980 500ms.
981 .TP
982 .BI iopsavgtime \fR=\fPint
983 Average IOPS calculations over the given time in milliseconds.  Default:
984 500ms.
985 .TP
986 .BI create_serialize \fR=\fPbool
987 If true, serialize file creation for the jobs.  Default: true.
988 .TP
989 .BI create_fsync \fR=\fPbool
990 \fBfsync\fR\|(2) data file after creation.  Default: true.
991 .TP
992 .BI create_on_open \fR=\fPbool
993 If true, the files are not created until they are opened for IO by the job.
994 .TP
995 .BI create_only \fR=\fPbool
996 If true, fio will only run the setup phase of the job. If files need to be
997 laid out or updated on disk, only that will be done. The actual job contents
998 are not executed.
999 .TP
1000 .BI pre_read \fR=\fPbool
1001 If this is given, files will be pre-read into memory before starting the given
1002 IO operation. This will also clear the \fR \fBinvalidate\fR flag, since it is
1003 pointless to pre-read and then drop the cache. This will only work for IO
1004 engines that are seekable, since they allow you to read the same data
1005 multiple times. Thus it will not work on eg network or splice IO.
1006 .TP
1007 .BI unlink \fR=\fPbool
1008 Unlink job files when done.  Default: false.
1009 .TP
1010 .BI loops \fR=\fPint
1011 Specifies the number of iterations (runs of the same workload) of this job.
1012 Default: 1.
1013 .TP
1014 .BI verify_only \fR=\fPbool
1015 Do not perform the specified workload, only verify data still matches previous
1016 invocation of this workload. This option allows one to check data multiple
1017 times at a later date without overwriting it. This option makes sense only for
1018 workloads that write data, and does not support workloads with the
1019 \fBtime_based\fR option set.
1020 .TP
1021 .BI do_verify \fR=\fPbool
1022 Run the verify phase after a write phase.  Only valid if \fBverify\fR is set.
1023 Default: true.
1024 .TP
1025 .BI verify \fR=\fPstr
1026 Method of verifying file contents after each iteration of the job.  Allowed
1027 values are:
1028 .RS
1029 .RS
1030 .TP
1031 .B md5 crc16 crc32 crc32c crc32c-intel crc64 crc7 sha256 sha512 sha1 xxhash
1032 Store appropriate checksum in the header of each block. crc32c-intel is
1033 hardware accelerated SSE4.2 driven, falls back to regular crc32c if
1034 not supported by the system.
1035 .TP
1036 .B meta
1037 Write extra information about each I/O (timestamp, block number, etc.). The
1038 block number is verified. See \fBverify_pattern\fR as well.
1039 .TP
1040 .B null
1041 Pretend to verify.  Used for testing internals.
1042 .RE
1043
1044 This option can be used for repeated burn-in tests of a system to make sure
1045 that the written data is also correctly read back. If the data direction given
1046 is a read or random read, fio will assume that it should verify a previously
1047 written file. If the data direction includes any form of write, the verify will
1048 be of the newly written data.
1049 .RE
1050 .TP
1051 .BI verifysort \fR=\fPbool
1052 If true, written verify blocks are sorted if \fBfio\fR deems it to be faster to
1053 read them back in a sorted manner.  Default: true.
1054 .TP
1055 .BI verifysort_nr \fR=\fPint
1056 Pre-load and sort verify blocks for a read workload.
1057 .TP
1058 .BI verify_offset \fR=\fPint
1059 Swap the verification header with data somewhere else in the block before
1060 writing.  It is swapped back before verifying.
1061 .TP
1062 .BI verify_interval \fR=\fPint
1063 Write the verification header for this number of bytes, which should divide
1064 \fBblocksize\fR.  Default: \fBblocksize\fR.
1065 .TP
1066 .BI verify_pattern \fR=\fPstr
1067 If set, fio will fill the io buffers with this pattern. Fio defaults to filling
1068 with totally random bytes, but sometimes it's interesting to fill with a known
1069 pattern for io verification purposes. Depending on the width of the pattern,
1070 fio will fill 1/2/3/4 bytes of the buffer at the time(it can be either a
1071 decimal or a hex number). The verify_pattern if larger than a 32-bit quantity
1072 has to be a hex number that starts with either "0x" or "0X". Use with
1073 \fBverify\fP=meta.
1074 .TP
1075 .BI verify_fatal \fR=\fPbool
1076 If true, exit the job on the first observed verification failure.  Default:
1077 false.
1078 .TP
1079 .BI verify_dump \fR=\fPbool
1080 If set, dump the contents of both the original data block and the data block we
1081 read off disk to files. This allows later analysis to inspect just what kind of
1082 data corruption occurred. Off by default.
1083 .TP
1084 .BI verify_async \fR=\fPint
1085 Fio will normally verify IO inline from the submitting thread. This option
1086 takes an integer describing how many async offload threads to create for IO
1087 verification instead, causing fio to offload the duty of verifying IO contents
1088 to one or more separate threads.  If using this offload option, even sync IO
1089 engines can benefit from using an \fBiodepth\fR setting higher than 1, as it
1090 allows them to have IO in flight while verifies are running.
1091 .TP
1092 .BI verify_async_cpus \fR=\fPstr
1093 Tell fio to set the given CPU affinity on the async IO verification threads.
1094 See \fBcpus_allowed\fP for the format used.
1095 .TP
1096 .BI verify_backlog \fR=\fPint
1097 Fio will normally verify the written contents of a job that utilizes verify
1098 once that job has completed. In other words, everything is written then
1099 everything is read back and verified. You may want to verify continually
1100 instead for a variety of reasons. Fio stores the meta data associated with an
1101 IO block in memory, so for large verify workloads, quite a bit of memory would
1102 be used up holding this meta data. If this option is enabled, fio will write
1103 only N blocks before verifying these blocks.
1104 .TP
1105 .BI verify_backlog_batch \fR=\fPint
1106 Control how many blocks fio will verify if verify_backlog is set. If not set,
1107 will default to the value of \fBverify_backlog\fR (meaning the entire queue is
1108 read back and verified).  If \fBverify_backlog_batch\fR is less than 
1109 \fBverify_backlog\fR then not all blocks will be verified,  if 
1110 \fBverify_backlog_batch\fR is larger than \fBverify_backlog\fR,  some blocks
1111 will be verified more than once.
1112 .TP
1113 .BI trim_percentage \fR=\fPint
1114 Number of verify blocks to discard/trim.
1115 .TP
1116 .BI trim_verify_zero \fR=\fPbool
1117 Verify that trim/discarded blocks are returned as zeroes.
1118 .TP
1119 .BI trim_backlog \fR=\fPint
1120 Trim after this number of blocks are written.
1121 .TP
1122 .BI trim_backlog_batch \fR=\fPint
1123 Trim this number of IO blocks.
1124 .TP
1125 .BI experimental_verify \fR=\fPbool
1126 Enable experimental verification.
1127 .TP
1128 .B stonewall "\fR,\fP wait_for_previous"
1129 Wait for preceding jobs in the job file to exit before starting this one.
1130 \fBstonewall\fR implies \fBnew_group\fR.
1131 .TP
1132 .B new_group
1133 Start a new reporting group.  If not given, all jobs in a file will be part
1134 of the same reporting group, unless separated by a stonewall.
1135 .TP
1136 .BI numjobs \fR=\fPint
1137 Number of clones (processes/threads performing the same workload) of this job.  
1138 Default: 1.
1139 .TP
1140 .B group_reporting
1141 If set, display per-group reports instead of per-job when \fBnumjobs\fR is
1142 specified.
1143 .TP
1144 .B thread
1145 Use threads created with \fBpthread_create\fR\|(3) instead of processes created
1146 with \fBfork\fR\|(2).
1147 .TP
1148 .BI zonesize \fR=\fPint
1149 Divide file into zones of the specified size in bytes.  See \fBzoneskip\fR.
1150 .TP
1151 .BI zonerange \fR=\fPint
1152 Give size of an IO zone.  See \fBzoneskip\fR.
1153 .TP
1154 .BI zoneskip \fR=\fPint
1155 Skip the specified number of bytes when \fBzonesize\fR bytes of data have been
1156 read.
1157 .TP
1158 .BI write_iolog \fR=\fPstr
1159 Write the issued I/O patterns to the specified file.  Specify a separate file
1160 for each job, otherwise the iologs will be interspersed and the file may be
1161 corrupt.
1162 .TP
1163 .BI read_iolog \fR=\fPstr
1164 Replay the I/O patterns contained in the specified file generated by
1165 \fBwrite_iolog\fR, or may be a \fBblktrace\fR binary file.
1166 .TP
1167 .BI replay_no_stall \fR=\fPint
1168 While replaying I/O patterns using \fBread_iolog\fR the default behavior
1169 attempts to respect timing information between I/Os.  Enabling
1170 \fBreplay_no_stall\fR causes I/Os to be replayed as fast as possible while
1171 still respecting ordering.
1172 .TP
1173 .BI replay_redirect \fR=\fPstr
1174 While replaying I/O patterns using \fBread_iolog\fR the default behavior
1175 is to replay the IOPS onto the major/minor device that each IOP was recorded
1176 from.  Setting \fBreplay_redirect\fR causes all IOPS to be replayed onto the
1177 single specified device regardless of the device it was recorded from.
1178 .TP
1179 .BI write_bw_log \fR=\fPstr
1180 If given, write a bandwidth log of the jobs in this job file. Can be used to
1181 store data of the bandwidth of the jobs in their lifetime. The included
1182 fio_generate_plots script uses gnuplot to turn these text files into nice
1183 graphs. See \fBwrite_lat_log\fR for behaviour of given filename. For this
1184 option, the postfix is _bw.log.
1185 .TP
1186 .BI write_lat_log \fR=\fPstr
1187 Same as \fBwrite_bw_log\fR, but writes I/O completion latencies.  If no
1188 filename is given with this option, the default filename of "jobname_type.log"
1189 is used. Even if the filename is given, fio will still append the type of log.
1190 .TP
1191 .BI write_iops_log \fR=\fPstr
1192 Same as \fBwrite_bw_log\fR, but writes IOPS. If no filename is given with this
1193 option, the default filename of "jobname_type.log" is used. Even if the
1194 filename is given, fio will still append the type of log.
1195 .TP
1196 .BI log_avg_msec \fR=\fPint
1197 By default, fio will log an entry in the iops, latency, or bw log for every
1198 IO that completes. When writing to the disk log, that can quickly grow to a
1199 very large size. Setting this option makes fio average the each log entry
1200 over the specified period of time, reducing the resolution of the log.
1201 Defaults to 0.
1202 .TP
1203 .BI disable_lat \fR=\fPbool
1204 Disable measurements of total latency numbers. Useful only for cutting
1205 back the number of calls to \fBgettimeofday\fR\|(2), as that does impact performance at
1206 really high IOPS rates.  Note that to really get rid of a large amount of these
1207 calls, this option must be used with disable_slat and disable_bw as well.
1208 .TP
1209 .BI disable_clat \fR=\fPbool
1210 Disable measurements of completion latency numbers. See \fBdisable_lat\fR.
1211 .TP
1212 .BI disable_slat \fR=\fPbool
1213 Disable measurements of submission latency numbers. See \fBdisable_lat\fR.
1214 .TP
1215 .BI disable_bw_measurement \fR=\fPbool
1216 Disable measurements of throughput/bandwidth numbers. See \fBdisable_lat\fR.
1217 .TP
1218 .BI lockmem \fR=\fPint
1219 Pin the specified amount of memory with \fBmlock\fR\|(2).  Can be used to
1220 simulate a smaller amount of memory. The amount specified is per worker.
1221 .TP
1222 .BI exec_prerun \fR=\fPstr
1223 Before running the job, execute the specified command with \fBsystem\fR\|(3).
1224 .RS
1225 Output is redirected in a file called \fBjobname.prerun.txt\fR
1226 .RE
1227 .TP
1228 .BI exec_postrun \fR=\fPstr
1229 Same as \fBexec_prerun\fR, but the command is executed after the job completes.
1230 .RS
1231 Output is redirected in a file called \fBjobname.postrun.txt\fR
1232 .RE
1233 .TP
1234 .BI ioscheduler \fR=\fPstr
1235 Attempt to switch the device hosting the file to the specified I/O scheduler.
1236 .TP
1237 .BI disk_util \fR=\fPbool
1238 Generate disk utilization statistics if the platform supports it. Default: true.
1239 .TP
1240 .BI clocksource \fR=\fPstr
1241 Use the given clocksource as the base of timing. The supported options are:
1242 .RS
1243 .TP
1244 .B gettimeofday
1245 \fBgettimeofday\fR\|(2)
1246 .TP
1247 .B clock_gettime
1248 \fBclock_gettime\fR\|(2)
1249 .TP
1250 .B cpu
1251 Internal CPU clock source
1252 .TP
1253 .RE
1254 .P
1255 \fBcpu\fR is the preferred clocksource if it is reliable, as it is very fast
1256 (and fio is heavy on time calls). Fio will automatically use this clocksource
1257 if it's supported and considered reliable on the system it is running on,
1258 unless another clocksource is specifically set. For x86/x86-64 CPUs, this
1259 means supporting TSC Invariant.
1260 .TP
1261 .BI gtod_reduce \fR=\fPbool
1262 Enable all of the \fBgettimeofday\fR\|(2) reducing options (disable_clat, disable_slat,
1263 disable_bw) plus reduce precision of the timeout somewhat to really shrink the
1264 \fBgettimeofday\fR\|(2) call count. With this option enabled, we only do about 0.4% of
1265 the gtod() calls we would have done if all time keeping was enabled.
1266 .TP
1267 .BI gtod_cpu \fR=\fPint
1268 Sometimes it's cheaper to dedicate a single thread of execution to just getting
1269 the current time. Fio (and databases, for instance) are very intensive on
1270 \fBgettimeofday\fR\|(2) calls. With this option, you can set one CPU aside for doing
1271 nothing but logging current time to a shared memory location. Then the other
1272 threads/processes that run IO workloads need only copy that segment, instead of
1273 entering the kernel with a \fBgettimeofday\fR\|(2) call. The CPU set aside for doing
1274 these time calls will be excluded from other uses. Fio will manually clear it
1275 from the CPU mask of other jobs.
1276 .TP
1277 .BI ignore_error \fR=\fPstr
1278 Sometimes you want to ignore some errors during test in that case you can specify
1279 error list for each error type.
1280 .br
1281 ignore_error=READ_ERR_LIST,WRITE_ERR_LIST,VERIFY_ERR_LIST
1282 .br
1283 errors for given error type is separated with ':'.
1284 Error may be symbol ('ENOSPC', 'ENOMEM') or an integer.
1285 .br
1286 Example: ignore_error=EAGAIN,ENOSPC:122 .
1287 .br     
1288 This option will ignore EAGAIN from READ, and ENOSPC and 122(EDQUOT) from WRITE. 
1289 .TP
1290 .BI error_dump \fR=\fPbool
1291 If set dump every error even if it is non fatal, true by default. If disabled
1292 only fatal error will be dumped
1293 .TP
1294 .BI profile \fR=\fPstr
1295 Select a specific builtin performance test.
1296 .TP
1297 .BI cgroup \fR=\fPstr
1298 Add job to this control group. If it doesn't exist, it will be created.
1299 The system must have a mounted cgroup blkio mount point for this to work. If
1300 your system doesn't have it mounted, you can do so with:
1301
1302 # mount \-t cgroup \-o blkio none /cgroup
1303 .TP
1304 .BI cgroup_weight \fR=\fPint
1305 Set the weight of the cgroup to this value. See the documentation that comes
1306 with the kernel, allowed values are in the range of 100..1000.
1307 .TP
1308 .BI cgroup_nodelete \fR=\fPbool
1309 Normally fio will delete the cgroups it has created after the job completion.
1310 To override this behavior and to leave cgroups around after the job completion,
1311 set cgroup_nodelete=1. This can be useful if one wants to inspect various
1312 cgroup files after job completion. Default: false
1313 .TP
1314 .BI uid \fR=\fPint
1315 Instead of running as the invoking user, set the user ID to this value before
1316 the thread/process does any work.
1317 .TP
1318 .BI gid \fR=\fPint
1319 Set group ID, see \fBuid\fR.
1320 .TP
1321 .BI unit_base \fR=\fPint
1322 Base unit for reporting.  Allowed values are:
1323 .RS
1324 .TP
1325 .B 0
1326 Use auto-detection (default).
1327 .TP
1328 .B 8
1329 Byte based.
1330 .TP
1331 .B 1
1332 Bit based.
1333 .RE
1334 .P
1335 .TP
1336 .BI flow_id \fR=\fPint
1337 The ID of the flow. If not specified, it defaults to being a global flow. See
1338 \fBflow\fR.
1339 .TP
1340 .BI flow \fR=\fPint
1341 Weight in token-based flow control. If this value is used, then there is a
1342 \fBflow counter\fR which is used to regulate the proportion of activity between
1343 two or more jobs. fio attempts to keep this flow counter near zero. The
1344 \fBflow\fR parameter stands for how much should be added or subtracted to the
1345 flow counter on each iteration of the main I/O loop. That is, if one job has
1346 \fBflow=8\fR and another job has \fBflow=-1\fR, then there will be a roughly
1347 1:8 ratio in how much one runs vs the other.
1348 .TP
1349 .BI flow_watermark \fR=\fPint
1350 The maximum value that the absolute value of the flow counter is allowed to
1351 reach before the job must wait for a lower value of the counter.
1352 .TP
1353 .BI flow_sleep \fR=\fPint
1354 The period of time, in microseconds, to wait after the flow watermark has been
1355 exceeded before retrying operations
1356 .TP
1357 .BI clat_percentiles \fR=\fPbool
1358 Enable the reporting of percentiles of completion latencies.
1359 .TP
1360 .BI percentile_list \fR=\fPfloat_list
1361 Overwrite the default list of percentiles for completion
1362 latencies. Each number is a floating number in the range (0,100], and
1363 the maximum length of the list is 20. Use ':' to separate the
1364 numbers. For example, \-\-percentile_list=99.5:99.9 will cause fio to
1365 report the values of completion latency below which 99.5% and 99.9% of
1366 the observed latencies fell, respectively.
1367 .SS "Ioengine Parameters List"
1368 Some parameters are only valid when a specific ioengine is in use. These are
1369 used identically to normal parameters, with the caveat that when used on the
1370 command line, the must come after the ioengine that defines them is selected.
1371 .TP
1372 .BI (cpu)cpuload \fR=\fPint
1373 Attempt to use the specified percentage of CPU cycles.
1374 .TP
1375 .BI (cpu)cpuchunks \fR=\fPint
1376 Split the load into cycles of the given time. In microseconds.
1377 .TP
1378 .BI (cpu)exit_on_io_done \fR=\fPbool
1379 Detect when IO threads are done, then exit.
1380 .TP
1381 .BI (libaio)userspace_reap
1382 Normally, with the libaio engine in use, fio will use
1383 the io_getevents system call to reap newly returned events.
1384 With this flag turned on, the AIO ring will be read directly
1385 from user-space to reap events. The reaping mode is only
1386 enabled when polling for a minimum of 0 events (eg when
1387 iodepth_batch_complete=0).
1388 .TP
1389 .BI (net,netsplice)hostname \fR=\fPstr
1390 The host name or IP address to use for TCP or UDP based IO.
1391 If the job is a TCP listener or UDP reader, the hostname is not
1392 used and must be omitted unless it is a valid UDP multicast address.
1393 .TP
1394 .BI (net,netsplice)port \fR=\fPint
1395 The TCP or UDP port to bind to or connect to.
1396 .TP
1397 .BI (net,netsplice)interface \fR=\fPstr
1398 The IP address of the network interface used to send or receive UDP multicast
1399 packets.
1400 .TP
1401 .BI (net,netsplice)ttl \fR=\fPint
1402 Time-to-live value for outgoing UDP multicast packets. Default: 1
1403 .TP
1404 .BI (net,netsplice)nodelay \fR=\fPbool
1405 Set TCP_NODELAY on TCP connections.
1406 .TP
1407 .BI (net,netsplice)protocol \fR=\fPstr "\fR,\fP proto" \fR=\fPstr
1408 The network protocol to use. Accepted values are:
1409 .RS
1410 .RS
1411 .TP
1412 .B tcp
1413 Transmission control protocol
1414 .TP
1415 .B tcpv6
1416 Transmission control protocol V6
1417 .TP
1418 .B udp
1419 User datagram protocol
1420 .TP
1421 .B udpv6
1422 User datagram protocol V6
1423 .TP
1424 .B unix
1425 UNIX domain socket
1426 .RE
1427 .P
1428 When the protocol is TCP or UDP, the port must also be given,
1429 as well as the hostname if the job is a TCP listener or UDP
1430 reader. For unix sockets, the normal filename option should be
1431 used and the port is invalid.
1432 .RE
1433 .TP
1434 .BI (net,netsplice)listen
1435 For TCP network connections, tell fio to listen for incoming
1436 connections rather than initiating an outgoing connection. The
1437 hostname must be omitted if this option is used.
1438 .TP
1439 .BI (net, pingpong) \fR=\fPbool
1440 Normally a network writer will just continue writing data, and a network reader
1441 will just consume packages. If pingpong=1 is set, a writer will send its normal
1442 payload to the reader, then wait for the reader to send the same payload back.
1443 This allows fio to measure network latencies. The submission and completion
1444 latencies then measure local time spent sending or receiving, and the
1445 completion latency measures how long it took for the other end to receive and
1446 send back. For UDP multicast traffic pingpong=1 should only be set for a single
1447 reader when multiple readers are listening to the same address.
1448 .TP
1449 .BI (e4defrag,donorname) \fR=\fPstr
1450 File will be used as a block donor (swap extents between files)
1451 .TP
1452 .BI (e4defrag,inplace) \fR=\fPint
1453 Configure donor file block allocation strategy          
1454 .RS
1455 .BI 0(default) :
1456 Preallocate donor's file on init
1457 .TP
1458 .BI 1:
1459 allocate space immediately inside defragment event, and free right after event
1460 .RE
1461 .TP
1462 .BI (rbd)rbdname \fR=\fPstr
1463 Specifies the name of the RBD.
1464 .TP
1465 .BI (rbd)pool \fR=\fPstr
1466 Specifies the name of the Ceph pool containing the RBD.
1467 .TP
1468 .BI (rbd)clientname \fR=\fPstr
1469 Specifies the username (without the 'client.' prefix) used to access the Ceph cluster.
1470 .SH OUTPUT
1471 While running, \fBfio\fR will display the status of the created jobs.  For
1472 example:
1473 .RS
1474 .P
1475 Threads: 1: [_r] [24.8% done] [ 13509/  8334 kb/s] [eta 00h:01m:31s]
1476 .RE
1477 .P
1478 The characters in the first set of brackets denote the current status of each
1479 threads.  The possible values are:
1480 .P
1481 .PD 0
1482 .RS
1483 .TP
1484 .B P
1485 Setup but not started.
1486 .TP
1487 .B C
1488 Thread created.
1489 .TP
1490 .B I
1491 Initialized, waiting.
1492 .TP
1493 .B R
1494 Running, doing sequential reads.
1495 .TP
1496 .B r
1497 Running, doing random reads.
1498 .TP
1499 .B W
1500 Running, doing sequential writes.
1501 .TP
1502 .B w
1503 Running, doing random writes.
1504 .TP
1505 .B M
1506 Running, doing mixed sequential reads/writes.
1507 .TP
1508 .B m
1509 Running, doing mixed random reads/writes.
1510 .TP
1511 .B F
1512 Running, currently waiting for \fBfsync\fR\|(2).
1513 .TP
1514 .B V
1515 Running, verifying written data.
1516 .TP
1517 .B E
1518 Exited, not reaped by main thread.
1519 .TP
1520 .B \-
1521 Exited, thread reaped.
1522 .RE
1523 .PD
1524 .P
1525 The second set of brackets shows the estimated completion percentage of
1526 the current group.  The third set shows the read and write I/O rate,
1527 respectively. Finally, the estimated run time of the job is displayed.
1528 .P
1529 When \fBfio\fR completes (or is interrupted by Ctrl-C), it will show data
1530 for each thread, each group of threads, and each disk, in that order.
1531 .P
1532 Per-thread statistics first show the threads client number, group-id, and
1533 error code.  The remaining figures are as follows:
1534 .RS
1535 .TP
1536 .B io
1537 Number of megabytes of I/O performed.
1538 .TP
1539 .B bw
1540 Average data rate (bandwidth).
1541 .TP
1542 .B runt
1543 Threads run time.
1544 .TP
1545 .B slat
1546 Submission latency minimum, maximum, average and standard deviation. This is
1547 the time it took to submit the I/O.
1548 .TP
1549 .B clat
1550 Completion latency minimum, maximum, average and standard deviation.  This
1551 is the time between submission and completion.
1552 .TP
1553 .B bw
1554 Bandwidth minimum, maximum, percentage of aggregate bandwidth received, average
1555 and standard deviation.
1556 .TP
1557 .B cpu
1558 CPU usage statistics. Includes user and system time, number of context switches
1559 this thread went through and number of major and minor page faults.
1560 .TP
1561 .B IO depths
1562 Distribution of I/O depths.  Each depth includes everything less than (or equal)
1563 to it, but greater than the previous depth.
1564 .TP
1565 .B IO issued
1566 Number of read/write requests issued, and number of short read/write requests.
1567 .TP
1568 .B IO latencies
1569 Distribution of I/O completion latencies.  The numbers follow the same pattern
1570 as \fBIO depths\fR.
1571 .RE
1572 .P
1573 The group statistics show:
1574 .PD 0
1575 .RS
1576 .TP
1577 .B io
1578 Number of megabytes I/O performed.
1579 .TP
1580 .B aggrb
1581 Aggregate bandwidth of threads in the group.
1582 .TP
1583 .B minb
1584 Minimum average bandwidth a thread saw.
1585 .TP
1586 .B maxb
1587 Maximum average bandwidth a thread saw.
1588 .TP
1589 .B mint
1590 Shortest runtime of threads in the group.
1591 .TP
1592 .B maxt
1593 Longest runtime of threads in the group.
1594 .RE
1595 .PD
1596 .P
1597 Finally, disk statistics are printed with reads first:
1598 .PD 0
1599 .RS
1600 .TP
1601 .B ios
1602 Number of I/Os performed by all groups.
1603 .TP
1604 .B merge
1605 Number of merges in the I/O scheduler.
1606 .TP
1607 .B ticks
1608 Number of ticks we kept the disk busy.
1609 .TP
1610 .B io_queue
1611 Total time spent in the disk queue.
1612 .TP
1613 .B util
1614 Disk utilization.
1615 .RE
1616 .PD
1617 .P
1618 It is also possible to get fio to dump the current output while it is
1619 running, without terminating the job. To do that, send fio the \fBUSR1\fR
1620 signal.
1621 .SH TERSE OUTPUT
1622 If the \fB\-\-minimal\fR / \fB\-\-append-terse\fR options are given, the
1623 results will be printed/appended in a semicolon-delimited format suitable for
1624 scripted use.
1625 A job description (if provided) follows on a new line.  Note that the first
1626 number in the line is the version number. If the output has to be changed
1627 for some reason, this number will be incremented by 1 to signify that
1628 change.  The fields are:
1629 .P
1630 .RS
1631 .B terse version, fio version, jobname, groupid, error
1632 .P
1633 Read status:
1634 .RS
1635 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1636 .P
1637 Submission latency:
1638 .RS
1639 .B min, max, mean, standard deviation
1640 .RE
1641 Completion latency:
1642 .RS
1643 .B min, max, mean, standard deviation
1644 .RE
1645 Completion latency percentiles (20 fields):
1646 .RS
1647 .B Xth percentile=usec
1648 .RE
1649 Total latency:
1650 .RS
1651 .B min, max, mean, standard deviation
1652 .RE
1653 Bandwidth:
1654 .RS
1655 .B min, max, aggregate percentage of total, mean, standard deviation
1656 .RE
1657 .RE
1658 .P
1659 Write status:
1660 .RS
1661 .B Total I/O \fR(KB)\fP, bandwidth \fR(KB/s)\fP, IOPS, runtime \fR(ms)\fP
1662 .P
1663 Submission latency:
1664 .RS
1665 .B min, max, mean, standard deviation
1666 .RE
1667 Completion latency:
1668 .RS
1669 .B min, max, mean, standard deviation
1670 .RE
1671 Completion latency percentiles (20 fields):
1672 .RS
1673 .B Xth percentile=usec
1674 .RE
1675 Total latency:
1676 .RS
1677 .B min, max, mean, standard deviation
1678 .RE
1679 Bandwidth:
1680 .RS
1681 .B min, max, aggregate percentage of total, mean, standard deviation
1682 .RE
1683 .RE
1684 .P
1685 CPU usage:
1686 .RS
1687 .B user, system, context switches, major page faults, minor page faults
1688 .RE
1689 .P
1690 IO depth distribution:
1691 .RS
1692 .B <=1, 2, 4, 8, 16, 32, >=64
1693 .RE
1694 .P
1695 IO latency distribution:
1696 .RS
1697 Microseconds:
1698 .RS
1699 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000
1700 .RE
1701 Milliseconds:
1702 .RS
1703 .B <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, 2000, >=2000
1704 .RE
1705 .RE
1706 .P
1707 Disk utilization (1 for each disk used):
1708 .RS
1709 .B name, read ios, write ios, read merges, write merges, read ticks, write ticks, read in-queue time, write in-queue time, disk utilization percentage
1710 .RE
1711 .P
1712 Error Info (dependent on continue_on_error, default off):
1713 .RS
1714 .B total # errors, first error code 
1715 .RE
1716 .P
1717 .B text description (if provided in config - appears on newline)
1718 .RE
1719 .SH CLIENT / SERVER
1720 Normally you would run fio as a stand-alone application on the machine
1721 where the IO workload should be generated. However, it is also possible to
1722 run the frontend and backend of fio separately. This makes it possible to
1723 have a fio server running on the machine(s) where the IO workload should
1724 be running, while controlling it from another machine.
1725
1726 To start the server, you would do:
1727
1728 \fBfio \-\-server=args\fR
1729
1730 on that machine, where args defines what fio listens to. The arguments
1731 are of the form 'type:hostname or IP:port'. 'type' is either 'ip' (or ip4)
1732 for TCP/IP v4, 'ip6' for TCP/IP v6, or 'sock' for a local unix domain
1733 socket. 'hostname' is either a hostname or IP address, and 'port' is the port to
1734 listen to (only valid for TCP/IP, not a local socket). Some examples:
1735
1736 1) fio \-\-server
1737
1738    Start a fio server, listening on all interfaces on the default port (8765).
1739
1740 2) fio \-\-server=ip:hostname,4444
1741
1742    Start a fio server, listening on IP belonging to hostname and on port 4444.
1743
1744 3) fio \-\-server=ip6:::1,4444
1745
1746    Start a fio server, listening on IPv6 localhost ::1 and on port 4444.
1747
1748 4) fio \-\-server=,4444
1749
1750    Start a fio server, listening on all interfaces on port 4444.
1751
1752 5) fio \-\-server=1.2.3.4
1753
1754    Start a fio server, listening on IP 1.2.3.4 on the default port.
1755
1756 6) fio \-\-server=sock:/tmp/fio.sock
1757
1758    Start a fio server, listening on the local socket /tmp/fio.sock.
1759
1760 When a server is running, you can connect to it from a client. The client
1761 is run with:
1762
1763 fio \-\-local-args \-\-client=server \-\-remote-args <job file(s)>
1764
1765 where \-\-local-args are arguments that are local to the client where it is
1766 running, 'server' is the connect string, and \-\-remote-args and <job file(s)>
1767 are sent to the server. The 'server' string follows the same format as it
1768 does on the server side, to allow IP/hostname/socket and port strings.
1769 You can connect to multiple clients as well, to do that you could run:
1770
1771 fio \-\-client=server2 \-\-client=server2 <job file(s)>
1772 .SH AUTHORS
1773
1774 .B fio
1775 was written by Jens Axboe <jens.axboe@oracle.com>,
1776 now Jens Axboe <jaxboe@fusionio.com>.
1777 .br
1778 This man page was written by Aaron Carroll <aaronc@cse.unsw.edu.au> based
1779 on documentation by Jens Axboe.
1780 .SH "REPORTING BUGS"
1781 Report bugs to the \fBfio\fR mailing list <fio@vger.kernel.org>.
1782 See \fBREADME\fR.
1783 .SH "SEE ALSO"
1784 For further documentation see \fBHOWTO\fR and \fBREADME\fR.
1785 .br
1786 Sample jobfiles are available in the \fBexamples\fR directory.
1787